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1 Introduction

The Stochastic Discount Factor or pricing kernel theory is a major foundation of

asset pricing models. A stochastic discount factor captures how market agents dis-

count future uncertain cash flows. It represents a complex measure of risk aversion

and remains a delicate subject to apprehend, in particular empirically. The pricing

kernel theory claims that, in complete markets, a unique pricing kernel prices all

assets in a given time period. The paper investigates whether, as suggested by the

pricing kernel theory, there exists a unique pricing kernel that prices any partition

of assets, while considering assets from distinct economies. This has significant

implications for both theoretical and empirical aspects of asset pricing theory. In-

deed, such findings contribute to the literature, notably in international finance,

to support or reject different features and assumptions of asset pricing models. In

addition, it gives the empirical opportunity to use a pricing kernel estimated with

a set of assets from one economy to price assets from another economy.

Building on a method proposed by Pukthuantong and Roll (2015) to estimate

pricing kernels, we extend it to international assets and provide empirical and statis-

tical evidence on how the pricing kernel theory stands in this context. In particular,

both the uniqueness of the pricing kernel and its properties are investigated, and

while the uniqueness of the pricing kernel follows from complete markets, the no-

arbitrage condition holds on the positivity of the pricing kernel. The methodology

to estimate the pricing kernel simply consists in a transformation of asset returns

from two economies denominated in local currency and has the advantage neither to

impose any restrictions regarding agents’ preferences and consumptions nor to admit

any pricing kernel specifications. Hence, no assumptions underpin the methodology.

Specifically, the paper considers assets from China, the Eurozone, Japan, Russia,

Switzerland, the United Kingdom, and the United States. Pricing kernels are esti-

mated with monthly stock and bond gross returns from January 1999 up to January
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2017.

In the literature, several methods to estimate pricing kernels stand. A first

technique uses aggregate consumption changes such as in Cochrane (1996) and

Chapman (1997), among others. Nevertheless, it is commonly admitted that ag-

gregate consumption changes are not volatile enough to match with asset prices

and that consumption data are tainted with large imprecise measurements (Mehra

and Prescott, 1985). Papers by Aı̈t-Sahalia and Lo (1998) followed by Rosenberg

and Engle (2002) constitute another attempt. Avoiding the use of aggregate con-

sumption, Aı̈t-Sahalia and Lo (1998) develop a non-parametric estimation of pricing

kernels using Black and Scholes (1973) option prices. Rosenberg and Engle (2002)

estimate time-varying pricing kernels specified as a power function of option data as

well. In an international asset pricing model, Dumas and Solnik (1995) define pric-

ing kernels as a linear function of world prices of exchange rate risk. While, Dittmar

(2002) strongly advocates for the use of nonlinear pricing kernels and investigates

a cubic form of these stemming from a Taylor expansion. In this spirit and in an

international framework, Bansal et al. (1993) approximate a non-parametric pricing

kernel model using polynomial series expansion with international weekly data from

Germany, Japan, the United Kingdom and the United States. However, they do not

investigate the pricing kernel theory across economy but they test their approach

separately in each economy. All these papers focus on estimation techniques rather

than on testing features of the pricing kernel theory and are not free from model

specifications.

From this perspective, Pukthuantong and Roll (2015) are an exception. They

derive an agnostic estimator of the pricing kernel, propose and implement tests for

a common pricing kernel. Each test’s features and power are examined in depth.

Then, they apply the tests to returns on United States equities, bonds, currencies,

commodities and real estate prices and find evidence of a common pricing kernel
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that prices all assets, independently of the asset class. Therefore, the work by

Pukthuantong and Roll (2015) remains most closely related to this paper to which

we contribute by adding an international perspective.

Indeed, once pricing kernels are estimated, four tests are conducted to statis-

tically assess the uniqueness of the pricing kernel. To ensure the power of the

tests, the number of assets should be large and at least twice the number of time

periods (Pukthuantong and Roll, 2015). These four tests consist of, namely, the

Kruskal and Wallis (1952), the Welch (1947), the Brown and Forsythe (1974), and

the Kolmogorov-Smirnov tests. To compare with Pukthuantong and Roll (2015),

we additionally use the non-parametric and distribution free Kolmogorov-Smirnov

test as a complement to the Kruskal-Wallis test that mainly focuses on differences

in medians. Empirical results show that these two tests do not always yield the

same conclusion. These tests examine first and higher distribution moments. In

particular, stocks and bonds are used in the estimation and pricing kernel testing

is handled through varying combinations of the two asset classes. This offers an

attempt to preclude the event of common characteristics in pricing kernels induced

by the asset class and not the distinct economies. Finally, no strict statistical indi-

cation to reject the existence of a common stochastic discount factor, that is able

to price any asset from any economy, has been found. Furthermore, empirical evi-

dence is consistent, on average, with a positive stochastic discount factor. Besides,

a rather comprehensive description of the estimated pricing kernels is provided and

two international market issues related to pricing kernels are discussed.

In fact, a question, raised by Gavazzoni et al. (2013), concerns the validity of

the assumption that pricing kernels are lognormally distributed (affine models (Cox

et al., 1985) and asset pricing models (Bansal and Yaron, 2004) amongst others). A

direct prediction of lognormal model is that high interest rate currencies are coupled

with low pricing kernel volatilities. Gavazzoni et al. (2013) approximate conditional
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pricing kernel variances using interest rate conditional variances and find that log-

normal models are inadequate for pricing kernels since the relation between interest

rate currencies and pricing kernel volatilities is positive. Consequently, they argue

that higher moments should be considered for future research. On the contrary, with

pricing kernels being agnostically estimated, we model their conditional variances

with a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model

(Bollerslev, 1986) and we find that high interest rate currencies are associated with

low volatility pricing kernels, which directly contradicts Gavazzoni et al. (2013).

Moreover, in the context of international markets, the question of capital market

integration and risk sharing is of particular interest. A vast literature on market

integration investigates its relation with risk sharing. It starts with Bekaert and

Harvey (1995) who define as capital market integration the fact that similar risks

traded in distinct markets should yield the same returns. A useful proxy of in-

ternational risk sharing, expressed in terms of pricing kernels, is the international

risk sharing index. This measure is defined in Brandt et al. (2006) as the ratio of

how much risk is not shared over how much risk that there is to be shared between

two economies. Brandt et al. (2006) base their argument on the idea that market

integration lies in the correlation between stochastic discount factors. Along this

line, Cochrane (2005) suggests that, in complete and perfectly integrated markets,

marginal utility growth should be the same for all countries. Further, Brandt et al.

(2006) document the so-called international risk sharing puzzle: the international

risk sharing index is high when estimated with market data but low when estimated

with consumption data. In this paper, findings demonstrate low international risk

sharing indices that are consistent with indices obtained with consumption data

(Obstfeld and Rogoff (2001), Brandt et al. (2006), Kose et al. (2009)), while market

data are employed. In addition, Bakshi et al. (2015) also show that international

risk sharing may be low with assets, especially for economies with high interest rate
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differentials and when market incompleteness is not precluded.

Another contribution of the paper is the inference of the international risk shar-

ing index confidence interval. Indeed, to enrich the statistical quality of the index,

a closed-form solution of its variance and its confidence interval is evaluated using

the Fisher Z-transformation (Fisher, 1915, 1921). This transformation has been

widely used in the literature to assess the statistical significance of the correlation

coefficient because of its desired asymptotic normality properties (Hotelling (1953),

Kowalski (1972), Meng et al. (1992), Bishara and Hittner (2016)). In addition, Lin

(1989) develops a concordance coefficient and applies the transformation to evaluate

its statistical properties for data from normal and non-normal distributions. Similar

to the correlation and the concordance coefficients, the international risk sharing in-

dex lies in the interval (-1,1) and thus the inverse hyperbolic tangent transformation

allows us to evaluate its variance and its confidence interval. The closed-form solu-

tion is verified by Monte Carlo simulations both with normal and non-normal data.

Thereafter, we determine the statistical significance of the agnostically estimated

international risk sharing indices.

Finally, a case study on the United States pricing kernels is conducted within

a Fama and French (2016) risk factor-based approach. Predictability is assessed

within an autoregressive-moving-average (ARMA) model.

The remainder of the paper is structured as follows. Section 2 provides a review

of the theoretical framework. Section 3 provides data description. Section 4 presents

test results and estimated pricing kernel statistical properties. Then, it discusses

international financial market issues and ends with the case study on the United

States pricing kernels. Finally, Section 5 concludes.
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2 Methodology and Test Hypotheses

2.1 Fundamental Relation

The keystone relation of asset pricing theory, proposed by Harrison and Kreps

(1979), Hansen and Richard (1987), and Hansen and Jagannathan (1991), posits

that there exists a unique stochastic discount factor for a domestic investor, de-

noted by m̃ and defined as the Euler equation such that

Et−1(m̃tR̃i,t) = 1, (1)

where R̃i,t is the gross return of an asset i at time t expressed in domestic currency.

Equally, in the foreign country with foreign traded assets expressed in the foreign

currency, the foreign investor’s pricing kernel satisfies

Et−1(m̃∗t R̃
∗
i,t) = 1, (2)

where m̃∗t is the foreign stochastic discount factor and R̃∗i,t is the gross return of the

foreign asset i at time t denoted in the foreign currency.

Another way to price foreign assets is to convert them into domestic currency

using the expected spot exchange rate St and the spot exchange rate St−1. Exchange

rates are given in direct quotation. In this case, we have

Et−1

(
m̃t

St
St−1

R̃∗i,t

)
= 1. (3)
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2.2 Estimation and Tests of Pricing Kernels with Foreign

Assets

In this section, we build on Pukthuantong and Roll (2015). Under rational ex-

pectations, the realization of a random variable equals its expectation plus some

noise. This means that for Equation (3), the realization of any asset i at time t is

anticipated to be equal to

mt
St
St−1

R∗i,t = Et−1(m̃t
St
St−1

R̃∗i,t) + ε∗i,t,

with ε∗i,t being the surprise in the realization. Averaging over all T , we get

1

T

T∑
t=1

mt
St
St−1

R∗i,t =
1

T

T∑
t=1

Et−1(m̃t
St
St−1

R̃∗i,t) +
1

T

T∑
t=1

ε∗i,t = 1 +
1

T

T∑
t=1

ε∗i,t = 1 + ε̄i
∗.

In matrix form, one can write for any i = 1, ..., N and t = 1, ..., T

1

T
(R∗S)m = 1 + ε̄∗,

where R∗S is a matrix of N rows and T columns, m is a T column vector and ε̄∗

is an N column vector.

By minimizing the sum of squared average surprises with respect to m, we obtain

the minimum squares estimator of m,

min
m

((ε̄∗)′(ε̄∗)) = (
1

T
(R∗S)m− 1)′(

1

T
(R∗S)m− 1).

The estimate m̂ that satisfies the first-order condition is

m̂ = T (((R∗S))′(R∗S))−1(R∗S)′1, (4)
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as long as ((R∗S)′(R∗S)) is non-singular.

With domestic assets, the estimate m̂ is simply given by

m̂ = T (R′R)−1R′1, (5)

assuming that (R′R) is invertible.

As suggested by the pricing kernel theory, we test whether there exists a unique

pricing kernel that prices any partition of international assets.

Thereby, the null hypothesis of the Stochastic Discount Factor theory with in-

ternational assets boils down to1

H0 : E (m̂(domestic)− m̂(foreign)) = 0.

In particular, we consider the following set of hypotheses:

H01 : E (m̂(domestic stocks)− m̂(foreign stocks)) = 0,

H02 : E (m̂(domestic bonds)− m̂(foreign bonds)) = 0,

H03 : E (m̂(domestic stocks and bonds)− m̂(foreign stocks and bonds)) = 0,

H04 : E (m̂(domestic bonds)− m̂(foreign stocks and bonds)) = 0.

A part of the paper consists in testing these hypotheses. For this purpose

and to rule out the alternative hypotheses, we perform four statistical tests: the

Kruskal and Wallis (1952), the Welch (1947), the Brown and Forsythe (1974), and

the Kolmogorov-Smirnov tests.

Specifically, the Kruskal-Wallis test is a rank-based non-parametric test that

investigates whether two samples originate from the same underlying distribution.

1Tests incorporate a joint hypothesis issue and if evidence are against the null hypothesis,
rejection concerns either the pricing kernel theory or the estimation method or both.
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It does so by determining if a sample stochastically dominates the other one. The

null hypothesis is that independent samples are drawn from two distributions with

no stochastic dominance, by comparing sums of ranks. It is associated with a test

of equal medians.

The Welch test consists in an adaptation of the Student t-test of equal means

for unequal variances and unequal sample sizes. The null hypothesis is that the two

samples have equal means.

The Brown-Forsythe test establishes the equality of variances in two samples as

the null hypothesis.

The two-sample Kolmogorov-Smirnov goodness-of-fit test assesses whether sam-

ples are drawn from the same distribution and compares the empirical distributions

by testing the supremum of the distance between two distributions.

3 Data Description

We gather a panel of monthly equity prices denominated in local currency from sev-

eral sectors: Electricity, Electronic and Electrical Equipment, Financial Services,

Food Producers, Pharmaceutical, General Industrials, Real Estate Investment and

Services2 as well as bond prices denominated in local currency for China,3 the Eu-

rozone,4 Japan, Russia, Switzerland, the United Kingdom, and the United States,

from Thomson Reuters Datastream.5 Furthermore, we collect one-month interbank

interest rates and monthly closing exchange rates for each economy. Spot exchange

rates are expressed as United States dollars per unit of foreign currency.

2We also include equities from Gas, Water and Multi-utilities, Industrial Engineering, Industrial
Metal and Mining for Russia, Switzerland and the United Kingdom.

3Chinese bonds were not available during data collection.
4The Eurozone comprises Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,

Luxembourg, the Netherlands, Portugal, and Spain. It corresponds to the eleven countries that
have created the Euro and Greece as it starts to adopt the Euro in January 2001 which is still
early in our sample.

5Datastream prices are adjusted prices, which take stock splits and similar corporate actions
into account, but not dividends.
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The sample period spans from January 19996 to January 2017. As recommended

by Pukthuantong and Roll (2015), to ensure the power of the tests and to satisfy the

inversion property of the return matrix, we consider data subsamples between one

year and two and a half years. Further, stock and bond gross returns are winsorized

at the 10% level to reduce the impact of data errors.

With regard to data availability, the number of stocks varies among economies

and per time period. We collect 906 stocks from China, 886 from the Eurozone, 456

from Japan, 147 from Russia, 152 from Switzerland, 469 from the United Kingdom

and 1′330 from the United States. Panel (a) in Table I presents descriptive statistics

of stock returns. All of them are expressed in U.S. dollars.7 Stock returns from

China and Russia are riskier than returns originating from the other economies.

The average annualized volatility of Chinese and Russian stocks reaches more than

23% while, over the other economies, the average annualized volatility is about 15%.

As expected, the majority of equity returns exhibit excess kurtosis and negative

skewness.

We collect a set of 571 corporate bonds from the Eurozone, 711 from Japan, 395

from Russia, 303 from Switzerland, 70 from the United Kingdom and 1′067 from

the United States. Bond returns descriptive statistics are reported in Panel (b) of

Table I, expressed in U.S. dollars. Similarly, bond returns exhibit excess kurtosis

except for Japanese, Swiss, and British bonds. Similar to equities, Russian bonds

are found to be the most volatile. As a reference, bonds from the United States

show a volatility of 5%.

Panel (c) of Table I reports exchange rate descriptive statistics. The most

volatile currencies in the sample are, in descending order, the Russian ruble, the

6As in January 1999, the Euro is introduced.
7On average, returns on U.S. stocks are much higher than Eurozone stocks. A deeper investi-

gation shows that the average returns on French and German stocks are of about 8% but only of
about 0% for Spain.
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Swiss franc and the Euro. The Chinese yuan is the least volatile currency.8

Finally, Panel (d) of Table I reports descriptive statistics of one-month in-

terbank interest rate differentials in percentage with respect to the United States.

Consistent with common knowledge, the interest rate differentials are negative for

low interest rate currencies such as those of Japan, Switzerland and the Eurozone,

while the opposite holds for high interest rate currencies.

4 Empirical Results

This section presents test results for a common pricing kernel. Initially, tests focus

on national pricing kernels and then are extended to international assets. Second,

we describe statistical properties of the estimated pricing kernels, denominated in

local currency. Third, we discuss two international financial market puzzles and

finally perform a case study on the United States pricing kernels.

4.1 Pricing Kernels under Tests

4.1.1 National Pricing Kernels

Following a univariate analysis, we replicate the work of Pukthuantong and Roll

(2015). Again, while Pukthuantong and Roll (2015) focus solely on the United

States, we additionally consider China, the Eurozone, Japan, Russia, Switzerland

and the United Kingdom.

The test hypothesis writes as

H05 : E (m̂(stocks)− m̂(bonds)) = 0,

for each economy. In order to ensure statistical power, we consider subsamples of

one year that start from May 2011 as before that date the number of bonds for

8Since August 2015, the Chinese yuan has been more volatile, as China has devaluated it.
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several economies are not large enough to conduct the estimation.9 Beforehand,

various lengths of time period have been tested but no differences in test results

stand out. Results are robust to the size of the estimation window from Equation

(5) as long as the number of assets is large enough.10 The only exception concerns

the results from the Brown and Forsythe (1974) test which strongly depends on the

number of time periods relative to the number of assets. Table II reports results

in the form of p-values.

Considering the findings pertaining to the United States, we obtain similar re-

sults to Pukthuantong and Roll (2015). This holds although we cover a different

time period and different assets.11 Pukthuantong and Roll (2015) collect monthly

returns for July 2002 through December 2013. Mostly, we do not reject the null

hypotheses of no stochastic dominance, equal means and no differences in distri-

butions. It is only from June 2012 to June 2013, that we do reject the null of no

differences in distributions at the 10% level of significance. We reject the null of

similar variances for almost all subsamples. Yet Pukthuantong and Roll (2015) tend

to reject the equality in variances as well.

For the remaining economies, p-values of the Kruskal and Wallis (1952), the

Welch (1947) and the Kolmogorov-Smirnov tests indicate no statistical rejection of

the null hypothesis at the 1% level, except for the United Kingdom that turns out to

be associated with a very small number of bonds. Moreover, there is for most of the

cases an indication of unequal variances. Similarly, the average number of available

bonds in each economy is relatively small and much smaller than the number of

stocks, which, again, as pointed out in Pukthuantong and Roll (2015), implies more

sampling errors and might lead to difference in variances.

To conclude, there is no robust rejection of the null hypotheses except for Brown

9Indeed, for the majority of the economies, gross returns matrix is not invertible.
10Pukthuantong and Roll (2015) recommend a number of about 1′000 assets.
11For instance, we consider stocks from different sectors than Pukthuantong and Roll (2015).
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and Forsythe (1974) tests. Nonetheless, we conjecture that this stems from the

relative small bonds sample. To verify the latter, we consider the estimation over

six months12 from July 2015 to January 2017 and we report results in Table III.

By comparing results in Table II for the Eurozone, Japanese and United States

assets, the evidence against equal variances diminishes as p-values increase. There

is only weak sign of unequal variances which supports our conjecture.

Finally, results are in line with the findings of Pukthuantong and Roll (2015),

which increases the validity of the agnostic method while supporting, in general,

the hypothesis of complete markets in the gathered data. Moreover, conclusions are

not economy-specific.

4.1.2 International Tests with Stocks Only

Starting with equities only, we add international complexity in the tests of the

pricing kernel theory by considering a cross-section of economies. The domestic

country is set to be the United States.

We estimate pricing kernels in U.S. dollars for each economy using gross returns

on equities and exchange rates expressed in local currency together with Equation

(4). Then, we perform the four tests on Hypothesis H01. P-values are presented

in Table IV. Again, we use subsamples of two years and a half to ensure better

testing power.

Globally, results are similar to the univariate analysis conducted in the previous

section. We find no indication of rejection of the Kruskal-Wallis and the Welch tests

for any economy. Similarly, for the two-sample Kolmogorov-Smirnov goodness-

of-fit test, p-values indicate no differences in distributions except for Russia and

Switzerland where p-values indicate weak evidence against the null hypothesis.

However, we reject the null of equal variances for Japan, Russia, Switzerland

12The number of time periods is constraint by a lower bound in order to compute variances.
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and for the United Kingdom in the bulk of the subsamples. The number of stocks

for these economies is relatively small, especially compared to the number of United

States stocks which can affect the power of the Brown and Forsythe (1974) test. We

address a part of this issue by additionally accounting for bonds in Section 4.1.3.

We also come to reject this null for China and for the Eurozone but in a minority

of the subsamples.

Although p-values from the Brown and Forsythe (1974) test undermine our con-

clusions, ultimately, findings are consistent with Pukthuantong and Roll (2015)

and in favor of the existence of a common pricing kernel for domestic and foreign

economies. Notably, rejections do not increase when considering international assets

compared with national assets.

4.1.3 Tests with Bonds

Turning to a second asset class to challenge our findings, we first repeat the exercise

with bonds only, expressed in local currency. Together with exchange rates, we

compute estimated foreign and domestic pricing kernels.13 P-values for Hypothesis

H02 are in Table V. Evidence in favor of a common pricing kernel still holds. We

never reject the null of no stochastic dominance. Equivalently, we do not reject the

null of equal means. Still, we do reject the null of equal variances and no differences

in distributions in the minority of cases. Rejections do not allow us to unequivocally

herald against a common pricing kernel.

Second, we incorporate both equities and bonds. In this case, we use the com-

plete set of assets, which provides us with richer information and more tests power.

Respectively, the total number of assets is 906 for China, 1′457 for the Eurozone,

1′167 for Japan, 542 for Russia, 455 for Switzerland, 539 for the United Kingdom

and 2′397 for the United States. We are able to estimate the complete time series of

13Again, except for China, for which we do not have data.
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pricing kernels, except for Russia before June 2007. Table VI presents p-values for

Hypothesis H03. Evidence in favor of a common pricing kernel strengthens as rejec-

tions of Kolmogorov-Smirnov tests reduce. P-values tend to be higher for all tests,

but we still tend to reject the hypothesis of equal variances, yet less frequently. This

is especially the case for assets from Japan and from the United Kingdom which

additionally consist of the smallest bond sample. Moreover, quantile-quantile plots

of the foreign against the domestic pricing kernels are reported in Figure 1, they

support test conclusions. In general, points fall about straight lines apart from

outliers.

Third, we consider only domestic bonds in order to estimate domestic pricing

kernels. On this basis, it increases the role played by the asset class. This partially

allows us to mitigate the suspicion that assets from the same class, even if they come

from distinct economies, behave in a similar manner. Specifically, we conduct tests

of Hypothesis H04. Table VII presents p-values. There is no evidence against equal

means. The null of no stochastic dominance appears to be weakly rejected only in

one subsample. We tend to reject the null of no differences in distributions more

often, but not in the majority of subsamples. Given the difficulty of Hypothesis

H04, again, results tend not to be against the pricing kernel theory.

Finally, we are interested in results when one considers a longer sample period

(T = 217). We do so only for the Eurozone and for the United States as, in total,

the number of assets are large enough and respectively of N = 1′457 and N = 2′397.

Results are reported in Table VIII. There is no evidence against the pricing kernel

theory.

To conclude, whether we estimate domestic pricing kernels using domestic or

foreign bonds, domestic or foreign equities, we find no evident statistical evidence

against the Stochastic Discount Factor theory in international markets.
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4.2 Estimated Pricing Kernels

In this section, we describe the pricing kernels estimated with local assets and de-

nominated in local currency. First, Table IX presents pricing kernel descriptive

statistics.14 As expected, pricing kernel means are close to 1. The standard de-

viations range between 33% for the United States and 75% for the Swiss pricing

kernels. As a comparison, Brandt et al. (2006) report volatilities between 63% and

69% at a monthly frequency for Germany, Japan, the United Kingdom, the United

States from January 1975 through June 1998. The pricing kernel from Switzerland

appears to be the most volatile, followed by that from the United Kingdom and

from Japan. We conjecture that this is a first evidence towards the idea that low

interest rate currencies tend to be associated with more volatile pricing kernels, as

investigated in Section 4.3. Estimated pricing kernels exhibit a negative minimum

which indicates possible arbitrage opportunities. Nevertheless, we reject the null

hypothesis of zero means with test statistics that are all positive, at 26.9 (China),

34.7 (the Eurozone), 26.3.4 (Japan), 20.0 (Switzerland), 37.1 (the United Kingdom)

and 37.1 (the United States). This is in line with Pukthuantong and Roll (2015)

who report a t-statistics, for the United States low- and higher-leveraged equities

of 20.2 and 16.8 respectively. These results demonstrate the absence of arbitrage

opportunities on average.

For other moments, results are more heterogenous, although all pricing kernels

demonstrate positive skewness, except for the Eurozone. P-values of the Jarque-

Bera test indicate a normal distribution only for the Eurozone and the United

States. Estimated pricing kernels exhibit serial correlation, except pricing kernels

estimated with Eurozone that are serially independently distributed. Moreover, all

pricing kernels are stationary given the Augmented Dickey-Fuller test and satisfy

14In the remainder of the paper, Russia is excluded from the analysis as its estimated pricing
kernels are loaded with sampling errors, making estimations of poor quality as observed in Tables
II, IV, V, VI and VII.
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the HansenJagannathan bounds (Hansen and Jagannathan, 1991).

Second, Figure 2 displays, for each economy, the time series of the estimated

pricing kernels, in local currency, with smoothing spline methods used for curves

fitting. Pricing kernels tend to be positive, which demonstrates an absence of ar-

bitrage opportunities, except in the Swiss market. Notably, the estimated pricing

kernels from the Eurozone, from Japan, the United Kingdom and the United States

demonstrate a downturn at the beginning of the global financial crisis (which is

thus associated with a higher discount rate). On the contrary, the opposite holds

for Chinese pricing kernels.15

Third, Figure 3 plots foreign-domestic quantile-quantile diagrams of pricing ker-

nels expressed in local currency. They exhibit higher moment differences, including

heavy tails and left skews. Results differ from Figure 1 especially through higher

levels of kurtosis and skewness. Therefore, in light of findings in Section 4.1 and

Figure 3, it appears that currency risk embeds an important part of the differences

in the cross-section of pricing kernels denominated in local currency. Further inves-

tigation, such as cross-sectional predictability or causal links, on economy-specific

pricing kernels, is thus tainted by currency risk and is associated with findings of

Hong (2001) and Kim and Roubini (2000).

Finally, thanks to the agnostically estimated pricing kernels, we shed light on

two international market puzzles in the next two sections.

4.3 Currency Risk and the Lognormality Hypothesis

Gavazzoni et al. (2013) question the lognormality hypothesis of pricing kernels that

is extensively used in the literature. Lognormal models imply that risky currencies

are associated with low pricing kernel volatilities. Another empirical prediction of

such models is that high interest rate currencies are associated with low pricing

15We conjecture that the appreciation of the Chinese Yuan relative to U.S. dollar during the
financial crisis generates this effect.
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kernel volatilities. However, Gavazzoni et al. (2013) document that high interest

rate currencies demonstrate high pricing kernel volatilities.

Indeed, on the one hand, assuming conditional lognormal pricing kernels, the

currency risk premium on the foreign currency is equal to16

Etst+1 − ft =
1

2
(V art log(mt+1)− V art log(m∗t+1)), (6)

where, the left-hand-side is the risk premium on the foreign currency17 while the

right-hand-side is the pricing kernel conditional variance differentials. The currency

risk premium on the foreign currency is positive, if the foreign pricing kernel has a

lower conditional variance. The economic rationale behind this is that the higher

the variability in the marginal domestic utility, the lower the tolerance to exchange

rate risk, and thus agents demand a risk premium on the foreign currency.

On the other hand, in international markets, the ratio of pricing kernels from

two economies is equal to the exchange rate between these two economies:

m∗t+1 = mt+1
St+1

St
. (7)

As well, the covered interest rate parity implies that ft − st = it − i∗t , where ft

and st are the logarithm of the forward and the spot exchange rates in units of U.S.

dollars per foreign currency. The interest rates in the domestic and foreign economies

are respectively denoted by it and i∗t . The forward premium, as referred by Fama

(1984), can be decomposed such that ft−st = (ft−Etst+1)+(Etst+1−st). The first

term in parentheses is the currency risk premium. The second term in parentheses

is the expected change in the exchange rate. In order to consistently capture the

empirical forward premium anomaly, it is first shown in Fama (1984) and later in

16The reader may refer to the Appendix A.1 for derivations. This is also shown, for instance, in
Backus et al. (2001), in Backus et al. (2013) and in Gavazzoni et al. (2013).

17The foreign currency risk premium is minus the currency risk premium (Backus et al., 2013).
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Backus et al. (1995) or Backus et al. (2013), that the covariance between the currency

risk premium and the change in exchange rates is negative. Furthermore, change

in exchange rate tends to be associated negatively with interest rate differentials

according to the uncovered interest rate parity (UIP) violations. Taken together,

the currency risk premium and interest rate differentials are positively correlated.

Hence, Equation (6) together with the above-mentioned empirical evidence im-

plies that interest rate differentials are negatively associated with pricing kernel

volatilities. Stated differently, the lognormality hypothesis predicts that high in-

terest rate currencies tend to have low pricing kernel volatilities. Yet Gavazzoni

et al. (2013) find that pricing kernel volatilities and interest rates are strongly pos-

itively correlated. For instance, they report a correlation between Australian and

the United States interest rate and volatility differentials of 0.52.

Using a GARCH model, we estimate the conditional variance of pricing ker-

nels.18 All correlations are negative and reported in Table X. They demonstrate

a negative correlation of -0.15 on average. As a result, lognormal models appear

to be consistent with empirical evidence, which contradicts Gavazzoni et al. (2013).

Moreover, results demonstrate that the agnostic estimation methodology remains

consistent with empirical evidence on the forward premium anomaly and on UIP

violation.

Indeed, we conjecture that this contradictory finding is caused by the approxi-

mations taken in Gavazzoni et al. (2013) in estimating the conditional variance of

the pricing kernels. To verify this conjecture, we replicate their procedure. In this

case, we obtain very statistically positive correlations between the interest rate and

the conditional volatility differentials. Table XI reports correlations using Gavaz-

zoni et al. (2013) approximations. The average correlation is strongly positive and

is equal to 0.92.

18The estimations with fat tail distributions in the GARCH processes yield similar results.
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4.4 The International Risk Sharing Index

In this section, we contribute to the literature on the international risk sharing

index in terms of pricing kernels, its attached puzzle, and, especially, its statistical

inference.

Starting with Brandt et al. (2006), the international risk sharing index is defined

as

ρIRSI = 1− V ar(ln(m∗)− ln(m))

V ar(ln(m∗)) + V ar(ln(m))
=

2Cov(ln(m∗), ln(m))

V ar(ln(m∗) + V ar(ln(m))
.

This measure of dependence resembles a correlation but it accounts for the ne-

cessity of having completely equal pricing kernels and not only a linear relationship

between them in order to have an international risk sharing index equals to unity

(Brandt et al., 2006). It may be seen as a ratio between how different two countries

pricing kernels are over how similar they are.

Bakshi et al. (2015) allow for incomplete markets and the international risk

sharing index boils down to

ρIRSI =
2Cov(m,m∗)

V ar(m) + V ar(m∗)
.

Using the agnostic estimation, we measure the degree of international risk sharing

for the sampled economies. Results are shown in Table XII. The risk sharing index

between the Eurozone and the United Kingdom is the strongest, followed by the

one of the United Kingdom and the United States and the one of the Eurozone and

the United States. In fact, risk sharing index is negative only between Japan and

Switzerland.

As in Bakshi et al. (2015), we find relative low international risk sharing indices,

which are consistent with results obtained with consumption data. Indeed, for
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instance, Brandt et al. (2006) document a risk sharing index between the United

States and the United Kingdom of 0.25 with consumption data and of 0.99 with

market data. This supports our results as we report a risk sharing index of 0.29.19

In this sample, the agnostic estimation provides evidence towards the absence of the

international risk sharing puzzle.

In order to strengthen the statistical quality of the international risk sharing

index, we contribute by evaluating a closed-form solution of the variance of ρIRSI .

We apply Fisher Z-transformation as the international risk sharing index lies in

the interval (-1,1) together with the Delta method. The transformation exhibits an

asymptotic normal distribution which allows one to compute confidence intervals as

shown by Monte Carlo simulations.

The Fisher Z-transformation uses the inverse of the hyperbolic tangent of ρ̂IRSI

Ẑ = tanh−1(ρ̂IRSI) =
1

2
ln

1 + ρ̂IRSI
1− ρ̂IRSI

.

The reader may refer to Appendix A.2 for derivations and one can show that Ẑ

is asymptotically normally distributed with mean 1
2

ln 1+ρIRSI
1−ρIRSI

and with variance

σ2
Ẑ

=
1

N

[
(1 + ρ2)

ρ2(1− ρ2
IRSI)

− 1− ρ4
IRSI

(1− ρ2
IRSI)

2
− 1

ρ2

]

where ρ is the Pearson coefficient of correlation. Therefore, the confidence interval

of Ẑ is simply given by [Ẑ ± z1−α
2
σẐ ].

One can also show that ρ̂IRSI is a consistent estimator of ρIRSI and has an

asymptotic normal distribution with mean ρIRSI and variance

σ2
ρ̂IRSI

=
1

N − 2

[
(1− ρ2

IRSI)(ρ
2 + ρ2

IRSI)

ρ2
− (1− ρ4

IRSI)

]
. (8)

19In Brandt et al. (2006), data span from January 1975 to June 1998.
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To assess the confidence interval of the international risk sharing index, it suffices

to use the confidence interval of Ẑ that gives the lower and the upper limits, together

with the following equation

ρ̂IRSI =
e2Ẑ − 1

e2Ẑ + 1
.

To evaluate the asymptotic normality of the inverse hyperbolic tangent transfor-

mation applied to the international risk sharing index, Monte Carlo simulations are

performed for five values of ρIRSI with sample size of N = 20, N = 50, N = 100 and

N = 1′000. We generate random numbers from a bivariate normal distribution, two

correlated uniform and two correlated Gamma distributions. For each specification,

20′000 paths are generated.

In Table XIII, means, standard deviations and Jarque-Bera p-values of Ẑ and

ρ̂IRSI based on the 20′000 runs are reported, as well as their standard deviation

counterparts computed respectively with Equations (4.4) and (8). We reject the

normality assumption for the distribution of ρ̂IRSI for any specification and any

sample size. However, the distribution of Ẑ is normally distributed as long as

N = 50, which corresponds to a rather small sample size. Clearly, the Fisher-Z

transformation improves the asymptotic normality of the risk sharing index. In

addition, Equations (4.4) and (8) of variances satisfactorily target the sample vari-

ances. They are accurate even when the sample size is small (N = 20) and are right

on the target as long as N > 100 for every specification.

A Monte Carlo experiment from non-normal data constitutes a robust verifi-

cation of the normality asymptotic distribution of Ẑ and ρ̂IRSI . Pairs of random

numbers are generated from uniform distributions that exhibit symmetry and thin

tails. As well, we generate bivariate random numbers from a Gamma distribution

with a shape parameter of 8 and a scale parameter of 4. The Gamma distribution

exhibits asymmetry and fat tails in line with financial data. Moreover, the Gamma

distribution has the advantage of being always positive which lends itself well to the
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stochastic discount factors. Results are provided in Table XIV and in Table XV.

Both uniform and Gamma distributions yield similar conclusions.

Sample counterparts of variance are less accurate in the case of non-normal data

and they always tend to be underestimated compared with variances obtained via

Monte Carlo. Underestimation decreases as sample size increases. In the case of

a fat tail distribution, the sample counterpart is almost right on the target when

N = 100 and when the sample international risk sharing index is high. The nor-

mality hypothesis of Ẑ holds only for large sample size for uniformly and Gamma

distributed data. In particular, a sample size of N = 200 shows that this number of

observations is sufficient not to reject the normal distribution hypothesis for Ẑ in

case of Gamma distributed data while we need N > 400 for uniformly distributed

data.

Results from Monte Carlo simulations prove right the asymptotic normality of

the Fisher-Z transformation applied to the international risk sharing index and

validate Equations (4.4) and (8).

4.5 The United States Pricing Kernel: A Case Study

4.5.1 Risk Factor-based Approach

Investigating the risk factors inherent to the United States pricing kernels is the

subject of this section. We focus on the Fama and French (1993) factor model as it

remains the dominant risk factor-based model in the empirical asset pricing litera-

ture and account for latest development by Fama and French (2016). Additionally,

in line with Cochrane (1996), the pricing kernel is defined as a linear function of

a set of risk factor proxies. The section allows challenging the agnostic estimation

method by confronting the estimated pricing kernels within a risk factor approach

model.

First, Table XVI reports correlations between the Fama and French (2016)
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risk factors,20 namely, the excess return market (Rm − Rf ), the Small minus Big

(SMB), the High minus Low (HML), the Robust minus Weak (RMW ) and the

Conservative minus Aggressive (CMA) portfolios and the estimated pricing kernels.

The correlations are relatively strong and respectively equal to 0.25 (Rm−Rf ), 0.10

(SMB), -0.07 (HML), -0.22 (RMW ) and -0.06 (CMA).

As a comparison, Ghosh et al. (2016) extract pricing kernels under no arbitrage

restrictions using an entropy minimization approach. They document substantial

correlations ranging from 0.55 to 0.69 at a quarterly frequency, and, from 0.27 to 0.54

at an annual one, with ten Industry portfolios. However, to compute correlations,

they use a different approach; they first perform a linear regression of their model-

implied pricing kernels on the three Fama and French (1993) risk factors and then

compute the correlation between their pricing kernels and their fitted values from

the regression. Besides, they do not strictly use Fama and French (1993) portfolios,

as we do, but form their own portfolios. Nevertheless, an identical procedure gives

us a comparable correlation of 0.27.

Second, we add the so-called global foreign exchange volatility factor (V OL), as

defined by Menkhoff et al. (2012), to account for the role of currency risk on local

pricing kernels in light of the comparative results stemming from Figure 1 and

from Figure 3.21 This also coincides with the idea of the international asset pricing

model by Dumas and Solnik (1995).

The linear regression equation is given by

mt = a+ b
′
ft + εt, (9)

where ft consists of the five Fama and French (2016) risk factors and the V OL

20Fama and French (2016) portfolio returns are directly obtained from the Kenneth R. French
website.

21A limitation is conveyed by the relatively small number of considered currencies. Results might
strengthen with a more representative basket of currencies.
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factor that corresponds to the innovations of an autoregressive model of order 1 on

the time-varying volatility of the average exchange rate changes, referred to as the

global FX volatility factor (Menkhoff et al., 2012).

Table XVII reports regression estimates.22 Newey-West heteroskedasticity and

autocorrelation-consistent weighting matrices with optimal lags are used. The mar-

ket portfolio is the only significant risk factor that account for the variability of the

estimated pricing kernels. The adjusted-R2 is reasonable and is equal to 5%.

Nonetheless, based on the success of the Fama and French (2016) model, we

expect stronger explanatory power. This suggests that the agnostic methodology

tends to capture only a small part of the risk stemming from these risk factors in

the sample or that a linear pricing kernel model is not the most appropriate model,

as shown in Dittmar (2002).23

4.5.2 Forecasting

Predictability remains a central concern both in empirical and theoretical asset

pricing. For instance, Campbell and Cochrane (1999) and Bansal and Yaron (2004)

model pricing kernel components as AR(1) processes. In this line and as Table IX

demonstrates the presence of serial correlation in the pricing kernels, we investigate

pricing kernels forecastability within an ARMA(p,q) framework.

The estimated ARMA(p,q) model is given by

mt = c+

p∑
i=1

φt−imt−i +

q∑
j=1

θt−jεt−j + εt.

In light of previous results, we additionally consider an ARMAX(p,q) that in-

22As an experiment, we also distinguish between the time periods before and after of the global
financial crisis. Results differ in the sense that on the time period following the global financial
crisis, the risk factors HML, RMW and CMA are additionally statistically significant at the 10%
level only and the adjusted-R2 is equal to 11%.

23Dittmar (2002) finds that highly nonlinear pricing kernels empirically outperform both linear
and multifactor models.
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cludes exogenous variables defined as

mt = c+ β
′
ft +

p∑
i=1

φt−imt−i +

q∑
j=1

θt−jεt−j + εt,

where ft consists of the five Fama and French (2016) risk factors.

An ARMA(p,q) and an ARMAX(p,q) models are estimated in-sample from Jan-

uary 1999 to January 2013. From February 2013, we compute the out-of-sample

one-step ahead forecast of the corresponding model. To measure forecasts accuracy,

the sum of the mean square forecast errors is computed and reported in Table XVIII.

Optimal lags length (p∗, q∗) are selected by the Akaike Information Criterion.

The minimum of the mean square errors is given by the ARMAX(p∗,q∗). Fur-

thermore, the ARMA(p∗,q∗) outperforms the ARMA(1,1). Results underline the

importance of long-lasting serial dependencies in modelling pricing kernels. Indeed,

while Bansal and Yaron (2004) use an AR(1) process. Such number of lags is not

sufficient as shown in Table XVIII, recent pricing kernel specifications such as Rosen-

berg and Engle (2002), serial correlation is not accounted for and this might lead to

specification loss.

Figure 4 depicts pricing kernel time series together with the one-step ahead

forecasts from an ARMAX(p∗,q∗) model. Predictions tend to resemble to the es-

timated pricing kernels, except at the beginning of the forecasting period where

realized and forecasted go in the opposite direction.

To conclude, a possible pricing kernel specification as in Bansal and Yaron (2004)

with more than one lag might be able to capture the serial dependency that we

observe.
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5 Conclusion

The method proposed by Pukthuantong and Roll (2015) is extended to international

assets. It is straightforward and has the advantage of being completely agnostic. It

has good prospects for estimating pricing kernels, anyhow, rapidly and without the

use of any underlying assumptions.

To ensure power to the pricing kernel theory tests, as mentioned in Pukthuantong

and Roll (2015), the number of assets should be large and significantly larger than

the number of time periods. Considering stocks and bonds from distinct economies,

there is no assertive evidence against the existence of a common pricing kernel. In

particular, results are consistent with complete markets for the time period spanning

from January 1999 to January 2017 for assets from China, the Eurozone, Japan,

Russia, Switzerland, the United Kingdom and the United States. Again, these

results suggest that with a large enough set of assets, it may also be possible to price

any asset with a common pricing kernel on a similar time period in international

financial markets.

Furthermore, with this methodology, we are able to consider various aspects of

international pricing kernels. High interest rate currencies tend to have low pricing

kernel volatilities consistently with lognormal models. International risk sharing

indices are low even with market data which provides evidence against the existence

of the international risk sharing puzzle.

Finally, the variance of the international risk sharing statistics is provided in a

closed-form solution and verified by Monte Carlo simulations. Its Fisher-Z transfor-

mation is asymptotically normally distributed when data are normally distributed

and is robust to uniform and Gamma distributions as long as the sample size is

large enough.
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Figure 1: This figure shows quantile-quantile plots of the foreign against the United
States estimated pricing kernels. All pricing kernels are expressed in U.S. dollars.
The sample period is from January 1999 to January 2017.
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Figure 2: This figure depicts time series of estimated pricing kernels with smoothing
splines. Overlay bands indicate United States recessions reported by the National
Bureau of Economic Research. The sample period is from January 1999 to January
2017.
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Figure 3: This figure displays quantile-quantile plots of foreign against the United
States estimated pricing kernels. All pricing kernels are expressed in local currency.
The sample period is from January 1999 to January 2017.

35



Figure 4: This figure displays the United States pricing kernels together with
forecast responses (in black) of an ARMAX(p∗,q∗). The sample period spans from
January 1999 to January 2017.
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Table I: Descriptive statistics

China Eurozone Japan Russia Switzerland United Kingdom United States

Panel (a): Stocks

Mean 17.35 2.66 6.35 12.43 7.10 1.31 12.24

Std. dev. 28.94 13.76 17.76 23.47 13.47 15.24 17.41

Min -18.61 -14.65 -12.51 -19.74 -11.48 -16.52 -14.43

Max 19.92 10.77 15.64 19.19 9.64 13.95 21.91

Skewness 0.09 -0.65 0.04 -0.31 -0.34 -0.32 -0.28

Kurtosis 2.67 3.75 2.98 3.46 3.18 3.81 4.49

Panel (b): Bonds

Mean - -2.32 1.62 -2.75 2.61 -0.74 -1.40

Std. dev. - 11.01 9.88 19.19 10.44 8.71 5.04

Min - -7.74 -5.75 -14.2 -7.50 -5.47 -5.28

Max - 14.03 5.49 11.98 7.93 5.21 3.18

Skewness - 0.29 -0.33 0.06 -0.38 -0.05 -0.66

Kurtosis - 7.05 2.26 3.25 2.86 2.33 3.75

Panel (c): Exchange rate returns with respect to U.S. dollar

Mean 1.04 0.28 0.50 -3.79 2.39 -1.07 -

Std. dev. 1.90 10.50 9.90 13.80 11.10 9.20 -

Min -2.43 -10.17 -8.70 -18.37 -13.60 -11.14 -

Max 2.10 11.00 6.85 10.92 13.03 10.20 -

Skewness -0.05 -0.04 -0.19 -1.23 0.17 -0.30 -

Kurtosis 7.32 3.95 3.15 7.64 5.19 4.92 -

Panel (d): Interest rate differentials relative to the U.S. interest rates

Mean 1.73 -0.14 -1.93 6.20 -1.47 0.82 -

Std. dev. 0.70 0.36 0.61 1.34 0.40 0.31 -

Min -2.57 -2.43 -5.48 -13.80 -37.80 -7.40 -

Max 5.63 1.84 1.20 2.140 1.00 27.90 -

Skewness -0.26 -0.36 -0.71 0.67 -0.78 0.80 -

Kurtosis 2.36 2.25 2.00 3.86 2.17 2.46 -

The table reports descriptive statistics expressed in percentage: annualized means, annualized

standard deviations, minimum, maximum, skewness and kurtosis in Panels (a), (b), (c) and (d)

of respectively stock and bond returns, exchange and interest rates. Stock and bond returns are

expressed in U.S. dollars. The sample period spans from January 1999 to January 2017. A dash

(-) corresponds to unavailable and/or unused data.
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Table II: P-values of univariate tests

No stochastic dominance Equal means Equal variances No differences in distributions

p-values (05.11-05.12)

China 0.98 0.98 0.57 0.83

Eurozone 0.46 0.96 0.02** 0.03**

Japan 0.94 0.99 0.01** 0.23

Russia 0.62 0.97 0.43 0.83

Switzerland 0.67 0.99 0.17 0.83

United Kingdom 0.12 0.98 0.17 0.03**

United States 0.86 0.96 0.01** 0.49

p-values (06.12-06.13)

China 0.98 0.96 0.75 0.99

Eurozone 0.66 0.99 0.01*** 0.23

Japan 0.74 0.98 0.23 0.99

Russia 0.43 0.99 0.04** 0.03**

Switzerland 0.89 0.99 0.36 0.83

United Kingdom 0.46 0.98 0.02** 0.09*

United States 0.63 0.96 0.00*** 0.09*

p-values (07.13-07.14)

China 0.66 0.96 0.41 0.49

Eurozone 0.49 0.98 0.03** 0.23

Japan 0.55 0.97 0.06** 0.23

Russia 0.49 0.99 0.67 0.49

Switzerland 0.70 0.99 0.27 0.83

United Kingdom 0.25 0.99 0.01** 0.01***

United States 0.43 0.97 0.03** 0.49

p-values (08.14-08.15)

China 0.89 0.92 0.14 0.82

Eurozone 0.66 0.99 0.66 0.49

Japan 0.86 0.99 0.02** 0.49

Russia 0.56 0.95 0.51 0.23

Switzerland 0.70 0.99 0.63 0.49

United Kingdom 0.08* 0.99 0.06* 0.01***

United States 0.46 0.95 0.01*** 0.23

p-values (09.15-09.16)

China 0.82 0.99 0.92 0.83

Eurozone 0.98 0.99 0.02** 0.49

Japan 0.29 0.99 0.05** 0.03**

Russia 0.62 0.97 0.56 0.83

Switzerland 0.45 0.99 0.20 0.49

United Kingdom 0.32 0.99 0.01*** 0.03**

United States 0.29 0.98 0.08* 0.49

p-values (10.16-01.17)

China 0.99 0.98 0.99 0.99

Eurozone 0.56 0.94 0.27 0.53

Japan 0.77 0.95 0.27 0.99

Russia 0.77 0.98 0.06** 0.53

Switzerland 0.77 0.94 0.51 0.99

United Kingdom 0.99 0.98 0.01*** 0.53

United States 0.77 0.88 0.16 0.53

The table reports p-values for the Kruskal-Wallis (no stochastic dominance), Welch (equal means), Brown-Forsythe (equal variances)

and Kolmogorov-Smirnov (no differences in distributions) tests on the pricing kernels estimated with equities and bonds denominated

in local currency. The sample period spans from May 2011 to January 2017. We consider one year subsamples. The number of stocks

is: 906 from China, 886 from the Eurozone, 456 from Japan, 147 from Russia, 152 from Switzerland, 469 from the United Kingdom

and 1′330 from the United States. We use 571 bonds from the Eurozone, 711 from Japan, 395 from Russia, 303 from Switzerland,

70 from the United Kingdom and 1′067 from the United States. Note that China is a specific case in which only stock data are

used in the tests due to the absence of bond data. A dash (-) indicates that matrices are singular and test results are not obtained.

Statistical significance at the 10%, 5% and 1% level is indicated by *, **, and ***.
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Table III: P-values of six months subsamples univariate tests

No stochastic dominance Equal means Equal variances No differences in distributions

p-values (09.15-03.16)

China 0.95 0.97 0.41 0.88

Eurozone 0.75 0.98 0.05* 0.42

Japan 0.34 0.99 0.17 0.13

Russia 0.57 0.97 0.47 0.88

Switzerland 0.56 0.97 0.07* 0.42

United Kingdom 0.22 0.99 0.19 0.13

United States 0.75 0.98 0.06* 0.42

p-values (04.16-10.16)

China 0.85 0.99 0.21 0.88

Eurozone 0.95 0.99 0.05** 0.42

Japan 0.48 0.99 0.36 0.42

Russia 0.85 0.99 0.44 0.88

Switzerland 0.95 0.96 0.16 0.42

United Kingdom 0.14 0.99 0.17 0.03*

United States 0.48 0.98 0.10 0.13

The table reports p-values for the Kruskal-Wallis (no stochastic dominance), Welch (equal means),

Brown-Forsythe (equal variances) and Kolmogorov-Smirnov (no differences in distributions) tests

on the pricing kernels estimated with both equities and bonds denominated in local currency. The

sample period spans from September 2015 to Pctober 2016. The number of stocks varies among

countries: 906 from China, 886 from the Eurozone, 456 from Japan, 147 from Russia, 152 from

Switzerland, 469 from the United Kingdom and 1′330 from the United States. We also use 571

bonds from the Eurozone, 711 from Japan, 395 from Russia, 303 from Switzerland, 70 from the

United Kingdom and 1′067 from the United States. Note that China is a specific case in which

only stock data are used in the tests due to the absence of bond data. A dash (-) indicates that

matrices are singular and test results are not obtained. Statistical significance at the 10%, 5% and

1% level is indicated by *, **, and ***.
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Table IV: P-values of tests with stocks only

China Eurozone Japan Russia Switzerland United Kingdom

No stochastic dominance

p-value (01.99-07.01) 0.59 0.66 0.78 - 0.60 0.61

p-value (08.01-02.04) 0.97 0.96 0.78 - 0.72 0.80

p-value (03.04-09.06) 0.69 0.55 0.96 - 0.57 0.69

p-value (10.06-04.09) 0.46 0.84 0.82 - 0.94 0.85

p-value (05.09-11.11) 0.47 0.96 0.78 0.77 0.85 0.97

p-value (12.11-06.14) 0.96 0.82 0.67 0.45 0.42 0.52

p-value (07.14-01.17) 0.37 0.76 0.57 0.58 0.39 0.52

Equal means

p-value (01.99-07.01) 0.92 0.85 0.95 - 0.90 0.95

p-value (08.01-02.04) 0.93 0.92 0.97 - 0.90 0.83

p-value (03.04-09.06) 0.99 0.92 0.97 - 0.99 0.89

p-value (10.06-04.09) 0.67 0.91 0.98 - 0.95 0.97

p-value (05.09-11.11) 0.97 0.96 0.94 0.94 0.89 0.93

p-value (12.11-06.14) 0.90 0.98 0.96 0.92 0.97 0.96

p-value (07.14-01.17) 0.91 0.99 0.95 0.94 0.99 0.90

Equal variances

p-value (01.99-07.01) 0.06* 0.27 0.83 - 0.00*** 0.00***

p-value (08.01-02.04) 0.07* 0.03** 0.01*** - 0.00*** 0.04**

p-value (03.04-09.06) 0.05* 0.16 0.01*** - 0.00*** 0.00***

p-value (10.06-04.09) 0.79 0.17 0.04** - 0.00*** 0.31

p-value (05.09-11.11) 0.09* 0.45 0.05** 0.00*** 0.00*** 0.02**

p-value (12.11-06.14) 0.30 0.04** 0.02** 0.00*** 0.00*** 0.00***

p-value (07.14-01.17) 0.00*** 0.12 0.05** 0.00*** 0.00*** 0.03**

No differences in distributions

p-value (01.99-07.01) 0.56 0.78 0.78 - 0.03** 0.36

p-value (08.01-02.04) 0.78 0.22 0.12 - 0.03** 0.22

p-value (03.04-09.06) 0.78 0.36 0.36 - 0.12 0.56

p-value (10.06-04.09) 0.56 0.78 0.36 - 0.21 0.78

p-value (05.09-11.11) 0.12 0.78 0.12 0.12 0.03** 0.22

p-value (12.11-06.14) 0.94 0.36 0.78 0.01** 0.03** 0.22

p-value (07.14-01.17) 0.12 0.78 0.37 0.06* 0.03** 0.36

The table reports p-values for the Kruskal-Wallis (no stochastic dominance), Welch (equal means),

Brown-Forsythe (equal variances) and Kolmogorov-Smirnov (no differences in distributions) tests

on the pricing kernels estimated with equities only. The sample period spans from January 1999

to January 2017. The number of stocks vary among countries: 906 stocks are from China, 886

from the Eurozone, 456 from Japan, 147 from Russia, 152 from Switzerland, 469 from the United

Kingdom and 1′330 from the United States. A dash (-) indicates that matrices are singular and

test results are not obtained. Statistical significance at the 10%, 5% and 1% level is indicated by

*, **, and ***.
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Table V: P-values of tests with bonds only

Eurozone Japan Russia Switzerland United Kingdom

No stochastic dominance

p-value (03.09-09.10) 0.65 0.83 - 0.53 0.34

p-value (10.10-04.12) 0.42 0.94 0.65 0.83 -

p-value (05.12-11.13) 0.90 0.67 0.78 0.97 0.31

p-value (12.13-06.15) 0.90 0.87 0.26 0.97 -

p-value (07.15-01.17) 0.56 0.34 0.59 0.76 0.11

Equal means

p-value (03.09-09.10) 0.96 0.99 - 0.99 0.98

p-value (10.10-04.12) 0.94 0.97 0.94 0.98 -

p-value (05.12-11.13) 0.99 0.92 0.90 0.97 0.96

p-value (12.13-06.15) 0.93 0.95 0.95 0.94 -

p-value (07.15-01.17) 0.98 0.94 0.63 0.98 0.95

Equal variances

p-value (03.09-09.10) 0.00*** 0.04** - 0.06* 0.49

p-value (10.10-04.12) 0.00*** 0.00*** 0.00*** 0.06* -

p-value (05.12-11.13) 0.78 0.96 0.76 0.40 0.02**

p-value (12.13-06.15) 0.22 0.00*** 0.08* 0.07* -

p-value (07.15-01.17) 0.66 0.00*** 0.19 0.27 0.02**

No differences in distributions

p-value (03.09-09.10) 0.24 0.46 - 0.46 0.46

p-value (10.10-04.12) 0.12 0.46 0.25 0.74 -

p-value (05.12-11.13) 0.96 0.96 0.75 0.74 0.24

p-value (12.13-06.15) 0.74 0.25 0.05** 0.46 -

p-value (07.15-01.17) 0.46 0.02** 0.46 0.96 0.00***

The table reports p-values for the Kruskal-Wallis (no stochastic dominance), Welch (equal means),

Brown-Forsythe (equal variances) and Kolmogorov-Smirnov (no differences in distributions) tests

of the pricing kernels estimated with bonds only. The sample period spans from March 2009 to

January 2017. We use, in total, 571, 711, 395, 303, 70 and 1′067 bonds from respectively the

Eurozone, Japan, Russia, Switzerland, the United Kingdom, and the United States. A dash (-)

indicates that matrices are singular and test results are not obtained. Statistical significance at

the 10%, 5% and 1% level is indicated by *, **, and ***.
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Table VI: P-values of tests with stocks and bonds

China Eurozone Japan Russia Switzerland United Kingdom

No stochastic dominance

p-value (01.99-07.01) 0.58 0.70 0.73 - 0.60 0.62

p-value (08.01-02.04) 0.96 0.93 0.81 - 0.83 0.73

p-value (03.04-09.06) 0.71 0.63 0.99 - 0.37 0.58

p-value (10.06-04.09) 0.67 0.92 0.88 - 0.86 0.92

p-value (05.09-11.11) 0.43 0.82 0.74 0.76 0.86 0.92

p-value (12.11-06.14) 0.73 0.99 0.98 0.69 0.61 0.81

p-value (07.14-01.17) 0.61 0.73 0.65 0.963 0.71 0.65

Equal means

p-value (01.99-07.01) 0.91 0.87 0.98 - 0.93 0.95

p-value (08.01-02.04) 0.94 0.92 0.98 - 0.87 0.85

p-value (03.04-09.06) 0.99 0.93 0.96 - 0.98 0.91

p-value (10.06-04.09) 0.74 0.95 0.98 - 0.98 0.96

p-value (05.09-11.11) 0.98 0.95 0.94 0.93 0.93 0.93

p-value (12.11-06.14) 0.88 0.99 0.96 0.98 0.99 0.96

p-value (07.14-01.17) 0.93 0.99 0.98 0.81 0.99 0.89

Equal variances

p-value (01.99-07.01) 0.08* 0.35 0.94 - 0.00*** 0.00***

p-value (08.01-02.04) 0.09* 0.04** 0.01*** - 0.00*** 0.06*

p-value (03.04-09.06) 0.18 0.50 0.02** - 0.00*** 0.06*

p-value (10.06-04.09) 0.41 0.84 0.43 - 0.00*** 0.67

p-value (05.09-11.11) 0.28 0.62 0.17 0.00*** 0.00*** 0.06*

p-value (12.11-06.14) 0.20 0.91 0.87 0.03** 0.00*** 0.08*

p-value (07.14-01.17) 0.47 0.62 0.77 0.10 0.00*** 0.61

No differences in distributions

p-value (01.99-07.01) 0.36 0.78 0.78 - 0.21 0.36

p-value (08.01-02.04) 0.77 0.36 0.22 - 0.06* 0.56

p-value (03.04-09.06) 0.94 0.56 0.36 - 0.06* 0.36

p-value (10.06-04.09) 0.78 0.78 0.78 - 0.36 0.78

p-value (05.09-11.11) 0.12 0.94 0.22 0.22 0.06* 0.36

p-value (12.11-06.14) 0.78 0.94 0.94 0.36 0.12 0.78

p-value (07.14-01.17) 0.78 0.78 0.56 0.78 0.36 0.78

The table reports p-values for the Kruskal-Wallis (no stochastic dominance), Welch (equal means), Brown-Forsythe

(equal variances) and Kolmogorov-Smirnov (no differences in distributions) tests on the pricing kernels estimated

with assets denominated in local currency. The sample period spans from January 1999 to January 2017. Respec-

tively, the total number of assets is 906 for China, 1′457 for the Eurozone, 1′167 for Japan, 542 for Russia, 455 for

Switzerland, 539 for the United Kingdom and 2′397 for the United States. A dash (-) indicates that matrices are

singular. Statistical significance at the 10%, 5% and 1% level is indicated by *, **, and ***.
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Table VII: P-values of tests with foreign stocks and bonds, domestic bonds only

China Eurozone Japan Russia Switzerland United Kingdom

No stochastic dominance

p-value (01.99-07.01) 0.58 0.51 0.41 - 0.89 0.62

p-value (08.01-02.04) 0.87 0.76 0.83 - 0.83 0.83

p-value (03.04-09.06) 0.90 0.86 0.98 - 0.49 0.81

p-value (10.06-04.09) 0.13 0.09* 0.12 0.75 0.25 0.11

p-value (05.09-11.11) 0.63 0.49 0.49 0.33 0.74 0.59

p-value (12.11-06.14) 0.74 0.81 0.69 0.63 0.95 0.87

p-value (07.14-01.17) 0.86 0.86 0.84 0.98 0.71 0.68

Equal means

p-value (01.99-07.01) 0.95 0.94 0.99 - 0.95 0.97

p-value (08.01-02.04) 0.98 0.92 0.99 - 0.88 0.88

p-value (03.04-09.06) 0.69 0.95 0.98 - 0.98 0.93

p-value (10.06-04.09) 0.91 0.99 0.97 0.71 0.99 0.96

p-value (05.09-11.11) 0.97 0.98 0.95 0.99 0.93 0.96

p-value (12.11-06.14) 0.94 0.99 0.98 0.96 0.99 0.97

p-value (07.14-01.17) 0.96 0.97 0.99 0.81 0.98 0.89

Equal variances

p-value (01.99-07.01) 0.00*** 0.00*** 0.00*** - 0.19 0.04**

p-value (08.01-02.04) 0.03** 0.04** 0.11 - 0.68 0.04**

p-value (03.04-09.06) 0.18 0.04** 0.46 - 0.16 0.38

p-value (10.06-04.09) 0.00*** 0.00*** 0.02** 0.68 0.22 0.02**

p-value (05.09-11.11) 0.01** 0.00*** 0.02** 0.38 0.94 0.11

p-value (12.11-06.14) 0.00*** 0.00*** 0.00*** 0.03** 0.78 0.03**

p-value (07.14-01.17) 0.49 0.06* 0.57 0.27 0.67 0.44

No differences in distributions

p-value (01.99-07.01) 0.06* 0.01** 0.01** - 0.56 0.56

p-value (08.01-02.04) 0.36 0.78 0.78 - 0.56 0.78

p-value (03.04-09.06) 0.78 0.36 0.78 - 0.36 0.94

p-value (10.06-04.09) 0.00*** 0.01** 0.01** 0.22 0.22 0.00***

p-value (05.09-11.11) 0.12 0.22 0.78 0.56 0.94 0.56

p-value (12.11-06.14) 0.12 0.12 0.67 0.78 0.78 0.56

p-value (07.14-01.17) 0.78 0.36 0.57 0.78 0.36 0.22

The table reports p-values for the Kruskal-Wallis (no stochastic dominance), Welch (equal means),

Brown-Forsythe (equal variances) and Kolmogorov-Smirnov (no differences in distributions) tests

of the pricing kernels estimated with assets denominated in local currency. The pricing kernel for

the domestic country is estimated using bonds only. The sample period spans from January 1999

to January 2017. In total, a number of 906 stocks from China, 886 from the Eurozone, 456 from

Japan, 147 from Russia, 152 from Switzerland and 469 from the United Kingdom are used. We

also gather 571 bonds from the Eurozone, 711 from Japan, 395 from Russia, 303 from Switzerland,

70 from the United Kingdom and 1′067 from the United States. A dash (-) indicates singular

matrices. Statistical significance at the 10%, 5% and 1% level is indicated by *, **, and ***.
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Table VIII: P-values of tests with Eurozone assets

No stochastic dominance Equal means Equal variances No differences in distributions

p-value (01-99-01.17) 0.66 0.98 0.27 0.58

The table reports p-values for the Kruskal-Wallis (no stochastic dominance), Welch (equal means),

Brown-Forsythe (equal variances) and Kolmogorov-Smirnov (no differences in distributions) tests

on the estimated pricing. The sample period spans from January 1999 to January 2017. We

consider stocks and bonds from United States and from the Eurozone. In total, we have for the

Eurozone and the United States, respectively, 1′457 and 2′397 assets. Statistical significance at

the 10%, 5% and 1% level is indicated by *, **, and ***.

Table IX: Descriptive statistics

China Eurozone Japan Switzerland United Kingdom United States

Mean 0.990 0.999 1.000 0.998 1.000 1.000

Std. dev. 0.524 0.416 0.557 0.749 0.576 0.332

Min -0.361 -0.272 -0.344 -1.718 -1.321 0.032

Max 3.414 2.283 2.586 3.125 3.042 2.011

Skewness 0.836 -0.050 0.437 0.150 0.077 0.028

Kurtosis 5.038 3.088 2.805 3.946 4.157 3.306

p-value Jarque-Bera 0.001 0.500 0.033 0.021 0.010 0.500

p-value Ljung-Box 0.064 0.230 0.032 0.011 0.085 0.001

p-value augmented Dickey-Fuller 0.001 0.001 0.001 0.001 0.001 0.001

The table reports descriptive statistics of the estimated pricing kernels; means, standard deviations,

minimum, maximum, skewness, kurtosis, Jarque-Bera, Ljung-Box and augmented Dickey-Fuller

p-values. Pricing kernels are expressed in local currency and are estimated with one year and a

half subsamples. The sample period spans from January 1999 to January 2017.
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Table X: Correlation between pricing kernel conditional volatility and interest rate
differentials

China Eurozone Japan Switzerland United Kingdom

-0.15* -0.00 -0.02 -0.34*** -0.22***

The table reports the correlation between pricing kernel conditional volatility and interest rate

differentials. Conditional variances are estimated with a GARCH with Student’s t-distribution.

Statistical significance at the 10%, 5% and 1% level is indicated by *, **, and ***. The sample

period is from January 1999 to January 2017.

Table XI: Correlation between pricing kernels approximated conditional variance
(as in Gavazzoni et al. (2013)) and interest rate differentials

China Eurozone Japan Switzerland United Kingdom

0.91*** 0.94*** 0.95*** 0.89*** 0.92***

The table reports the correlation between pricing kernels conditional volatility and interest rate

differentials. Conditional variances are estimated with a GARCH. Statistical significance at the

10%, 5% and 1% level is indicated by *, **, and ***. The sample period spans from January 1999

to January 2017.

Table XII: Risk Sharing Index

China Eurozone Japan Switzerland United Kingdom United States

China 1.00

Eurozone 0.06** 1.00

Japan 0.07** 0.15** 1.00

Switzerland 0.19** 0.25** -0.04** 1.00

United Kingdom 0.08** 0.31** 0.12** 0.24** 1.00

United States 0.06** 0.28** 0.08** 0.12** 0.29** 1.00

The table reports international risk sharing indexes. Pricing kernels are estimated using market

data (equities and bonds). The sample period is from January 1999 to January 2017. The statistical

significance at level 5% is obtained with Equation (9) and Equation (10) and is indicated by **.
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Table XIII: Monte Carlo experiment from normal distributions

N = 20 N = 50 N = 100 N = 1’000

Mean Std. dev. p-value Mean Std. dev. p-value Mean Std. dev. p-value Mean Std. dev. p-value

Specification no1

ρ̂IRSI 0.945 0.027 <0.01 0.948 0.015 <0.01 0.949 0.010 <0.01 0.950 0.003 <0.01

Sρ̂IRSI
0.027 0.015 0.010 0.003

Ẑ 1.831 0.236 0.06 1.832 0.144 >0.10 1.832 0.101 >0.10 1.832 0.032 >0.10

SẐ 0.229 0.143 0.101 0.032

Specification no2

ρ̂IRSI 0.926 0.030 <0.01 0.929 0.017 <0.01 0.930 0.012 <0.01 0.931 0.004 <0.01

Sρ̂IRSI
0.030 0.017 0.012 0.004

Ẑ 1.667 0.200 <0.01 1.666 0.121 >0.10 1.667 0.085 >0.10 1.667 0.027 >0.10

SẐ 0.196 0.121 0.085 0.027

Specification no3

ρ̂IRSI 0.770 0.092 <0.01 0.779 0.054 <0.01 0.781 0.037 <0.01 0.784 0.012 <0.01

Sρ̂c 0.092 0.054 0.037 0.012

Ẑ 1.059 0.224 0.03 1.056 0.136 >0.10 1.055 0.095 >0.10 1.056 0.030 >0.10

SẐ 0.218 0.136 0.095 0.030

Specification no4

ρ̂IRSI 0.388 0.149 <0.01 0.396 0.091 <0.01 0.398 0.064 <0.01 0.400 0.020 0.02

Sρ̂IRSI
0.148 0.091 0.064 0.020

Ẑ 0.422 0.179 <0.01 0.424 0.109 >0.10 0.423 0.076 >0.10 0.423 0.024 >0.10

SẐ 0.177 0.109 0.076 0.024

The table reports mean, standard deviation and p-value for normality test for five specific values

of the international risk sharing index. Results are based on 20′000 runs generated from a bivari-

ate normal distribution. The table also provides counterparts, SẐ and Sρ̂IRSI
, for the standard

deviation of Ẑ and ρ̂IRSI computed respectively with Equation (4.4) and Equation (8).
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Table XIV: Monte Carlo experiment from uniform distributions

N = 20 N = 50 N = 100 N = 1’000

Mean Std. dev. p-value Mean Std. dev. p-value Mean Std. dev. p-value Mean Std. dev. p-value

Specification no1

ρ̂IRSI 0.947 0.027 <0.01 0.949 0.016 <0.01 0.949 0.011 <0.01 0.950 0.003 <0.01

Sρ̂IRSI
0.027 0.015 0.010 0.003

Ẑ 1.859 0.259 <0.01 1.843 0.157 <0.01 1.837 0.110 <0.01 1.832 0.035 >0.10

SẐ 0.232 0.144 0.101 0.032

Specification no2

ρ̂IRSI 0.936 0.033 <0.01 0.939 0.019 <0.01 0.940 0.013 <0.01 0.940 0.004 <0.01

Sρ̂IRSI
0.032 0.018 0.012 0.004

Ẑ 1.767 0.259 <0.01 1.752 0.157 <0.01 1.749 0.110 <0.01 1.743 0.035 <0.01

SẐ 0.232 0.144 0.101 0.032

Specification no3

ρ̂IRSI 0.783 0.096 <0.01 0.788 0.057 <0.01 0.791 0.040 <0.01 0.792 0.013 <0.01

Sρ̂IRSI
0.094 0.056 0.038 0.012

Ẑ 1.100 0.251 <0.01 1.084 0.153 <0.01 1.082 0.107 0.09 1.077 0.034 >0.10

SẐ 0.232 0.144 0.101 0.032

Specification no4

ρ̂IRSI 0.435 0.188 <0.01 0.441 0.117 <0.01 0.441 0.081 <0.01 0.444 0.026 <0.01

Sρ̂IRSI
0.184 0.115 0.081 0.025

Ẑ 0.490 0.243 <0.01 0.483 0.148 <0.01 0.479 0.102 >0.05 0.478 0.032 >0.05

SẐ 0.233 0.144 0.101 0.032

The table reports mean, standard deviation and p-value for normality test for five specific values

of the international risk sharing index. Results are based on 20′000 runs generated from bivariate

uniform distribution. The table also provides counterparts, SẐ and Sρ̂IRSI
, for the standard

deviation of Ẑ and ρ̂IRSI computed with respectively Equation (4.4) and Equation (8).
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Table XV: Monte Carlo experiment from Gamma distributions

N = 20 N = 50 N = 100 N = 1’000

Mean Std. dev. p-value Mean Std. dev. p-value Mean Std. dev. p-value Mean Std. dev. p-value

Specification no1

ρ̂IRSI 0.943 0.029 <0.01 0.946 0.016 <0.01 0.948 0.011 <0.01 0.949 0.003 <0.01

Sρ̂IRSI
0.028 0.015 0.010 0.003

Ẑ 1.817 0.247 <0.01 1.818 0.154 <0.01 1.818 0.109 >0.01 1.819 0.034 >0.10

SẐ 0.228 0.142 0.100 0.032

Specification no2

ρ̂IRSI 0.934 0.030 <0.01 0.937 0.017 <0.01 0.938 0.012 <0.01 0.939 0.004 <0.01

Sρ̂IRSI
0.029 0.017 0.011 0.003

Ẑ 1.737 0.230 <0.01 1.732 0.142 <0.01 1.732 0.100 <0.01 1.731 0.031 >0.10

SẐ 0.212 0.132 0.092 0.029

Specification no3

ρ̂IRSI 0.749 0.099 <0.01 0.759 0.059 <0.01 0.762 0.041 <0.01 0.764 0.013 <0.01

Sρ̂IRSI
0.094 0.056 0.038 0.012

Ẑ 1.007 0.227 <0.01 1.008 0.140 <0.01 1.008 0.098 <0.01 1.008 0.031 >0.10

SẐ 0.209 0.129 0.091 0.029

Specification no4

ρ̂IRSI 0.419 0.169 <0.01 0.428 0.107 <0.01 0.432 0.075 <0.01 0.436 0.024 <0.01

Sρ̂IRSI
0.162 0.102 0.072 0.023

Ẑ 0.465 0.214 <0.01 0.465 0.133 <0.01 0.466 0.092 <0.01 0.467 0.029 >0.10

SẐ 0.201 0.126 0.089 0.028

The table reports mean, standard deviation and p-value for normality test for five specific values

of the international risk sharing index. Results are based on 20′000 runs generated from a bivari-

ate Gamma distribution. The table also provides counterparts,SẐ and Sρ̂IRSI
, for the standard

deviation of Ẑ and ρ̂IRSI computed with respectively Equation (4.4) and Equation (8).
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Table XVI: Risk factors correlation

Rm-Rf SMB HML RMW CMA

0.25*** 0.10 -0.07 -0.22*** -0.06

The table reports the correlation between the United States estimated pricing kernels and the Fama

and French (2016) factors. Starting with the market excess return (Rm − Rf ), the Small minus

Big (SMB), the High minus Low (HML), the Robust minus Weak (RMW ) and the Conservative

minus Aggressive (CMA) portfolios. The sample period spans from January 1999 to January 2017.

Statistical significance at the 10%, 5% and 1% level is indicated by *, **, and ***.

Table XVII: Factor betas

α Rm-Rf SMB HML RMW CMA VOL R2

m̂ -0.10*** 2.07** -0.19 -0.10 -2.06 0.91 -2.68

(0.04) (0.90) (1.10) (1.69) (1.52) (2.89) (2.45) 0.05

The table reports results of Newey-West time-series regression of the logarithm of the United

States pricing kernels on a constant (α), on the market excess return (Rm−Rf ), the Small minus

Big (SMB), the High minus Low (HML), the Robust minus Weak (RMW ) and the Conservative

minus Aggressive (CMA) portfolios and on the V OL factor. The latter is estimated by the

innovations in global FX volatility obtained with an autoregressive model of order 1. Newey-West

with optimal lags standard errors are reported in parentheses. The sample period spans from

January 1999 to January 2017. Statistical significance at the 10%, 5% and 1% level is indicated

by *, **, and ***. Reported R-squared are adjusted R-squared.

Table XVIII: Forecast errors

ARMA(1, 1) ARMAX(1,1) ARMA(p∗,q∗) ARMAX(p∗,q∗)

MSE 4.48 4.09 3.09 2.63

The table reports sum of mean square errors of forecasts responses to the corresponding mod-

els. The mode for the ARMA(p∗,q∗) is an ARMA(7,1) while for the ARMAX(p∗,q∗), it is an

ARMAX(9,3). The sample period spans from January 1999 to January 2017.
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A Appendix

A.1 Derivations of the currency risk premium

In this section, we remind the reader how to derive the exchange risk premium.

Assuming that the logarithm of the pricing kernels of the domestic and the foreign

investors (mt+1, m∗t+1) are conditionally normally distributed with means (µt, µ
∗
t )

and variances (σ2
t , σ

2∗
t ).24 The first moments of the domestic and foreign pricing

kernels are thus given by

Et(mt+1) = exp(µt +
σ2
t

2
),

Et(m∗t+1) = exp(µ∗t +
σ∗2t
2

).

Taking the ratio of two pricing kernels equals the exchange rate between these

two economies:

m∗t+1 = mt+1
St+1

St
(10)

log(m∗t+1) = log(mt+1) + st+1 − st. (11)

The logarithm of the covered interest rate parity condition states that ft −

st = it − i∗t and by the Euler equation, one has that i∗t = − logEtm∗t+1 and

it = − logEtmt+1. Therefore,

ft − st = − logEtmt+1 + logEtm∗t+1.

Take the time-t conditional expectation of Equation (11) and subtract from it

ft− st, together with the first and second moments of the lognormal distribution of

24See as well Backus et al. (2013).
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pricing kernels, we have

Etst+1 − ft = (logEtmt+1 − Et logmt+1)− (logEtm∗t+1 − Et logm∗t+1)

Etst+1 − ft =
σ2
t − σ∗2t

2
.

Hence, the currency risk premium is equal to

Etst+1 − ft =
1

2
(V art log(mt+1)− V art log(m∗t+1)).

A.2 International risk sharing index: Confidence interval

In this section, we present derivations for the closed-form solution of the interna-

tional risk sharing variance.

Let Y1 and Y2 be two jointly normal random distributions of dimension N . The

sample international risk sharing index ρ̂IRSI is given by

ρ̂IRSI =
2S12

S2
1 + S2

2

,

with −1 ≤ ρIRSI ≤ 1, ρIRSI = 0 if ρ = 0 and ρIRSI = ρ if σ1 = σ2, where ρ is

Pearson coefficient of correlation. The Fisher-Z transformation of ρ̂IRSI is equal to

Ẑ = tanh−1(ρ̂IRSI) =
1

2
ln

1 + ρ̂IRSI
1− ρ̂IRSI

,

which can be expressed in terms of ν = (v1, v2, v3, v4, v5) = (Y1, Y2, Y
2

1 , Y
2

2 , Y1Y2),

and thus rewritten as

Ẑ = g(ν) =
1

2
ln

[
v3 − v2

1 + v4 − v2
2 + 2v5 − 2v1v2

v3 − v2
1 + v4 − v2

2 − 2v5 + 2v1v2

]
.

As the vector ν is a function of sample moments, its mean is E(ν) = (µ1, µ2, σ
2
1 +
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µ2
1, σ

2
2 + µ2

2, σ12 + µ1µ2) and its variance is N−1Σ, where Σ = [Wij]5×5 with

Σ =



σ2
1 σ12 2µ1σ

2
1 2µ2σ12 µ2σ

2
1 + µ1σ12

σ12 σ2
2 2µ1σ12 2µ2σ

2
2 µ1σ

2
2 + µ2σ12

2µ1σ
2
1 2µ1σ12 2σ4

1 + 4σ2
1µ

2
1 2σ2

12 + 4µ1µ2σ12 2σ12µ
2
1 + 2σ12σ

2
1 + 2µ1µ2σ

2
1

2µ2σ12 2µ2σ
2
2 2σ2

12 + 4µ1µ2σ12 2σ2
2 + 2σ2

2µ
2
2 2σ12µ

2
2 + 2σ12σ

2
2 + 2µ1µ2σ

2
2

µ2σ
2
1 + µ1σ12 µ1σ

2
2 + µ2σ12 2σ12µ

2
1 + 2σ12σ

2
1 + 2µ1µ2σ

2
1 2σ12µ

2
2 + 2σ12σ

2
2 + 2µ1µ2σ

2
2 σ2

1σ
2
2 + µ2

1σ
2
2 + µ2

2σ
2
1 + σ2

12 + 2µ1µ2σ12


.

Following the Delta method, g(ν) is asymptotically normally distributed

√
N (g(ν)− Z) ∼ N

(
0,Og(ν)TΣOg(ν)

)

where Og(ν) =



∂g
∂v1

∂g
∂v2

∂g
∂v3

∂g
∂v4

∂g
∂v5


are nonzero elements which after calculation are equal to

∂g

∂v1

∣∣∣∣
ν=E(ν)

=
−2µ2(σ2

1 + σ2
2) + 4σ12µ1

(σ2
1 + σ2

2 + 2σ12)(σ2
1 + σ2

2 − 2σ12)

∂g

∂v2

∣∣∣∣
ν=E(ν)

=
−2µ1(σ2

1 + σ2
2) + 4σ12µ2

(σ2
1 + σ2

2 + 2σ12)(σ2
1 + σ2

2 − 2σ12)

∂g

∂v3

∣∣∣∣
ν=E(ν)

=
−2σ12

(σ2
1 + σ2

2 + 2σ12)(σ2
1 + σ2

2 − 2σ12)

∂g

∂v4

∣∣∣∣
ν=E(ν)

=
−2σ12

(σ2
1 + σ2

2 + 2σ12)(σ2
1 + σ2

2 − 2σ12)

∂g

∂v5

∣∣∣∣
ν=E(ν)

=
2(σ2

1 + σ2
2)

(σ2
1 + σ2

2 + 2σ12)(σ2
1 + σ2

2 − 2σ12)
.

Therefore, the variance of σ2
Ẑ

= Og(ν)TΣOg(ν) equals

σ2
Ẑ

=
1

N

[
(1 + ρ2)

ρ2(1− ρ2
IRSI)

− 1− ρ4
IRSI

(1− ρ2
IRSI)

2
− 1

ρ2

]
.
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The asymptotic variance of ρ̂IRSI given by the Delta method is equal to

σ2
ρ̂IRSI

= σ2
Ẑ

(tanh(Ẑ)
′
)2

= σ2
Ẑ

(1− ρ2
IRSI)

2

=
1

N

[
(1− ρ2

IRSI)(ρ
2 + ρ2

IRSI)

ρ2
− (1− ρ4

IRSI)

]
.

Note that it is possible to replace N by N − 2 to reduce finite-sample bias.

In order to verify previous derivations, we use Monte Carlo simulations for dif-

ferent parameter specifications. They consist of five values of ρIRSI with sample

size: N = 20, N = 50, N = 100 and N = 1′000. For each specification, 20′000

simulations are generated.

Specification no1. Distributions of mean (0, 0) and covariance

 1 0.95

0.95 1


with no difference in location and scale parameters and high Pearson correlation

coefficient.

Specification no2. Distributions of mean (−
√

0.1
2
,
√

0.1
2

) and covariance

1.21 0.94

0.94 0.81


with different location and scale parameters but high Pearson correlation coeffi-

cient.

Specification no3. Distributions of mean (−
√

0.1
2
,
√

0.1
2

) and covariance

0.81 0.79

0.79 1.21


with different location and scale parameters and lower correlation.

Specification no4. Distributions of mean (−
√

0.25
2
,
√

0.25
2

) and covariance

1.78 0.44

0.44 0.44


with an additional change: the Pearson correlation coefficient is set to 0.
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