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Abstract

Financial institutions (“banks”) issuing short-term debt collateralized by long-term

assets are exposed to rollover risk: creditors may decide to run and trigger costly

liquidation. I investigate the impact of asset opacity and disclosure policy on short-

term spreads dynamics, run probability and efficiency. If collateral is good enough

initially, opacity reduces spreads and run likelihood: debt is information-insensitive

and money-like. This, however, only holds in the short run. At longer horizons, the

lack of information raises concerns about the actual collateral value. Precisely because

of opacity, the bank has difficulties to respond credibly. Debt loses its information-

insensitive status and runs become likely. These runs are particularly inefficient due

to a pooling effect: they can occur on good assets. All these effects are amplified when

disclosure is voluntary rather than mandatory: the short-term protection is stronger

but runs occur more often in the long run. I conclude that opacity (i) only reduces run

probability when the run probability under full information is low already, (ii) decreases

efficiency when liquidation costs are high, (iii) is more inefficient when combined with

voluntary disclosure. Moreover, bond yields are derived endogenously and contain

an opacity component. Finally, the model exhibits seemingly panic-driven runs, the

trigger time of which is in fact a function of the fundamentals.
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1 Introduction

Debt runs are prominent features of financial crises. The most recent one was no ex-

ception: during the years 2007-2008, the asset-backed commercial paper (ABCP) market,

the repo market, money market mutual funds and banks such as Northern Rock and Bear

Stearns were subject to runs1. It is therefore not surprising that policy makers and aca-

demics have tried to understand in depth the determinants of debt runs and the nature of

their interplay with crises. A first view is that runs are panic events which cause crises. In

Diamond and Dybvig (1983), uncoordinated creditors with pessimistic expectations about

other creditors’ lending decisions trigger inefficient liquidation of a long-term project. A

second view is that runs are fundamental-driven, i.e. are caused by a deterioration of eco-

nomic fundamentals, together with a combination of factors, including important maturity

mismatch, high leverage and liquidation costs. He and Xiong (2012) and Schroth, Suarez,

and Taylor (2014) propose dynamic structural models to quantify the importance of each of

these factors, with a focus on the 2007 run on ABCP. Acharya, Gale, and Yorulmazer (2011)

show that high rollover frequency and a short-term orientation of creditors can cause runs -

or market freezes in their terminology - to occur for debt levels much below the fundamental

value of the asset backing up the debt.

These models assume full information. However, there is a widespread perception that

many institutions concerned by the 2007-2008 crisis were managing opaque assets.2 Thus, it

is natural to ask how opacity impacts run likelihood and efficiency.3 To answer this question,

I extend the two-states market freezes model of Acharya et al. (2011) by allowing the bank’s

assets to be opaque.

Recent advances (Dang, Gorton, and Holmström (2012) and Dang, Gorton, and Holmström

(2013), Gorton and Ordoñez (2014) and Dang, Gorton, Holmström, and Ordoñez (2014))

1See Schroth, Suarez and Taylor (2014) and the references therein for empirical studies about these
events. Notably, Gorton and Metrick (2012) document the run on the repo market, and Covitz, Liang and
Suarez (2013) investigate the run on the ABCP market.

2For instance, Gorton (2008), quoted by Alvarez and Barlevy (2014) explains that “The ongoing panic
of 2007 is due to a loss of information about the location and size of risks of loss due to default on a number
of interlinked securities, special purpose vehicles, and derivatives, all related to subprime mortgages [...] it
was not possible to know where the risk resided and without this information market participants rationally
worried about the solvency of their trading counterparties. This led to a general freeze of intra-bank markets,
[...].”

3Of course, the idea of linking opacity and disclosures to financial fragility is far from novel: recent
models of banking under opacity include Parlatore (2014), Gao and Jiang (2014), Alvarez and Barlevy
(2014), Bouvard, Chaigneau, and de Motta (2015), Monnet and Quintin (2014), de Faria e Castro, Martinez,
and Philippon (2014). Bushman (2015) provides a survey of the literature.
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are closely related to the present work. These papers introduce the notion of information

sensitivity. A security is information insensitive when agents have no incentive to acquire

costly signals about its payoff. Because of their capped payoff, debt contracts are natural

candidates for information insensitivity, and more so if collateral is opaque. If, in addition,

the expected value of collateral is high enough, debt is risk free and of constant value: it

can be used as money. Therefore bank should be “secret keepers” (Gorton and Ordoñez

(2014)). Deterring information acquisition with opaque collateral also ensures that infor-

mation is always symmetrical. This prevents market freezes due to adverse selection issues

(Dang et al. (2012)). Gorton and Ordoñez (2014) provide important insights to understand

the link between collateral opacity and credit market freezes. Opacity prevents investors

from screening firms with low-quality collateral. In their model, all firms have profitable

investment opportunities and should therefore be financed at the first-best. When collateral

is opaque and has high enough expected value, investors can finance firms regardless of their

collateral quality, achieving the first-best.

In this paper, I highlight two mechanisms that may help put this view into perspective.

First, if collateral is opaque, firms or banks using it to back up their borrowing may be sub-

ject to moral hazard. Absent any verification opportunity for outsiders, a bank could have

no incentive to monitor adequately its projects or could disclose wrong information about

their quality. Rational investors anticipate the strategic nature of disclosure: for instance,

they know that a bank observing its asset in the worst state of the world will always pretend

it has no information instead of revealing it. Voluntary disclosure reignites adverse selection

concerns that opacity is supposed to suppress. Second, when the perceived quality of col-

lateral is not high enough, banks are liquidated. If verification is too costly, this liquidation

occurs regardless of the actual quality of the asset. This introduces an inefficiency: if the

deadweight loss associated with the liquidation of a sound bank is higher, it is better to have

transparent collateral and to liquidate only banks doing poorly.

The main contributions of my model are the following. First, there is a trade off between

short-term protection and longer-term exposure: opacity indeed reduces spreads and run

likelihood after a good signal, making debt very safe. As time goes by, uncertainty about

the asset quality reappears and runs become likely. These runs, moreover, can hit bad as

well as good banks, an additional source of inefficiency. Interestingly, the short-term safety

of debt is only possible because of the option to run and liquidate in the future. The in-

tuition is that absent insurance by a third party, there is no “miracle” way to transform a

risky project into safe debt. The only way to have a risk-free payoff at any point in time

3



is to liquidate. But liquidation is costly. Hence, having safe debt in the short-term nec-

essarily implies inefficient liquidations in the future. Also, these effects are stronger when

disclosure is voluntary. Second, the model suggests that short-term spreads have an opacity

component. This component is negative in “normal times” and positive in “crisis”. Third,

opacity decreases run probability only when it is already small under full information, but

can decrease efficiency, notably because it makes runs happen on good banks. Finally, I

show how non-panic runs can arise even when short-term spreads are very low and absent

news disclosure.
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2 The Model

The model features a financial institution (“bank”) and outside lenders. Time is discrete:

t = 0, 1, 2, . . ..

Bank - Asset side. The asset process. At time t, the bank’s asset is in state yt. yt

can take two values: yG (good state) > yB (bad state). The asset is initially in the good

state: y0 = yG. (yt) is a Markov chain with transition matrix

Λ =

(
λ11 1− λ11

λ21 1− λ21

)
.

λ11 is the probability to stay in the good state, while λ21 can be interpreted as a recovery

probability, from the bad to the good state.

Maturity. Maturity is a random time τϕ: at the beginning of each period t ≥ 1, the asset

matures with probability ϕ, independent of everything in the past. Note that the expected

maturity is

E[τϕ] =
∑
t≥1

tP(τϕ = t)

=
∑
t≥1

tϕ(1− ϕ)t−1

=
1

ϕ
.

Payoff. The asset only delivers cash flows at maturity, paying yτϕ . I assume that λ11 >
1
2
,

λ12 <
1
2
. Then

E[yτϕ|yt = yG, t < τϕ] > E[yτϕ |yt = yB, t < τϕ].

In words, being in the good state before maturity indeed signals a high expected payoff at

maturity.

Bank - Liability side. The initial capital structure of the bank is taken as given. There is

a stock of short-term (one-period) debt D0 to be rolled over. The rest is financed by equity.

Debt can stop being rolled over in two cases:

– Strategic default. The bank can decide to default on the debt, in which case its asset

is liquidated. Since the proceeds of liquidation must be used to repay debtors and

shareholders of the bank maximize the expected residual claim, strategic default is
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never optimal (see the Appendix).

– Impossibility to rollover. If debt is too high, there is no promised face value to com-

pensate lenders for the high risk of default. No new lender accepts to roll over the

debt, forcing the bank into liquidation.

I call τl the liquidation time. If maturity is reached before liquidation, τl =∞.

Outside lenders. I do not focus on coordination issues so that I assume a single lender at

each period (which could also be interpreted as a group of small, but coordinated creditors).

Given an amount of debt to roll over, the bank offers a contract with a promised repayment,

the face value. Lenders are risk-neutral and competitive (one agent effectively lends, but

many of them are competing ex ante to obtain the contract). All lenders are short-term:

once an outsider has lent money over one period, he leaves forever. The risk-free rate is

normalized to zero. Therefore at each period a lender makes zero profit on average. When

no face value satisfies the zero profit condition, liquidation occurs.

Opacity and disclosure policies. A security is opaque if it is time-consuming, costly

or even impossible to gather all its payoff-relevant information available today. Hence, opac-

ity does not refer to the uncertainty implied by future random shocks. It refers to uncertainty

about today’s state of the world. This state is already realized but in effect not observable.

This can be because of insufficient monitoring, endogenous disclosure decisions or rational

inattention to a complex contract, for instance.

The bank observes the value of yt with probability p, at each time independently of ev-

erything in the past. In my model, opacity is characterized by the parameter p. p = 1 is

the full information case, p = 0 the full opacity case. Outsiders can not make any direct

observation and rely on the bank’s disclosure policy.

I shall compare two disclosure regimes: voluntary and mandatory. A voluntary disclosure

policy is subject to the following conditions (see, e.g. Dye (1985)):

– any published news must be accompanied with evidence. It is therefore impossible for

the bank to announce it observed state yG while this is not the case.

– it is possible to conceal an observation. Thus, the bank can say it received no signal

while it observed state yB.
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More specifically, when disclosure is voluntary, I focus on the sanitization strategy, borrowing

the terminology of Shin (2003), where the bank makes a disclosure if and only if it observes

the good state.

Under mandatory disclosure, information is symmetric: the bank must truthfully reveal

any information it has.

Liquidation. In case of liquidation, the value αV is recovered, where V is the fundamental

value of the asset computed with the bank’s information. Here I make the assumption that

during the liquidation procedure all insiders’ information is revealed. 1− α is a measure of

illiquidity: for instance, the bank may be the first-best user of the asset, so that transferring

the control rights over the asset to another party reduces its value (see Shleifer and Vishny

(1992)). Because of the deadweight cost (1−α)V , liquidation is never efficient from a welfare

point of view in this model. Note however that the inefficiency is large for sound banks (V

high) and small for struggling banks (V low).

Summary of the model. Lenders know the disclosure regime and update their belief

after each disclosure (or non-disclosure) about the value of the asset, or equivalently, about

the probability to be in the good state. This probability is denoted q. Intuitively, debt will

be rolled over for “high” q and “low” D. Initially, q = 1 and D = D0, and the model can be

summarized as follows:
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Figure A. Graphical description of the model

(D, q) Liquidation

y ← yt+1

D ← Dt+1

Maturity

No maturity

Bank

observes y

Bank does not

observe y

Disclosure decision

Update on beliefs: q ← qt+1

Run

No Run

ϕ

1− ϕ

p 1− p

Table 1. Model parameters

Variable Definition

yG Good state

yB Bad state

D0 Initial debt

p Opacity of the asset: prob. of bank observing yt

λ11 Prob. of staying in the good state: yG → yG

λ21 Prob. of recovery: yB → yG

ϕ Intensity of maturity τϕ

α Liquidity of the asset
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3 Model Solution

3.1 Voluntary Disclosure

3.1.1 State Variables and Equilibrium Definition

Suppose we are at time t < τϕ and current debt is D. Let s be the time elapsed since the

last disclosure of a state (yG or yB) and i ∈ {G;B} the state that was disclosed then. That

is, the bank said it observed state i at time t− s and did not make any announcement ever

since. Since by assumption any disclosure of a state must be true, and given the stationarity

of the problem, the data of (D, s, i) contains all relevant information for present and future

decisions. Throughout the paper, it will always be the case that liquidation occurs imme-

diately after any disclosure of the bad state (e.g. the fundamental value in the bad state is

below the level of debt). Therefore, if i = B, we do not need to keep track of the value of s.

In other words, we can define (D, τ) as the state variable, where τ ∈ T = N ∪ {∞}. τ ∈ N
indicates that the last disclosed state was yG, τ periods ago. τ =∞ indicates that the last

disclosed state was yB4.

We are interested in Markov perfect equilibria (MPE) of the game (in (D, τ)), which we

now define after introducing some notation.

Let ∆ be the set of disclosure choices subject to the disclosure constraints, i.e. the set

of functions from {G,B} to {0,1}. G and B are the bank observing yG and yB, respectively.

0 is non-disclosure, 1 is disclosure. By assumption this disclosure must be truthful, so we

don’t need to specify what is disclosed. Similarly, if the bank does not observe y, it has no

choice but making no disclosure, so we don’t need to specify the bank’s disclosure strategy

when it does not observe y. Let F be the face value schedule, with the convention that

F =∞ means there is immediate run.

Definition 1 A Markov perfect equilibrium is some (F, δ) with F : [D0,∞) × T → [0,∞]

and δ : [D0,∞)× T → ∆ and such that

– (i) given (F, δ), each lender breaks even on average,

– (ii) given the face value schedule F , δ is the optimal disclosure policy of the bank, i.e.

provides the highest expected residual claim.

4This will only be used to verify formally that the text indeed constructs Markov perfect equilibria of
the game. In the main text, the reader should consider that the bank has not been liquidated yet, so that
τ ∈ N.
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We now derive a candidate MPE involving the sanitization strategy. We first assume that

it is common knowledge that the bank follows this strategy (regardless of considerations

regarding its optimality) and deduce conditions on the pricing schedule and the debt capac-

ities. Then, we show that this construction indeed constitutes a MPE, which provides the

highest expected payoff for the bank, among all MPE subject to a condition on the pricing

schedule:

Condition (M) The pricing schedule F is required to be non-decreasing in D and non-

decreasing in τ .

This condition is natural because, under the sanitization strategy, or under mandatory dis-

closure, going from state τ to state τ + 1 can only be bad news, as the initial state is yG:

non-disclosure decreases the probability to be in the good state, as perceived by outsiders.

To rule out Ponzi schemes, a last condition is imposed:

Condition (NP) The pricing schedule F must satisfy F (D, 0) =∞ for some D.

This simply says that liquidation occurs when debt is too high. In other words, C(0) <∞,

where

C(τ) = inf{D ≥ 0, F (D, τ) =∞}. (1)

But condition (M) implies that C(τ + 1) ≤ C(τ). Hence C(τ) < ∞ for all τ and Ponzi

schemes are impossible5.

3.1.2 Evolution of the Beliefs

The bank offers face values, and outsiders play second and either accept or reject. Hence,

what matters is the outsiders’ expectations about the asset. Since there are only two states,

the probability to be in state yG, under the outsiders’ information, sums up the outsiders’

beliefs. Denote it q, initially we have q = 1, and immediately after any disclosure q = 1

as well - recall that disclosure only occurs when the bank observes yG. Now assume no

disclosure at t = 1. Either the state was bad and observed (probability p(1 − λ11)) or

the state was not observed (probability 1 − p). So non-disclosure happens with probability

5Absent requirement (NP ), there is a Ponzi equilibrium with C(τ) = ∞ for all τ where each lender is
simply betting against maturity, i.e. hoping he is not the last in line (this is made possible by the random
maturity assumption). Of course, the actual asset value is fully irrelevant in that case. See e.g. Blanchard
and Watson (1982).
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1−p+p(1−λ11). And non-disclosure in the good state happens with probability (1−p)λ11.

Hence, the probability to be in state yG after one non-disclosure period is

q1 =
(1− p)λ11

1− p+ p(1− λ11)
.

And the probability to be in state 1 at t = 2 is

γ1 = q1λ11 + (1− q1)λ21.

Recall that τ is the time elapsed since the last disclosure. Let

qk(t) = P(yt = yG|τ = k, τϕ > t)

be the value of the state variable q after k periods of non-disclosure and

γk(t) = P(yt+1 = yG|τ = k, τϕ > t)

be the probability to be in state 1 tomorrow after k periods of non-disclosure. These quan-

tities only depend on t to the extent that t must be smaller than the maturity time. So I

drop the dependency in t. Also for notational simplicity, the subscript k will be denoted τ .

Using Bayesian updating, as in the case k = 1 detailed above, we obtain recursively:

qτ+1 =
(1− p)γτ

1− p+ p(1− γτ )
,

γτ = qτλ11 + (1− qτ )λ21.

To each τ corresponds one qτ . In the model solution, I select τ as the state variable. To

sum up, the situation before maturity is characterized by the time elapsed since the last

disclosure and the level of debt.

Figure 1 provides a graphical representation of (qτ ). Note that qτ decreases to a limit

weight q∗V , which has an important economic meaning: see discussion in Section 3.2.3.

3.1.3 Fundamental Value

Let V (q) be the fundamental value of the asset when the probability to be in state yG is q.

Let y = (yG yB) be the vector of states, and q = (q 1− q)T be the vector of weights on the

two states. By assumption the asset has not matured at time t = 0, and the probability of

the maturity being τϕ = t + 1 for t ≥ 0 is (1 − ϕ)tϕ. At time t + 1, the weights on the 2
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states are given by the vector Λt+1q, so the expected asset value conditional on t + 1 = τϕ

is yΛt+1q. Therefore

V (q) =
∑
t≥0

E[yt|τϕ = t+ 1]P(t+ 1 = τϕ)

=
∑
t≥0

(1− ϕ)tϕyΛt+1q

= ϕyΛ(Id2 − (1− ϕ)Λ)−1q.

Note that V is affine in q:

V (q) = qV (1) + (1− q)V (0).

V can also be expressed as a function of τ , the time since last disclosure:

Vτ ≡ V (qτ ).

3.1.4 Debt Capacity

Definition 2 The debt capacity is the maximal amount of debt financing that can be ob-

tained by pledging the assets under management as collateral. As in Acharya et al. (2011)

the set of contracts is restricted to one-period bonds to be rolled over. By definition, if debt

becomes higher than debt capacity during the lifespan of the asset, it is no longer possible

to find short-term investors to refinance the current amount of debt. In my model, no cash

flows are available before maturity, so that no refinancing implies liquidation: a run occurs.

Therefore, debt capacity can equivalently be thought of as a run threshold : see Equation (1).

Computation. The method used to compute debt capacities is of the same kind as in

Acharya et al. (2011) (see, e.g., their 2-states example), with two important differences.

First, they have a finite deterministic horizon instead of a random maturity, so that in my

model, there is no explicit terminal condition. Second, the state of the asset is perfectly

observable in their model, while I must account for opacity and thus introduce a new state

variable. Debt capacity is now a function of τ , the time since last disclosure. The method

is illustrated by the following example. Assume that the cash flows available tomorrow with

positive probability are A1, A2, A3 and A4. Since the asset does not pay off anything before

maturity, these cash flows are either maturity payoffs (in case the asset matures tomorrow)

or short-term debt funding. By definition of debt capacity, any amount equal or below the

debt capacity in tomorrow’s state will be available. So the Ai can correspond to debt ca-

pacities in all the possible states of the world tomorrow. Debt capacity today is at least
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max{m(A1),m(A2),m(A3),m(A4)} where m(x) denotes the fair pricing of a bond with face

value x. Indeed, by promising Ai tomorrow, the bank obtains today an amount of funds

equal to m(Ai). The key observation is that it is not necessary to consider other promises

B than the Ai. Indeed, B > A1 implies immediate liquidation and B < A4 allows to raise

m(B) = B < A4 = m(A4). Finally, if Ai+1 < B < Ai, the bank can obtain more by in-

creasing the promise up to Ai. Indeed, the bond pays off the same if state Aj with j > i is

realized (namely αAj), and more if state Aj with j ≤ i is realized. Hence for Ai+1 < B < Ai,

m(B) < m(Ai). Note that in general m(Ai+1) < m(Ai) does not hold because of the liqui-

dation parameter α < 1.

Conclusion: if the possible cash flows tomorrow are A1, . . . , An and m is the fair pricing

function in the current state, debt capacity today is equal to max{m(A1), . . . ,m(An)}.

See Figure 3 for the graphical representation of m.

Back to my model, the states of the world for tomorrow (from the point of view of out-

siders) are always 4 before maturity.

– State a: the asset has just matured, in the good state.

– State b: the asset has just matured, in the bad state.

– State c: the asset has not matured, and a disclosure was made (τ = 0).

– State d: the asset has not matured, no disclosure was made (τ → τ + 1).

Let C(τ) denote the debt capacity in state τ . Following the method described above,

C(τ) = max{m(C(0)),m(C(τ + 1)),m(yG),m(yB)}. (2)
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Recall that condition (M) implies that C(τ + 1) ≤ C(τ). Given m(x) ≤ x, for τ > 0 ,

Equation (2) reduces to:

C(τ) = max{m(C(0)),m(yG),m(yB)}, (3)

and

C(0) = max{m(yG),m(yB)}. (4)

yB is the worst state of the world, so this is a risk-free promise:

m(yB) = yB. (5)

Let us now deal with the pricing of bonds with face value yG and C(0), respectively.

– In case the asset matures tomorrow, there will be full payment in the good state (state

a) and payment of αyB in state b. Otherwise, there will be liquidation, since C(τ) < yG.

The liquidation value will be either V0 (in state c) or Vτ+1
6 (in state d). So

m(yG) = ϕ(γτy
G + (1− γτ )αyB) + α(1− ϕ)(pγτV0 + (1− pγτ )Vτ+1). (6)

– Payments in states a, b, c and d are respectively C(0), αyB, C(0), αVτ+1. So

m(C(0)) = ϕ(γτC(0) + (1− γτ )αyB) + (1− ϕ)(pγτC(0) + α(1− pγτ )Vτ+1). (7)

Combining Equations (3) to (7), I obtain the debt capacities C(τ) for all τ . Note that

although the problem is recursive in nature, debt capacities are characterized directly, before

computing the bond yields and without solving any recursive equation. This useful property

hinges on the fact that the absence of disclosure is always bad news so that debt capacity

must decrease. Hence we do not need to know C(τ + 1) to compute C(τ). Figure 2 provides

a graphical representation.

3.1.5 Endogenous Bond Yields

One-period yields are derived endogenously as a function of current debt D and the state τ .

They obtain in closed-form as the solution to a linear equation conditional on this solution

being between pre-specified bounds. The remainder of this section details the procedure to

6The bank’s information is revealed during the liquidation process, so the final fundamental value will
not be Vτ+1. But since outsiders update correctly their belief q and the fundamental value is affine in q, the
final fundamental value is indeed Vτ+1 on average.
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obtain the yields by distinguishing between different cases. In Section 4 below, I show that

each of these cases has a clear economic interpretation. For instance, when the promised

face value F satisfies F ≤ C(τ + 1), debt will be rolled over even if no news is disclosed.

In that sense, it is “information-insensitive”. Indeed, C(τ + 1) is the maximal amount of

financing available in state τ + 1, i.e. absent news disclosure tomorrow.

Fair pricing. We are looking for F such that D = m(F ). The function m depends on

the current state τ and has the shape depicted in Figure 3. m increases linearly with x and

jumps down when an additional default state appears, because of the proportional loss 1−α
incurred in the new default state. In some regions, multiple solutions exist. Clearly, it is

optimal for the bank to offer the lowest one as face value, thereby lowering the probability

of an inefficient liquidation. Therefore I define

F (D) = min{x ≥ 0,m(x) = D},

and the gross yield r = F
D
. The next lines detail the analytical expression of m. The logic is

similar to Equations (6) and (7).

If x ≤ yB, the promise of x is never defaulted upon: m(x) = x. If x > C(τ), by defi-

nition of debt capacity, there will always be default, so that m(x) < m(yG). Hence, there is

no need to consider those values of x. Otherwise, if x ≤ C(τ + 1), there is one default state

(state (b), see Section 3.1.4) and

m(x) = ϕ(γτx+ (1− γτ )αyB) + (1− ϕ)x.

If x ∈ (C(τ + 1), C(0)], there are two default states ((b) and (d)) and

m(x) = ϕ(γτx+ (1− γτ )αyB) + (1− ϕ)(pγτx+ α(1− pγτ )Vτ+1).

If x belongs to (C(0), yG], there are three default states ((b), (c) and (d)) and

m(x) = ϕ(γτx+ (1− γτ )αyB) + α(1− ϕ)(pγτV0 + (1− pγτ )Vτ+1).
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3.2 Mandatory Disclosure

3.2.1 State Variables and Equilibrium Definition

I now assume symmetric information between the bank and outside lenders: the bank has

to reveal any signal it observes. There is still opacity in the sense that the asset value is

only observed with probability p at each time. Since the beliefs are now fully unambiguous,

a MPE is now simply the data of a consistent pricing schedule:

Definition 3 In the mandatory disclosure case, a Markov perfect equilibrium reduces to

the data of some F : [D0,∞) × T → [0,∞] such that each lender breaks even on average.

Condition (M) is still required.

3.2.2 Evolution of the Beliefs

Let again denote q the probability of the asset being in state yG (now the same for the

bank and outsiders) and τ be the time since the last disclosure of yG. As in the voluntary

disclosure case, there is a correspondence between τ and q. The updating rule is modified.

Here, q(τ = 0) = 1 and

qτ+1 = qτλ11 + (1− qτ )λ21.

Figure 1 provides a graphical representation.

Since asset observability is now independent from asset value, the weights on states af-

ter τ periods without observation are simply given by the iterated transition matrix, Λτ+1.

The qualitative behaviour of qτ is the same as in the voluntary disclosure case. Here, it

decreases to the stationary weight

q∗M =
λ21

1 + λ21 − λ11

,

which is much above the limit q∗V of qτ in the voluntary disclosure case. The intuition is

that with mandatory disclosure, no information does not mean a higher chance of bad news

being concealed. Under voluntary disclosure, a prolonged lack of disclosure seriously hints

at the state being yB.

I again define γτ as the probability to be in state yG tomorrow given τ periods of non-

disclosure. Here, we simply have

γτ = qτ+1.
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3.2.3 The Stationary Weights

There is a an economic intuition behind q∗M , which represents the asymptotic expected

value of collateral, i.e. in an information-less economy. If even in the information-less

economy, agents accept to roll over debt because the expected value of collateral is high

enough (high q∗M), it is pointless to gather information. It would even be inefficient, since

the (rare) bad banks would be inefficiently closed. This is one message of Gorton and

Ordoñez (2014). However, there is no reason to believe that q∗M is that high. Moreover, if

we introduce strategic considerations regarding the bank (either moral hazard, or, as in this

paper, disclosure following a sanitization strategy), it becomes clear that the expected value

of the bond collateral in the information-less economy must be much lower. In particular,

the money-like property of the bond is lost. In the model, indeed, q∗V << q∗M .

3.2.4 Fundamental Value

The formula for V (q) established above is still valid. We now have that the fundamental

value after τ periods without disclosure is Vτ ≡ V (q = qτ ), where the probability qτ is

computed assuming mandatory disclosure.

3.2.5 Debt Capacity

The method used is the same as before. Again denoting C(τ) the debt capacity in state τ ,

we have

C(τ) = max{m(yG),m(yB),m(C(0)),m(C(τ + 1))}.

Since C(τ + 1) < C(τ), this reduces to

C(τ) = max{m(yG), yB,m(C(0))},

and

C(0) = max{m(yG), yB}.

When τ increases, the expectations about asset value decrease more in the voluntary disclo-

sure case, implying a lower debt capacity. Nevertheless, it is not possible to assess directly

that mandatory disclosure is “better”. For instance, any disclosure of bad news would imply

a run. When disclosure is voluntary, bad news are concealed and a run is not immediately

triggered, leaving room for subsequent recovery.
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3.2.6 Endogenous Bond Yields

Section 4 details the economic interpretation of the procedure used to compute bond yields.

It is qualitatively similar to the voluntary disclosure case: yields jump upwards as soon as

debt becomes information-sensitive. Again, the face value solves m(F ) = D and the gross

yield is defined by r = F
D

. All the intuitions of the voluntary disclosure case still apply,

see in particular Figure 3. For completeness, the procedure is rephrased for the mandatory

disclosure case.

Let D be the current level of debt, τ the time since last disclosure and let us look for

(the smallest) admissible face value F to refinance D. The probability of an announce-

ment tomorrow is pγτ . The probability of no announcement is 1− p. Otherwise, state yB is

disclosed (probability p(1− γτ )). First, if x ≤ yB, m(x) = x. If yB < x ≤ C(τ + 1), then

m(x) = ϕ(γτx+ (1− γτ )αyB) + (1− ϕ)((1− p(1− γτ ))x+ p(1− γτ )αV (q = 0)).

If C(τ + 1) < x ≤ C(0), then

m(x) = ϕ(γτx+ (1− γτ )αyB) + (1− ϕ)(pγτx+ (1− p)αV (τ + 1) + p(1− γτ )αV (q = 0)).

If C(0) < x ≤ yG, then

m(x) = ϕ(γτx+(1−γτ )αyB)+α(1−ϕ)(pγτV (q = 1)+(1−p)V (τ +1)+p(1−γτ )V (q = 0)).

Again, for any D ≤ C(τ) we now define

F (D) = min{x ≥ 0,m(x) = D}.

3.2.7 Optimality – Formalization of the constructions as MPE

Let us first focus on the voluntary disclosure case. The construction of Section 3.1 indeed

constitutes a MPE involving the sanitization strategy. Formally, we have the following:

Proposition A Let F be the face value schedule constructed in the main text and δ the

sanitization strategy. Then (F, δ) is a Markov perfect equilibrium.

Moreover, since we have always selected the lowest possible face value to roll over a given

amount of debt, we also have:
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Proposition B Among all the Markov perfect equilibria satisfying condition (M), the equi-

librium of the main text achieves the highest expected payoff for the bank.

Identical results hold in the mandatory disclosure case. Proofs are presented in the Ap-

pendix.
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4 Results

4.1 Opacity, Information Sensitivity and Rollover Risk

4.1.1 Notions of Information Sensitivity

The notion of information sensitivity is at the heart of a recent series of papers: Dang et al.

(2012), Dang et al. (2013), and Gorton and Ordoñez (2014). A security is information-

insensitive when agents accept to trade it without paying to obtain a costly signal about

it, and has a high information sensitivity when agents are ready to spend a lot to obtain a

signal. Debt is in many instances information-insensitive: agents can trade it without trying

to know more about the value of collateral.

Adverse selection. In the papers of Dang et al., this property is desirable mainly because it

allows to sidestep adverse selection issues. Debt is liquid because agents are not concerned

that the next buyer knows more about the collateral than they do. In this context, opacity

is efficient since it makes debt information-insensitive in more states of the world.

Pooling. In Gorton and Ordoñez (2014), opacity permits the pooling of firms with good

collateral with firms with bad collateral. If the average quality of collateral is high enough,

firms obtain credit from lenders who do not verify firm-specific collateral quality. This fi-

nancing is invested in positive NPV projects, and opacity is therefore desirable. To the

contrary, when information about a firm’s collateral is cheap, debt becomes information-

sensitive: lenders verify collateral quality and lend only conditional on good news. Firms

with bad collateral are deprived of credit and welfare is lower. In my model, a related notion

of information sensitivity appears7:

Definition 4 Let (D, τ) be the state today, and F (D, τ) the promised face value due to-

morrow. I say that debt is information-insensitive if the full repayment of F (D, τ) does not

imply disclosure tomorrow. To the contrary, debt is information-sensitive if the absence of

disclosure tomorrow entails a run.

7In the literature mentioned above, opacity is a cost of accessing information. In my model, the chain (yt)
is observable with probability p, which can be interpreted as a time-varying cost of accessing information:
with probability p this cost is 0, and with probability 1− p it is +∞.
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4.1.2 Rollover Risk Regimes

Figure 4 plots yields (computed in Section 3) after τ = 1 period of non-disclosure in the

voluntary disclosure case. The plot is qualitatively similar for other values of τ . The jumps

correspond to a change of region in the fair pricing problem. These regions have the following

economic interpretations.

When D ≤ yB = 70, debt is completely risk-free.

In the II (information-insensitive) region, debt is safe: the face value satisfies F ≤ C(τ + 1).

The face value is below tomorrow’s debt capacity if there is no disclosure. Hence, unless

the asset matures tomorrow in the bad state, debt will necessarily be rolled over. In the II

region, debt is money-like.

The IS (information-sensitive) region corresponds to face values F between C(τ + 1) and

C(0). The face value is higher than tomorrow’s debt capacity if there is no disclosure. Hence,

the lack of disclosure tomorrow will entail a run. However, it is below C(0), the debt capacity

following the disclosure of state yG. Avoiding liquidation is contingent on good news.

The pre-liquidation region corresponds to F above C(0): liquidation will happen tomor-

row unless the project matures in state yG. Finally, the liquidation region corresponds to

levels of debt where a run occurs today, for lack of an admissible face value to roll debt over.

As Figure 5 shows, the behaviour of bond yields in the mandatory disclosure case is quali-

tatively similar. Note that now, the bank can survive long periods of non-disclosure (here

τ = 4) because investors know that it is genuinely uninformed. As in the model, the prob-

ability to fall into the bad state is very low, the asset has still a good chance to be in the

good state after several non-disclosure periods.

I now present a series of analytical results implied by the expression of yields found in

Section 3. In turn, a first set of economic conclusions are derived from these results.

Proposition 1 The following holds:

(a) (Safer Information-Insensitive Debt) If regions II and IS both exist, short-term

debt is less risky in the II region.

(b) (Opacity and Information Sensitivity) For high opacity, i.e. small values of
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p, debt is always information-insensitive. To the contrary, when p → 1, the information-

insensitive region shrinks: if D > V (q = 0) then for any τ , (D, τ) can not be in the II zone

for p close enough to 1.

(c) (Bond Yield Discontinuity) Bond yields are discontinuous in the value of debt

for a given τ . As debt reaches the information-sensitivity threshold, yields jump upward.

(d) (The Opacity Component of Short-Term Spreads) For a given (D, q), short-

term spreads can vary with the opacity level:

(d1) If (D, q) is at the right of the information-sensitive region for opacity parameters p1

and p2 with p1 < p2 then F [p1](D, q) > F [p2](D, q).

(d2) If (D, q) is in the information-insensitive region for opacity parameters p1 and p2 with

p1 < p2 then F [p1](D, q) ≤ F [p2](D, q), with equality if and only if disclosure is voluntary.

Proof See the Appendix. As in these Proposition, the superscript [p] designates a vari-

able relative to the model solution for opacity parameter p.

Points (a) and (b) confirm that information-insensitivity makes short-term debt safer, and

that opacity increases the size of the information-insensitive region. However, under opac-

ity, the probability of disclosure is low and τ is likely to keep increasing. Thus, with high

probability, the right end of the II zone (threshold of point (c)) is reached, leaving the bank

exposed to runs.

Finally, point (d) contains the testable prediction that there is an opacity component of

short-term spreads. Spreads are primarily linked to future rollover decisions, not to the

asset fundamental value. But rollover decisions occur at each node of the asset tree, whose

structure depends on disclosures. Therefore opacity can matter for short-term spreads even

if the collateral process is fixed. More specifically, the model predicts that in “good times”

(D low, or q high) transparency increase spreads, while in “crisis” (at the right of the IS

zone) transparency decrease spreads.

So far, the analysis was local, since I focused on the behaviour of short-term yields. The

model suggests while opacity indeed makes debt safer and money-like in the short-run, it

may induce a high exposure to runs in the longer run, when q becomes too low, or D too

high. The next Sections attempt to quantify globally this trade-off, i.e. study the impact

of opacity and disclosures on the run probability (stability) and the expected output of the
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asset (efficiency).

***

Remarks about the model.

Continuity. As explained below, run probabilities and expected payoffs depend on time-

to-default, say t(D), the time before liquidation occurs starting from D0 = D. Since time

is discrete, these functions t are necessarily discontinuous. When we average over different

asset paths to obtain expected values, discontinuities do not disappear since states are dis-

crete too. Since the moments of interest in this model depend on the t(D) (see, e.g. Section

4.2.2), the graphs of the moments exhibit discontinuities when t(D) jumps.

Parameter values and the IS zone. As the Figures show, the IS zone is in general tiny,

and can also not exist. In that case, the debt directly switches from being information-

insensitive to being defaulted upon, making the trade off between short-term protection and

long-term exposure even clearer. The IS zone becomes larger as α increases or as λ11 de-

creases. A high α shifts the run threshold to the right, making it unlikely that the debt can

be II up to this threshold, while a low λ11 means that bad news are more likely, so that the

absence of disclosure is worse news. In turn, the II zone shrinks.

4.2 Secret Keeping or Transparency?

4.2.1 Runs, Efficiency, and Pooling

Remark. I refer to the case p = 0 as “secret keeping” although, strictly speaking, the bank

itself does not observe the asset value. Nevertheless, it is equivalent to the case where the

bank does observe the asset value but can commit not to reveal any information, the assump-

tion of Dang et al. (2014). Note that information revealing can occur directly (disclosure)

or indirectly (signaling when offering a face value to roll debt over).

I interpret (1 − α)V as a deadweight loss, so runs are always inefficient here. Liquidation

multiplies the maturity payoff by α < 1 in each state. If a social planner or a long-term in-

vestor initially buys the debt and holds it until maturity, the asset pays off weakly more than

in the model in all states (i.e. for every path (yt), every sequence of asset observability, and

every maturity) and strictly more in some states. Therefore there exists a Pareto-improving

arrangement, in which premature liquidation never occurs. Note that because lenders make

zero profit on average, the bank bears the costs of inefficient runs. In other words, optimality
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for the bank coincides with the social planner’s optimality in the model, that is, maximizing

the expected payoff of the asset.

Based on these observations, I measure efficiency in this section by the expected output

U . Formally,

U = E[αyτl1τl≤τϕ + yτϕ1τϕ<τl ].

Equivalently, the measure of inefficiency is the expected deadweight cost

E[(1− α)yτl1τl≤τϕ ] = V (q = 1)− U.

The run probability is

P = P(τl ≤ τϕ).

I now recap the economic effects at play in our discussion.

Effect 1: Short-term protection of opacity. Starting from y0 = yG, the expected value of

the asset is initially high enough: there is no need of transparency in order to roll debt

over. The bond is information-insensitive and almost immune to default and is therefore

money-like, the argument of Gorton and Ordoñez (2014).

Effect 2: Long-term exposure effect of opacity. After several periods, however, the expected

value of collateral becomes small, and information is required to continue rolling over the

debt. Under opacity, this information is never available, forcing liquidation. Opacity pro-

tects from runs in the short term, but exposes strongly to runs in the longer term.

Effect 3: Highly inefficient liquidations. Runs are inefficient, but runs on good banks are

the most inefficient. If the asset is in the good state, a run entails a loss of welfare of

(1 − α)V (1) > (1 − α)V (0), the loss in case it is in the bad state. For the social plan-

ner, or the bank, the goal is therefore not primarily to minimize run probability, but to

minimize liquidation costs. The fact that runs on good institutions are more inefficient has

an important consequence: while opacity indeed permits pooling and rolling debt over at

low cost, it also prevents from distinguishing between good and bad institutions. When

the information-sensitive zone is finally reached, liquidation will occur independently of the

quality of collateral, and can affect a healthy bank. To the contrary, under full information,

runs only occur on bad-quality collateral banks8.

8In my model, a run also occurs after a long time even if the asset stays in the good state, because debt
increases at each time while the best state remains the same. But this event has very low probability.
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The next section derives run probabilities and expected output in closed-form in the po-

lar cases p = 0 and p = 1 and shows when the benefits of secret keeping (effect 1) are

outweighted by its downsides (effects 2 and 3).

4.2.2 Two Polar Cases

When p = 0, the only random variable actually observed is maturity. Hence, before matu-

rity, the paths of debt and beliefs about the current state are deterministic. Given an initial

debt D0, there is a deterministic t0(D0) such that liquidation always occurs at t0 if maturity

is not reached yet. t0 is obtained by computing the path of debt using the formulas for bond

yields derived above. t0, as a function of D0, is a non-increasing, piecewise constant function.

t0 can be interpreted as a “time-to-crisis”. Until time t0 − 1, Effect 1 is at play and the

bond is money-like. The key point here is that the quasi-absence of risk in the beginning

is only due to the possibility to liquidate the asset in the future. The bond is not risky be-

cause it will always be possible to run when the liquidation value approaches the debt level.

Short-term spreads are by no means informative about the longer-term risk of the project

and are low precisely because of the option to run.

Denote e1 the column vector (1 0)T, q0 = eT
1 Λt0e1 the probability to be in state yG at

time t0, let λ = λ12 = λ21 be the switching probability. Also recall that V (q) stands for the

fundamental value when the probability to be in state yG is q.

Proposition 2 Under secret keeping (p = 0), run probability and expected output are re-

spectively given by

P (p = 0) = (1− ϕ)t0 ,

U(p = 0) = yϕΛ(Id2 − (1− ϕ)t0Λt0)(Id2 − (1− ϕ)Λ)−1e1

+ (1− ϕ)t0 αV (q0)︸ ︷︷ ︸
Liq. value of average bank.

.

Proof See the Appendix.

Conditional on yt = yG for all t, there is a deterministic time t1(D) such that liquida-

tion occurs at t1 as soon as τϕ > t1. This is because debt grows while the states remain the

same.
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Proposition 3 Under transparency (p = 1), run probability and expected output are respec-

tively given by

P (p = 1) = 1− ϕ1− (1− λ)t1(1− ϕ)t1

1− (1− λ)(1− ϕ)
,

U(p = 1) = α(1− ϕ)t1((1− λ)t1V (1) + (1− (1− λ)t1)V (0)) + α(1− (1− ϕ)t1)V (0)

+ ϕ

(1− λ)yG − αV (0)︸ ︷︷ ︸
Liq. value of bad bank.

+αyBλ

 1− (1− ϕ)t1(1− λ)t1

1− (1− ϕ)(1− λ)
.

Proof See the Appendix.

Proposition 4 For low α, transparency dominates opacity in terms of efficiency: Effects 2

and 3 outweight Effect 1.

Proof This is a consequence of the closed-forms obtained in Propositions 2 and 3. Figure 8

plot the efficiency of the two regimes for α ∈ [0.7; 1]. The intuition is the following: when α is

low, the debt capacity decreases and it is more likely to reach the information-sensitive zone

before maturity. As explained before, there is a run as soon as this zone is reached, since

no information can be provided under full opacity. Hence, when α is low, the short-term

protection effect is even shorter. Finally, it is clear that Effect 3 (inefficiency of liquidation

of good banks) is stronger as the liquidation cost grows.

Proposition 5 For some parameter values, transparency dominates opacity in terms of

efficiency even if the run likelihood is higher under transparency: Effect 3 is at play.

Proof This is a consequence of the closed-forms obtained in Propositions 2 and 3. Figure

9 shows a case where the run probability is lower under opacity for all α ∈ [0.7, 1), but

efficiency is always higher under transparency.

4.3 Disclosures and Efficiency

4.3.1 Some Examples

Figures 6 and 7 plot two sample paths of debt for both disclosure regimes. They are of

particular interest because they illustrate well the economic effects at play. Figure 6 depicts

a commitment run, i.e. a situation when the bank could reach maturity under mandatory

disclosure, but not under voluntary disclosure. In the short run, interest rates are lower un-

der voluntary disclosure. This is because bad news are not revealed. The only risk for early

lenders is that maturity occurs tomorrow, in the bad state. The stock of debt grows slower

under voluntary disclosure in the beginning. But a run suddenly occurs: this is because news
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have not been released for a prolonged time, leading to a sharp decline in the voluntary debt

capacity. The bank has no way to credibly communicate that it really did not observe the as-

set value and is therefore fragile. Under mandatory disclosure, however, the bank is resilient

to long opacity periods because there is no longer a concern that the bank conceals bad news.

Figure 7 shows an example where voluntary disclosure provides higher welfare. On that

sample path, information was regularly released so that debt always remained information-

insensitive. The bank can refinance its debt at lower spreads under voluntary disclosure

for the reasons explained above. Unlike in the mandatory case, the bank was able to reach

maturity in the voluntary case because of this lower debt level.

As is apparent from these examples, two opposite forces are at play and it is not clear a priori

which one dominates, i.e. whether mandatory disclosure dominates voluntary disclosure in

terms of welfare. This question is explored in the next section.

4.3.2 Model Simulation

When p is strictly between 0 and 1, I can no longer fully solve for run probability and ex-

pected output in closed-form. I therefore simulate the model a large number of times to

obtain the moments of interest. The procedure is the following. First, I simulate maturity

τϕ according to a geometric distribution with parameter ϕ. Second, I simulate independent

Bernouilli variables with parameter p, at ∈ {0; 1}. at = 0 indicates that the asset value

was not observable at time t, at = 1 indicates that it was observable. Third, I simulate the

chain (yt) according to the transition matrix Λ. Then, I compute the path of debt, the time

of run (if any) and the final output (either maturity payoff or liquidation payoff) assuming

mandatory disclosure. To compare both disclosure regimes “ω by ω” I use the same values

for τϕ, (yt) and (at) and compute the path of debt, the time of run (if any) and the final

output assuming voluntary disclosure. This way, I can not only count the number of runs

under both disclosure regimes, but also distinguish between cases where disclosure policy

did not matter (e.g. a run would have occurred under both regimes) from cases where it

did (e.g. voluntary disclosure triggered an inefficient run while the project reached maturity

in the mandatory disclosure case). For each value of p, this procedure is repeated a large

number of times, N . Table 2 plots the results when the baseline parameters are fixed and

the opacity level p varies. Table 3 plots the results when p = 0.5 and the liquidity parameter

varies.

Choice of N and confidence intervals. The standard deviation of a random variable with
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support [a, b] is smaller than b−a
2

. The variable 1Run takes values in [0, 1] (actually {0; 1}),
the output takes values in [αyB, yG], and so does the debt payment. Hence the asymptotic

standard deviation of the Monte-Carlo error is smaller than 1
2
√
N

for the run probabilities

and smaller than yG−αyB
2
√
N

for expected output and debt payments. Since in all simulations,

α ≥ 0.8, this bound is itself smaller than yG−0.8yB

2
√
N

= 22√
N
.

To obtain expected output and debt payments correct up to ±0.01 at the 1% confidence

level, we need 2.58×22√
N
≤ 0.01, i.e. N ≥ 32.2×106. I set N = 33×106. As for the precision on

run probabilities, it is better than ±0.001 at the 1% confidence level. Therefore, Tables 2 and

3 report expected output and debt payments up to the second decimal and run probabilities

up to the third decimal, rounded above if the next decimal is above 5.

Finally, note that for p = 1 (last column of Table 2) the two disclosure regimes are equiva-

lent, and the results can also be obtained with the closed-form formulas obtained in Section

4.2.2.

Table 2. Opacity, Runs and Efficiency. D0 = 70.1

p 0.2 0.5 0.95 1

E[Residual Claim] - Voluntary 23.74 23.49 24.10 24.84

E[Residual Claim] - Mandatory 24.43 24.71 24.83 24.84

P(Run under V and M) 0.066 0.072 0.091 0.105

P(Run only under M) 0.027 0.028 0.013 0

P(Commitment Run) 0.040 0.066 0.039 0

P(Run under M) 0.093 0.099 0.104 0.105

P(Run under V) 0.107 0.138 0.130 0.105

28



Table 3. Liquidity, Runs and Efficiency. D0 = 74

α 0.8 0.9 0.95 1

E[Residual Claim] - Voluntary 17.73 21.59 22.27 22.74

E[Residual Claim] - Mandatory 19.49 21.87 22.31 22.74

P(Run under V and M) 0.149 0.052 0.043 0.034

P(Run only under M) 0.019 0.036 0.044 0.053

P(Commitment Run) 0.095 0.033 0.013 0.003

P(Run under M) 0.168 0.088 0.087 0.087

P(Run under V) 0.244 0.085 0.056 0.037

Rows 1 and 2 give the expected residual claim under both voluntary and mandatory disclo-

sure. Note that given that debt payment is on average equal to D0, the residual claim is equal

to output up to the constant D0. Row 3 gives the probabilities that a run occurs under both

disclosure regimes. Row 4 gives the probabilities that a run occurs only under mandatory

disclosure. This can be the case when the bank survives because bad news are concealed and

recovery happens afterwards. Row 5 gives the probabilities of commitment runs, i.e. runs

that occur only under voluntary disclosure. Rows 6 and 7 show run probability under each

regime.

4.3.3 Interpretation

Full transparency vs opacity. Table 2 shows that the efficiency under full transparency (Col-

umn p = 1) is higher, although this regime may feature more runs. The intuition is as in

Effect 3 detailed above: under full transparency, the bank is exposed to the revelation of

a bad shock. However, in the long term, the likely absence of information will prevent the

bank from keeping rolling debt over, while a transparent bank with the asset in the good

state could do it.

Commitment runs. In Table 2, voluntary disclosure always induces more runs than manda-

tory disclosure, as suggested by Effect 2. Table 3, however, shows that for high liquidity

levels (α large), this is no longer true. The intuition is that a large α shifts the run thresholds

to the right, so that it takes a longer time to leave the information-insensitive zone. This

is also true when initial debt D0 is low or when switching to yB is unlikely (λ11 close to

1). In those cases, disclosing in less states of the world protects against runs, i.e. Effect 1

dominates Effect 2 as far as the run probability is concerned.
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Mandatory vs voluntary disclosure. Mandatory disclosure is always more efficient than vol-

untary disclosure. In many instances, the run probability is also higher under voluntary

disclosure, meaning that Effect 2 alone can explain the higher efficiency of mandatory dis-

closure. Table 3, column p = 0.95, however, demonstrates that voluntary disclosure can

lower the run probability without increasing the efficiency. The intuition, again, is given by

Effect 3. Even if commitment runs are infrequent, they induce a significant loss of welfare.

Indeed, by definition, they occur on institutions whose asset was good enough to roll debt

over under mandatory disclosure.

Disclosing less protects against runs when the information-insensitive zone is large, i.e. the

danger zone is far. As in the literature on opacity mentioned above, the paradox is that

protection works when it is less needed, i.e. when the run probability is low anyway. When

the information-insensitive zone becomes smaller, the run probability becomes lower un-

der mandatory disclosure. In terms of efficiency, however, disclosing more is always more

efficient, suggesting that Effect 3 evidenced in this paper plays an important role.

Conclusion

Opacity protects financial institutions from rollover risk in the short term, but increases their

exposure in the longer term. The tension between these two effects is stronger when disclosure

is voluntary: as long as debt remains information-insensitive, the institution enjoys very low

spreads, but as uncertainty about the collateral quality increases, it becomes vulnerable to

runs. The model predicts that the latter effect is the stronger and that opacity - especially

when combined with voluntary disclosure - triggers avoidable and inefficient runs. These

additional runs have the interesting property to behave like panic runs, since they do not

start after a news release. The model also highlights another effect of opacity: not only

opaque assets are associated to more runs once the information-insensitive zone is left, but

these runs are particularly inefficient because of a pooling effect. In future research, it could

be interesting to allow for state-contingent disclosure regulation and to soften the maturity

mismatch by considering other sources of financing than short-term debt before maturity,

e.g. cash reserves or costly equity issuance.
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Appendix: Proofs

No strategic default

Assume we are in the voluntary disclosure case (the other case works identically). Let us

focus on some (F, δ). Recall that δ is a disclosure strategy and F a pricing schedule such

that each lender breaks even, non-decreasing in D and τ . This defines a debt capacity

C(τ) = inf{D ≥ D0, F (D, τ) =∞}.

Assume that we are in state (D, τ), with D < C(τ) i.e. the bank can roll debt over. With

τl the run time (time where debt crosses the debt capacity C) and Θ = min{τl, τϕ}, we can

write the realized profit of the bank as

yθIτϕ<τl + αVτlIτϕ≥τl − dΘ, (8)

where dΘ is the realized payment to bondholders. Notice that E[dΘ] = D0 since lenders break

even on average. Imagine that the bank prefers to default instead, i.e. liquidate its assets

and repay the current creditors. If V denotes fundamental value today, the bank receives

αV −D0. But

V = E[yΘIτϕ=Θ + VΘIτϕ>Θ] (9)

= E[yθIτϕ<τl + VτlIτϕ≥τl ]. (10)

Equality (9) is because the left-hand-side and the right-hand-side simply express the same

average of y at maturity in different ways. By comparing (8) and (10), and remembering

that α < 1, we see that expected profit under no-default-now is higher than under immediate

liquidation. Therefore, it is at no time optimal for the bank to force liquidation.

Markov perfect equilibria

Proposition A. Criterion (i) is by construction of F . (ii) due to discounting (Blackwell

(1965)) we can focus on one-shot deviations. Note that under F and for a given D0, the

event tree O is discrete. This is because there are always at most 4 possible states tomorrow,

given the state today. Let us consider a deviation at some node and let D be the event tree

starting from this deviation. The deviation is either the bank switching from concealing the

bad state to disclosing it, or concealing the good state instead of disclosing it. The former

case, since F (D,∞) =∞, is equivalent to strategic default, which is never optimal as shown
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above. We now focus on the latter case. Let us relabel t = 0 the deviation time (at which

y0 = yG), and let y1, . . . , yn, . . . and J = τϕ be a possible realization of future asset states and

maturity. By condition (M) and induction, the face values F̃0, . . . , F̃n, . . . associated with y0

undisclosed and the realizations y1, . . . , yn, . . . disclosed according to the sanitization strat-

egy satisfy F̃i ≥ Fi, where Fi are the face values in O. Let j = min{j′ ≥ 0, F̃j′ =∞}. Three

cases are possible. (i) j ≤ J−1 and Fj =∞: there is liquidation at time j in both O and D.

Since due debt is higher in D (F̃j−1 ≥ Fj−1), the residual claim is lower after deviation. (ii)

j ≤ J−1 and Fj <∞: in O, at time j, debt is lower, and there is no immediate default. We

can therefore apply the arguments of the proof of absence of strategic default to conclude

that the expected residual claim at time j conditional on τϕ = J is higher in the original tree.

(iii) j ≥ J : the asset matures before liquidation both in O and D. Since debt is lower in

O, the expected residual claim is higher in the original tree. Finally, note that the expected

profit at date t = 0 is an average of quantities E[Residual Claim|y0 = yG, y1, . . . , yj, τϕ = J ].

Cases (i), (ii) and (iii) above show that these quantities are higher in the original tree for all

J , j, y1, . . . , yj. Hence, there is no profitable one-shot deviation.

Proposition B. Let (F̃ , δ̃) be another MPE satisfying (M). The implied debt capaci-

ties and fair pricing functions are denoted C̃ and m̃, respectively. First, note that the proof

of Proposition A in fact shows that in any Markov perfect equilibrium satisfying (M), the

bank follows the sanitization strategy: δ̃ = δ. Now, (M) implies that the debt capacities C̃

are well-defined and satisfy C̃(τ + 1) ≤ C̃(τ). Moreover, we must again have

C̃(0) ≤ max{m̃(yB), m̃(yG)}, (11)

and

C̃(τ) ≤ max{m̃(yB), m̃(yG), C̃(0)}, (12)

But yB is still a risk-free promise, so m̃(yB) = yB. And yG is a promise that will entail

liquidation tomorrow for sure, unless maturity happens. Hence, we know the fair pricing of

this promise: m̃(yG) = m(yG) (see equation (6)). Comparing (4) and (11), we conclude that

C̃(0) ≤ C(0). We can iterate this reasoning to observe that m̃(C̃(0)) ≤ m(C(0)) (see equa-

tion (7)). Comparing (3) and (12), we obtain that C̃(τ) ≤ C(τ) for all τ . Then, we notice

that the fair pricing functions are fully determined by the default states, i.e. by the debt

capacities. Given the debt capacities, the fair pricing function can be derived analytically as

in the main text. Moreover, this analytical expression shows that the fair pricing function

increases with debt capacities. Since C̃(τ) ≤ C(τ), m̃ ≥ m. F is defined as the generalized

inverse of m (i.e. the smallest solution to m(F ) = D), so the inequality m̃ ≥ m implies that
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F̃ ≤ F . Debt is always higher under the alternative MPE, and we conclude similarly as in

the proof of Proposition A that the expected residual claim is lower.

In the mandatory disclosure case, we only have to look at the properties at the pricing

schedule constructed in the main text. The arguments of the voluntary disclosure case still

apply and therefore Propositions A and B have counterparts in the mandatory disclosure

case.

Proposition 1

Proofs are presented in the voluntary disclosure case, and work identically in the mandatory

disclosure case. I first need to introduce the

Lemma Let τ be a fixed integer and 0 < p∗ < 1. If α < 1, there is Kτ > 0 such that

for all p ≤ p∗,

C [p](τ) ≥ αV [p]
τ +Kτ ,

where the superscript [p] designates a variable relative to the model solution under the opac-

ity parameter p.

Proof We consider the promise of the face value yG: we have C [p](τ) ≥ m[p](yG) and

m[p](yG) = ϕ(γ[p]
τ y

G + (1− γ[p]
τ )αyG) + α(1− ϕ)(pγ[p]

τ V0 + (1− pγ[p]
τ )V

[p]
τ+1)

= ϕ(1− α)γ[p]
τ y

G + αE[yτϕ|τϕ = t+ 1]P(τϕ = t+ 1) + αE[yτϕ|τϕ > t+ 1]P(τϕ > t+ 1)

= ϕ(1− α)γ[p]
τ + αV [p]

τ ,

hence the result, setting Kτ = ϕ(1− α)γ
[p∗]
τ .

(a) Debt in the II region satisfies

D = ϕ(γτF + (1− γτ )αyB) + (1− ϕ)F,

with F ≤ C(τ + 1). Thus, the inverse yield verifies

D

F
≥ ϕγτ + ϕ(1− γτ )

αyB

C(τ + 1)
+ 1− ϕ. (13)
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Debt in the IS region satisfies

D = ϕ(γτF + (1− γτ )αyB) + (1− ϕ)(pγτF + α(1− pγτ )Vτ+1),

with C(τ + 1) < F ≤ C(0). From there,

D

F
≤ ϕγτ + ϕ(1− γτ )

αyB

C(τ + 1)
+ (1− ϕ)

(
pγτ + α

(1− pγτ )Vτ+1

F

)
≤ ϕγτ + ϕ(1− γτ )

αyB

C(τ + 1)
+ 1− ϕ,

where the last inequality holds because of the Lemma. We conclude by comparison with

Equation (13).

(b) We first need to show that for p small, m(C(0)) < m(C(τ + 1)). This implies

that considering promising face values between C(τ +1) and C(0) does not allow to roll over

other debt levels than the ones in the II zone. In other words, there is no IS zone. Given

the expressions of m(C(0)) and m(C(τ + 1)), the desired inequality is equivalent to

pγ[p]
τ C(0) + α(1− pγ[p]

τ )V
[p]
τ+1 ≤ C [p](τ + 1).

We conclude by letting p → 0 and using the Lemma. For the case p → 1, we notice that

debt capacity is always below the fundamental value of the asset (which is the long-term,

frictionless debt capacity). As p goes to 1, qτ+1 goes to 0, so the fundamental value goes to

V (0). Now let D > V (0). We have

m[p](C [p](τ + 1)) < C [p](τ + 1) ≤ V
[p]
τ+1 → yB,

hence D can not be in the II zone for p close enough to 1.

(c) is a consequence of the fact that m(C(τ + 1) + ε) < m(C(τ + 1)) for ε close to 0

and α < 1. Recall that this is because the face value is only infinitesimally higher, but there

will be default in one more state of the world (the non-disclosure state), meaning that the

proportional cost 1−α now applies to an additional, non-zero probability, state of the world.

(d) (d1) Let p1 < p2, τ1, τ2 such that

q[p1]
τ1

= q[p2]
τ2

= q.
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The probability to be in state yG tomorrow is q′ = λ11q + λ21(1 − q) = γ
[p1]
τ1 = γ

[p2]
τ2 . Then,

the probability to be in state yG tomorrow conditional on no disclosure under parameter p1

is (1−p1)q′

1−p1q′ . Using the expression of the yield in the IS region, we find

m[p1](F ) = ϕ(q′yG + (1− q′)αyB)

+ (1− ϕ)

(
q′p1F + α(1− p1q

′)

[
(1− p1)q′

1− p1q′
V (q = 1) +

1− q′

1− p1q′
V (q = 0)

])
.

From there,

m[p1](F )−m[p2](F ) = (p2 − p1)q′(αV (q = 1)− F ),

which is negative for F close to C(0) by the Lemma. Given that D = m[p1](F [p1]), we have

D < m[p2](F [p1]), from which we deduce that F [p1] > F [p2]. Indeed, (D, τ2) belongs to the IS

region under p2, and m[p2](.) is increasing over this region, and must satisfy D = m[p2](F [p2]).

(d2) This part of the proposition is clear from the expression of yields. There is equality

in the voluntary disclosure case, and strict inequality in the mandatory disclosure, because

increasing p increases the probability of having to disclose bad news.

Propositions 2 and 3

Proposition 2. The first equality is because a run never happens before t0 and always

happens at t0 if maturity is not reached yet (τl is either t0 or +∞). Thus P0 = P(τϕ > t0).

To compute expected output, write

E[Output] =

t0−1∑
t=0

ϕ(1− ϕ)tE[Output|τϕ = t+ 1] + E[Output|τϕ > t0]P(ϕ > t0).

Note that

P(τϕ > t0) = (1− ϕ)t0 ,

and

E[Output|τϕ > t0] = V (q0)

by the Markov property and given that P(τϕ = t+ k|τϕ ≥ t) = P(τϕ = k). Then

E[Output|τϕ = t+ 1] = yΛt+1e1,

and the result obtains by computing the geometric sum.
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Proposition 3. Note that liquidation occurs in two cases: either maturity is not reached

at t1 or the state switches to yB before t1. Therefore

P(No Run) = P(τϕ ≤ t1, τl > τϕ)

=

t1−1∑
t=0

P(τϕ = t+ 1)P(τl > t+ 1)

=

t1−1∑
t=0

ϕ(1− ϕ)t(1− λ)t

= ϕ
1− (1− λ)t1(1− ϕ)t1

1− (1− λ)(1− ϕ)
.

And

E[Output] =

t1−1∑
t=0

ϕ(1− ϕ)tE[Output|τϕ = t+ 1] + E[Output|τϕ > t1]P(ϕ > t1).

Now write

E[Output|τϕ > t1]

= E[Output|τϕ > t1, y0 = . . . = yt1 = yG]P(y0 = . . . = yt1 = yG)

+ E[Output|τϕ > t1, ∃k ≤ t1, yk = yB]P(∃k ≤ t1, yk = yB)

= (1− λ)t1αV (1) + (1− (1− λ)t1)αV (0).

Similarly,

E[Output|τϕ = t+ 1]

= E[Output|τϕ = t+ 1, y0 = . . . = yt+1 = yG]P(y0 = . . . = yt+1 = yG)

+ E[Output|τϕ = t+ 1,∃k ≤ t, yk = yB]P(∃k ≤ t, yk = yB)

+ E[Output|τϕ = t+ 1, y0 = . . . = yt = yG, yt+1 = yB]P(y0 = . . . = yt = yG, yt+1 = yB)

= yG(1− λ)t+1 + (1− (1− λ)t)αV (0) + λ(1− λ)tαV (0).

The result finally obtains by computing the geometric sums.
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Figure 1: Probability qτ to be in state yG after τ periods of non-disclosure.

When no information arrives, outsiders’ perceived probability to be in the good state decreases
and goes to a limit weight. When disclosure is mandatory, this weight is given by the stationary
measure of (yt), and is equal to 1

2 when λ21 = 1−λ11. When disclosure is voluntary, the downgrade
is much faster because the bank is increasingly likely to be concealing bad news. The limit weight
on state yG is very low. yG = 100, yB = 70, p = 0.5, λ11 = 0.98, λ21 = 0.02, ϕ = 0.15, α = 0.8.
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Figure 2: Debt capacities under both regimes.

Under mandatory disclosure, the bank is more robust to long sequences of non-disclosure.
If, however, the bank observes the low state and disclosure is mandatory, liquidation
occurs immediately. Under voluntary disclosure, the bank may survive and recover.
yG = 100, yB = 70, p = 0.5, λ11 = 0.98, λ21 = 0.02, ϕ = 0.15, α = 0.8.
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Figure 3: The fair pricing function m in the voluntary disclosure case when τ = 1.

m increases linearly as F increases and jumps down when there is an additional default
state, over which the proportional loss 1 − α is incurred. yG = 100, yB = 70, p = 0.5, λ11 =
0.98, λ21 = 0.02, ϕ = 0.15, α = 0.8.
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Figure 4: Bond yields as a function of debt for τ = 1 under voluntary disclosure.

When D ≤ yB = 70, debt is entirely risk-free (RF ). For moderate values of D, debt is
information insensitive and safe (II): debt will be rolled over even absent disclosure tomorrow, un-
less the asset matures in the bad state. For higher values of D, debt becomes information sensitive
and more risky (IS): debt will be rolled over only if good news are disclosed. The pre-liquidation
zone corresponds to values of debt so high that they can only be sustained by promising a face
value that will only be paid in full if the asset matures in the good state tomorrow. The liquidation
zone corresponds to values of debt such that liquidation occurs immediately, that is, values above
debt capacity C(τ = 1). yG = 100, yB = 70, p = 0.5, λ11 = 0.97, λ21 = 0.03, ϕ = 0.15, α = 0.85.
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Figure 5: Bond yields as a function of debt for τ = 4 under mandatory disclosure.

Interpretation is similar to Figure 4. When disclosure is mandatory, yields are slightly
higher in the short run because the bank could disclose bad news. But good banks are
more robust in the long run because investors know it is not possible to conceal bad news.
yG = 100, yB = 70, p = 0.5, λ11 = 0.97, λ21 = 0.03, ϕ = 0.15, α = 0.85.
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Figure 6: Debt dynamics in a commitment run.

On this particular path, maturity is τϕ = 43, and yt = yG for all t ≤ τϕ. The difference between the
two disclosure regimes is well highlighted. In the short term, while the asset does not go through
long periods of non-observability, debt is cheaper under voluntary disclosure. However, at t = 21,
such a long period starts. Since opacity is not credible under voluntary disclosure, debt capacity
decreases strongly and triggers a sudden run. Under mandatory disclosure, the bank is resilient and
reaches maturity. yG = 100, yB = 70, p = 0.5, λ11 = 0.97, λ21 = 0.03, D0 = 70.1, ϕ = 0.02, α = 0.85.
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Figure 7: Debt dynamics in a case where voluntary disclosure has protected the
bank.

On this particular path, maturity is τϕ = 92, and yt = yG for all t ≤ τϕ. There were no
long periods of non-observability. Hence, the yields were lower under voluntary disclosure. In
turn, the debt was easier to sustain and the bank could reach maturity under voluntary disclosure.
yG = 100, yB = 70, D0 = 70.1, p = 0.5, λ11 = 0.97, λ21 = 0.03, ϕ = 0.02, α = 0.85.
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Figure 8: Efficiency as a function of the liquidity parameter α

For low α, the short-term protection of opacity is even shorter, and runs, when they occur on good
banks, are particularly harmful in terms of efficiency. Hence, opacity is dominated by transparency
for low levels of liquidity. yG = 100, yB = 70, λ11 = 0.98, λ21 = 0.02, ϕ = 0.15, α = 0.8.

0.7 0.75 0.8 0.85 0.9 0.95 1
82

84

86

88

90

92

94

96

98

α

E
xp

ec
te

d 
O

ut
pu

t

Opacity

Transparency

Liquidation effect dominates

46



Figure 9: A case where transparency causes more runs but is nevertheless more
efficient.

The top panel plots expected output for both disclosure regimes and α ∈ [0.7, 1], the
bottom panel plots the run probabilities. yG = 100, yB = 0, D0 = 40, λ11 = 0.98, λ21 =
0.02, ϕ = 0.15, α = 0.8.
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