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Abstract

We present a beta neutral model that includes the leverage e�ect to allow hedge fund
managers to target a near-zero beta for market neutral strategies. For this purpose, we
derive a metric of correlation with leverage e�ect to identify the �ne relation between
the market beta and volatility changes. An empirical test based on the most popular
market neutral strategies is run from 2000 to 2015 with exhaustive data sets including
600 American stocks and 600 European stocks from the S&P 500, Nasdaq 100, and Euro
Stoxx 600. Our �ndings con�rm the ability of the beta neutral model to withdraw an
important part of the bias from the market neutral strategies.
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1 Introduction

We propose a new measure of market beta that serves for portfolio hedging in market neutral
strategies. The correct measurement of market betas is paramount for market neutral hedge
fund managers who target a near-zero beta. Counter to common belief, perfect beta neutral
strategies are di�cult to achieve in practice, as the mortgage crisis in 2008 exempli�ed,
when most market neutral funds remained correlated with stock markets and experienced
considerable unexpected losses. This exposure to the stock index (Banz, 1981; Fama and
French, 1992, 1993; Carhart, 1997; Ang et al., 2006) is even stronger during down market
conditions (see, e.g., Mitchell and Pulvino (2001); Agarwal and Naik (2004); Bussière et al.
(2015)). In such a period of market stress, hedge funds may even add no value (Asness et
al., 2001). To address this complex issue, we �rst introduce the most popular beta neutral
strategies, then we explain the nature of the problem with their practical implementation,
and �nally, we show how to resolve this problem.

In this paper, we test the quality of hedging for three popular strategies that have often
been used by hedge funds. The �rst and most important strategy captures the low beta
anomaly (Black, 1972; Blacket al., 1972; Haugen and Heins, 1975; Haugen and Baker, 1991;
Ang et al., 2006; Bakeret al., 2013; Frazzini and Pedersen, 2014; Hong and Sraer, 2016) that
de�es the conventional wisdom on the risk and reward trade-o� predicted by the CAPM
(Sharpe, 1964). According to this anomaly, high beta stocks underperform low beta stocks.
Similarly, stocks with high idiosyncratic volatility earn lower returns than stocks with low
idiosyncratic volatility (Malkiel and Xu, 1997; Goyal and Santa-Clara, 2003; Anget al.,
2006, 2009). The related strategy consists in shorting high beta stocks and buying low beta
stocks. The second important strategy captures the size e�ect (Banz, 1981; Reinganum,
1981; Fama and French, 1992), in which stocks of small �rms tend to earn higher returns, on
average, than stocks of larger �rms. The related strategy consists in buying stocks with small
market capitalization and shorting those with high market capitalization. The third strategy
captures the momentum e�ect (Jegadeesh and Titman, 1993; Carhart, 1997; Grinblatt and
Moskowitz, 2004; Fama and French, 2012), where past winners tend to continue to show high
performance. This strategy consists in buying the past year's winning stocks and shorting
the past year's losing ones.

The implementation of all these strategies requires a reliable estimation of the betas
to maintain the hedge. First, Ordinary Least Squares (OLS) estimation remains the most
frequently employed method, even though it is impaired in the presence of outliers, notably
from small companies (Fama and French, 2008), illiquid companies (Amihud, 2002; Acharyaa
and Pedersen, 2005; Anget al., 2013), and business cycles (Ferson and Harvey, 1999). In
these circumstances, the OLS beta estimator might be inconsistent. However, our approach
focuses rather on normalizing the variables to make them closer to Gaussian and make the
OLS estimator more consistent. Second, many papers report that betas are time varying
(Blume, 1971; Fabozzi and Francis, 1978; Jagannathan and Wang, 1996; Fama and French,
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1997; Bollerslevet al., 1998; Lettau and Ludvigson, 2001; Lewellen and Nagel, 2006; Ang
and Chen, 2007). This can lead to measurement errors that could create serious bias in the
cross-sectional asset pricing test (Shanken, 1992; Chan and Lakonishok, 1992; Menget al.,
2011). In fact, �rms' stock betas do change over time for several reasons. A �rm's assets
tend to vary over time via acquiring or replacing new businesses that makes them more
diversi�ed. The betas also change for �rms that change in dimension to be safer or riskier.
For instance, �nancial leverage may increase when �rms become larger, as they can issue
more debt. Moreover, �rms with higher leverage are exposed to a more unstable beta (Galai
and Masulis, 1976; DeJong and Collins, 1985). One way to account for the time dependency
of beta is to consider regime changes when the return history used in beta estimation is long
enough. Surprisingly, only one paper (Chenet al., 2005) suggests a solution to capture the
time dependency and discusses regime changes for the beta using a multiple structural change
methodology. The study shows that the risk related to beta regime changes is rewarded by
higher returns. Another way is to examine the correlation dynamics. Francis (1979) �nds
that �the correlation with the market is the primary cause of changing betas ... the standard
deviations of individual assets are fairly stable�. This �nding calls for special attention
to the correlation dynamics addressed in this paper but that are apparently insu�ciently
investigated in other works.

Despite the extended literature on this issue, little attention has been paid to the link
between the leverage e�ect1 and the beta. The leverage e�ect is de�ned as the negative
correlation between the securities' returns and their volatility changes. This correlation
induces residual correlations between the stock overperformances and beta changes. In fact,
earlier studies have heavily focused on the role of the leverage e�ect on volatility (Black,
1976; Christie, 1982; Campbell and Hentchel, 1992; Bekaert and Wu, 2000; Bouchaudet al.,
2001; Valeyreet al., 2013). Surprisingly, despite its theoretical and empirical underpinnings,
the leverage e�ect has not been considered so far in beta modeling, while it is a measure of
risk. We aim to close this gap. Our paper starts by investigating the role of the leverage e�ect
in the correlation measure by extending the reactive volatility model (Valeyreet al., 2013),
which e�ciently tracks the implied volatility by capturing both the retarded e�ect induced
by the speci�c risk and the panic e�ect, which occurs whenever the systematic risk becomes
the dominant factor. This allows us to set up a beta neutral model incorporating three
independent components, all of them contributing to the reduction of the bias of the hedging.
First, we take into account the leverage e�ect on beta, where the beta of underperforming
stocks tends to increase. Second, we consider a leverage e�ect on correlation, in which a stock
index decline induces an increase in correlations. Third, we model the relation between the
relative volatility (de�ned as the ratio of the stock's volatility to the index's volatility) and the
beta. When the relative volatility increases, the beta increases as well. All three independent

1Note that we are not dealing with the restricted de�nition of the �leveraged beta� that comes from the
degree of leverage in the �rm's capital structure.
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components contribute to the reduction of biases in the naive regression estimation of the
beta and therefore considerably improve hedging strategies.

The main contribution of this paper is the formulation of abeta neutral model with lever-
age e�ect. The economic intuition behind the beta neutral model is the derivation of a
suitable beta measure allowing the implementation of the popular market neutral hedging
strategies with reduced bias and smaller standard deviation. In contrast, portfolio managers
who use naive beta measures remain exposed to systematic risk factors that create biases
in their market neutral strategies. An empirical test is performed based on an exhaustive
dataset that includes 600 American stocks and 600 European stocks from the S&P 500,
Nasdaq 100, and Euro Stoxx 600 over the period 2000 to 2015, which includes several busi-
ness cycles. This test validates the superiority of the beta neutral model over conventional
methods.

The article is organized as follows. Section 2 outlines the methodology employed for the
beta neutral model. Section 3 describes the data and discusses the empirical �ndings, while
Section 4 concludes.

2 The beta neutral model

In this section, we present a beta neutral model with three independent components. First,
we take into account the speci�c leverage e�ect on beta. Second, we consider the systematic
leverage e�ect on correlation. Third, we model the relation between the relative volatility
and the beta.

2.1 The leverage e�ect on beta

We �rst account for relations between returns, volatilities, and beta, which are characterized
by the so-called leverage e�ect. This component takes into account the phenomenon where
a beta increases as soon as a stock underperforms the index. Such a phenomenon can be
fairly well described by the leverage e�ect captured in the reactive volatility model. We call
the speci�c leverage e�ect the negative relation between speci�c returns and the risk (here,
the beta), where the speci�c return is the non-systematic part of the returns (a stock's
overperformance). The speci�c leverage e�ect on beta follows the same dynamics as the
speci�c leverage e�ect introduced in the reactive volatility model.

2.1.1 The reactive volatility model

This section aims at capturing the dependence of betas on stock overperformance (when a
stock is overperforming, its beta tends to decrease). For this purpose, we rely on the method-
ology of the reactive volatility model (see Valeyre et al., 2013) to derive a stable measure of
beta by using the renormalization factor that depends on the stock's overperformance.
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We start by recalling the construction of the reactive volatility model, which explicitly
accounts for the leverage e�ect on volatility. LetI (t) be a stock index at dayt. It is well
known that arithmetic returns, r I(t) = �I (t)=I (t − 1), are heteroscedastic, partly due to
price-volatility correlations. Throughout the text, � refers to a di�erence between successive
values, e.g.,�I (t) = I (t) − I (t − 1). The reactive volatility model aims at constructing an
appropriate �level� of the stock index,L(t), to substitute the original returns �I (t)=I (t − 1)
by less-heteroscedastic returns�I (t)=L(t − 1).

For this purpose, we �rst introduce two �levels� of the stock index as exponential moving
averages (EMAs) with two time scales: a slow levelL s(t) and a fast levelL f (t). In addition,
we denote byL is(t) the EMA (with the slow time scale) of the priceSi(t) of the stock i at
time t. These EMAs can be computed using standard linear relations:

L s(t) = (1− � s)L s(t − 1) + � sI (t); (1)

L f (t) = (1− � f )L f (t − 1) + � f I (t); (2)

L is(t) = (1− � s)L is(t − 1) + � sSi(t); (3)

where � s and � f are the weighting parameters of the EMAs that we set to� s = 0:0241 and
� f = 0:1484 (see Bouchaud et al., 2001). The slow parameter corresponds to the relaxation
time of the retarded e�ect for the speci�c risk, whereas the fast one corresponds to the
relaxation time of the panic e�ect for the systematic risk. These two relaxation times are
found to be rather universal, as they are stable over the years and remain close to each other
for di�erent mature stock markets. The appropriate levelsL(t) and L i(t), accounting for the
leverage e�ect on the volatility, were introduced for the stock index and individual stocks,
respectively:

L(t) = I (t)
�
1 + Fφ

�
L s(t)− I (t)

I (t)

�� �
1 + ‘

L f (t)− I (t)
L f (t)

�
; (4)

L i(t) = Si(t)
�
1 + Fφ

�
L is(t)− Si(t)

Si(t)

��

| {z }
speci�c risk

�
1 + ‘ i

L f (t)− I (t)
L f (t)

�

| {z }
systematic risk

; (5)

with the parameters ‘ and ‘ i quantifying the leverage and the �ltering function Fφ(z) =
tanh(�z )=� with � = 3:3. The �ltering function was introduced to attenuate the contribution
from eventual extreme events (in the limit� = 0, there is no �lter: F0(z) = z). If ‘ = ‘ i, the
correlation between the stock index and the individual stocki is not impacted by the leverage
e�ect. In turn, if ‘ > ‘ i, the correlation increases when the stock index decreases. Although
‘ i can generally be speci�c to the considered stock, we ignore its possible dependence oni
and set ‘ i = ‘ ′. Using the levelsL(t) and L i(t), we introduce the normalized returns:

r̃ I = r̃ I(t) =
�I (t)

L(t − 1)
; r̃ i = r̃ i(t) =

�S i(t)
L i(t − 1)

(6)
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and compute the renormalized variances̃� 2
I and �̃ 2

i through the EMAs as:

�̃ 2
I (t) = (1− � σ)�̃ 2

I (t − 1) + � σ r̃ 2I (t); (7)

�̃ 2
i (t) = (1− � σ)�̃ 2

i (t − 1) + � σ r̃ 2i (t); (8)

where� σ is a weighting parameter that has to be chosen as a compromise between the accu-
racy of the estimated renormalized volatility and the reactivity of that estimation. Indeed,
the renormalized returns are constructed to be homoscedastic only at short times because
the renormalization based on the leverage e�ect with short relaxation times (� s, � f ) cannot
account for long periods of changing volatility related to economic cycles. Since economic
uncertainty does not change signi�cantly in a period of two months (40 trading days), we set
� σ to 1=40 = 0:025. This sample length leads to a statistical uncertainty of approximatelyp
1=40 ≈ 16%. Finally, these renormalized variances can be converted into the reactive

volatility � I(t) of the stock index quantifying the systematic risk governed by the panic ef-
fect, and the reactive volatility � i(t) of each individual stock quantifying the speci�c risk
governed by the leverage e�ect:

� I(t) = �̃ I(t)
L(t)
I (t)

; (9)

� i(t) = �̃ i(t)
L i(t)
Si(t)

: (10)

2.1.2 The speci�c leverage e�ect on beta

The volatility estimation procedure naturally impacts the estimation of beta. Many �nan-
cial instruments rely on the estimated beta,� i, which corresponds to the slope of a linear
regression of stocks' arithmetic returnsr i on the index arithmetic return r I :

r i = � ir I + � i; with r i =
�S i(t)

Si(t − 1)
; r I =

�I (t)
I (t − 1)

; (11)

where � i is the residual random component speci�c to stocki . We consider another beta
estimate, �̃ i, based on the reactive volatility model, in which the renormalized stock returns
r̃ i are regressed on the renormalized stock index returnsr̃ I :

r̃ i = �̃ i r̃ I + �̃ i; with r̃ i =
�S i(t)

L i(t − 1)
; r̃ I =

�I (t)
L(t − 1)

: (12)

We then obtain a reactive beta measure:

� i(t) = �̃ i(t)
� i(t) �̃ I(t)
� I(t) �̃ i(t)

= �̃ i
L is(t)I (t)
L s(t)Si(t)

; (13)

which includes two improvements:
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• �̃ i, which becomes less sensitive to price changes by accounting for the speci�c leverage
e�ect:

• � i �̃ I=(� I �̃ i), which changes instantaneously with price changes.

When taking into account the short-term leverage e�ect in correlations, the reactive term
is reduced to Lis (t)I(t)

Ls (t)Si (t)
. This term has a signi�cant impact, as the beta of underperforming

stocks should increase.

2.2 The systematic leverage e�ect on correlation

We coin by systematic leverage e�ectthe negative relation between systematic returns and
the risk (here, the correlation), where the systematic returns are the non-speci�c part of the
returns (stock index performance). The systematic leverage e�ect on correlation follows the
same dynamics as the systematic leverage e�ect introduced in the reactive volatility model
(the phenomenon's duration is approximately 7 days for a� s = 0:1484). All correlations are
impacted together in the same way by the systematic leverage e�ect, and single stocks and
their stock indexes should also shift in the same direction. This explains why the stock's
beta will not change with respect to the index. The implication is that betas are not very
sensitive to the systematic leverage e�ect, in contrast to the speci�c leverage e�ect. We
consider the impact of the short-term systematic leverage e�ect on correlation. Assuming
that the correlation between each individual stock and the stock index is the same for all
stocks, one can de�ne the implied correlation as:2

� (t) =
� 2
I (t)−

P

i

w2
i � 2

i (t)
P

i 6=j

wiwj � i(t)� j(t)
; (14)

wherewi represents the weight of stocki in the index. Denoting:

eI(t) =
L̂ s(t)
I (t)

− 1; ei(t) =
L̂ is(t)
Si(t)

− 1; (15)

we use Eqs. (9, 10) to obtain:

� =

�̃ 2
I (1 + eI)2

�
1 + ‘ Lf −I

Lf

� 2

−
�
1 + ‘ ′Lf −I

Lf

� 2 P

i

w2
i (1 + ei)2� 2

i

�
1 + ‘ ′Lf −I

Lf

� 2 P

i 6=j

wiwj �̃ i �̃ j(1 + ei)(1 + ej)
: (16)

2Seehttp://www.cboe.com/micro/impliedcorrelation/impliedcorrelationindicator.pdf
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If the weights wi are small, we can ignore the second term; in addition, ifei are small, then:
X

i 6=j

wiwj �̃ i �̃ j(1 + ei)(1 + ej) ≈ (1 + eI)2 �̃ 2
0;

where �̃ 2
0 is an average of̃� 2

i . Keeping only the leading terms of the expansion in terms of
the small parameter(L f − I )=Lf , one thus obtains:

� ≈ ˜� I
2

˜� 0
2

�
1 + 2(‘ − ‘ ′)

L f − I
L f

�
: (17)

This relation shows the dynamics of the implied correlation� induced by the leverage ef-
fect (accounted through the factor(L f − I )=Lf ). We assume that the same dynamics are
applicable to correlations between individual stocks, i.e.,

� i,j = �̃ i,j

�
1 + 2(‘ − ‘ ′)

L f − I
L f

�
; (18)

where �̃ i,j are the parameters speci�c to each pair of stocksi and j . From this relation, we
derive a measure of correlation accounting for the leverage e�ect between the single stocki
and the stock index:

� i = �̃ i

�
1 + (‘ − ‘ ′)

L f − I
L f

�
; (19)

where �̃ i are the parameters speci�c to each stocki . Note that there is no factor 2 in front
of (‘ − ‘ ′) in Eq. (19) because we have a one-factor model here. We use Eq. (19) in the
beta neutral model (see Eqs. (30, 36) below) to take into account the varying nature of
the correlation in the regression. We rescale the measurement by the normalization factor
(1 + (‘ − ‘ ′)(L f − I )=Lf ) and then recover the variation of the correlation through the
denormalization factor 1=(1 + (‘ − ‘ ′)(L f − I )=Lf ). We emphasize that the parameter‘
in Eq. (4) that quanti�es the systematic leverage for the stock index is slightly di�erent
from the parameter ‘ ′ in Eq. (5) that quanti�es the systematic leverage for single stocks.
According to Eq. (18), when the market decreases, correlations between stocks increase as
‘ > ‘ ′, and therefore, the stock index volatility increases more than the single stocks volatility:
� (� i=� I) < 0. Once again, the beta is, in contrast to the correlation, weakly impacted by
the systematic leverage e�ect, as all correlations increase in the same way. More precisely, it
means that the impact of the increase of correlation in the beta measurement is compensated
by a decrease of the relative volatility:� (� i=� I) < 0, i.e., the single stock volatility increase is
lower than that of the stock index volatility. For this reason, the beta neutral model in Eqs.
(30, 36) is not very sensitive to the choice of‘ ′. Nevertheless, we explain in this section how
‘ ′ is calibrated using the implied volatility index. We measure the level of the systematic
leverage e�ect‘ ′ for a single stock by regressing Eq. (17) with data from the market-implied
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Figure 1: Daily variations of the CBOE S&P 500 Implied Correlation Indices (ICI) since their
inception, divided by their mean, versus daily variations of the leverage factor(L f − I )=Lf .
A linear regression (solid line) yields the coe�cient1:82± 0:16 (i.e., 2(‘ − ‘ ′) = 1:82), with
R2 = 0:13 and t-statistics of 11:4. Period: 2007-2015.

correlation S&P 500 index. Figure 1 illustrates the slope of this regression. By regressing
Lf −I

Lf
against ρ

ρ̃0
, where �̃ 0 is the average of� , we deduce that empirically we can set:

‘ − ‘ ′ ≈ 0:91± 0:08; (20)

with a t-statistics of 11:4. Since ‘ − ‘ ′ � ‘ (≈ 8), we deduce an important result, namely,
that the systematic leverage impact on the correlation is more than 8 times smaller than the
systematic leverage impact on volatility. The main consequence is that although statistically
signi�cant, the leverage e�ect is not a major component of the correlation.

2.3 The relation between the relative volatility and beta

In this part, we identify correlations between relative volatility and beta changes. We choose
the relative volatility de�ned as the ratio �̃ i=�̃ I as an explanatory variable of̃� i, becausẽ� i is
expected to be constant if the ratio�̃ i=�̃ I is constant. However, empirically, the ratio�̃ i=�̃ I

can change dramatically between periods of high dispersion (i.e., when stocks are, on average,
weakly correlated) and low systematic risk (i.e., when stock indexes are not stressed), and
between periods of low dispersion and high systematic risk. Figure 2 illustrates, for both
European and American markets, that the dispersion among stocks decreases, on average,
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Figure 2: Normalized daily variations of~� i , � ~� i =~� i = ~� i (t )� ~� i (t � 1)
~� i (t � 1) , versus normalized daily

variations of ~� I , � ~� I =~� I = ~� I (t )� ~� I (t � 1)
~� I (t � 1) , for the European market (blue crosses) and the US

market (red pluses). The two gray lines show the linear regression of both datasets, with
regression coe�cients of0:40 (R2 = 0:60) and 0:42 (with R2 = 0:59) for the European and
US markets, respectively. The time frame includes observations from the technology bubble
burst and the U.S. subprime and Euro debt crises. Period: 1998-2015.

when markets become volatile. A linear regression of rescaled daily variations of~� i yields:

� ~� i (t)
~� i (t � 1)

� 0:4
� ~� I (t)

~� I (t � 1)
+ � i ; (21)

where� i is the residual (speci�c) noise. Using the standard rules for in�nitesimal increments,
we �nd from this regression:

�
�

~� i

~� I

�
'

� ~� i

~� I
�

~� i � ~� I

~� 2
I

=
~� i

~� I

�
� ~� i

~� i
�

� ~� I

~� I

�
' � 0:6

~� i

~� I

� ~� I

~� I
; (22)

i.e., the relative volatility ~� i =~� I is relatively stable but can change. This empirical relation
shows that when there is a volatility shock in the market, the stock index volatility increases
much faster than the average single stock volatility.

Because we want to take into account the impact of the relative volatility change on the
beta measurement, we introduce the derivative of the beta with respect to the logarithm of
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regression yields the value off of that subset that corresponds to some average value of
�̂ i. Repeating this procedure over all subsets, we obtain the dependence off on �̂ i, which
is plotted in Figure 4. We show that f increases with beta. For both European and US
markets, we propose the following approximation of the functionf :

f (�̃ i) =

8
><

>:

0; �̃ i < 0:5;
0:6(�̃ i − 0:5); 0:5 < �̃ i < 1:6;
0:6 �̃ i > 1:6:

(29)

Figure 4: The function f from Eq. (23) versus beta for the European market (blue crosses)
and the US market (red pluses). This function is estimated locally for 4 di�erent time
periods. The black solid line exhibits the functionf as in Eq. (29). Period: 2000-2015.

2.4 Summary of the beta neutral model

In this section, we recapitulate the beta neutral model that combines the three independent
components that we described in the previous sections: the speci�c leverage e�ect on beta,
the systematic leverage e�ect on correlation, and the relation between the relative volatility
and the beta. Starting with the time seriesI (t) and Si(t) for the stock index and individual
stocks, one computes the levelsL f (t), L(t), and L i(t) from Eqs. (2, 4, 5), the normalized
stock index and individual stocks returnsr̃ I(t) and r̃ i(t) from Eqs. (6), the normalized
stock index volatility �̃ I(t) from Eq. (7), the renormalized stock index and individual stocks
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returns r̂ I(t) and r̂ i(t) from Eq. (24), the associated volatilitieŝ� I(t) and �̂ i(t) from Eqs. (26,
28), and the renormalized betâ� i(t) from Eq. (27). From these quantities, one re-evaluates
the covariance between̂r i and r̂ I by accounting for the leverage e�ects and excluding the
other e�ects:

Φ̂i(t) = (1− � β)Φ̂i(t − 1) + � β
r̂ i(t) r̂ I(t)
L(t)F(t)

; (30)

where

L(t) = 1 + (‘ − ‘ ′)
�

L f (t − 1)− I (t − 1)

L f (t − 1)

�
; (31)

F(t) = 1 +
2f (�̃ i(t))

�̃ i(t)
∆

�
�̃ i

�̃ I

�
; (32)

are the two correction factors. The functionf is approximated by Eq. (29),‘ − ‘ ′ is given
by Eq. (20), and,

∆

�
�̃ i

�̃ I

�
=

�̃ i(t − 1)=�̃ I(t − 1)−
p

� i(t − 1)
p

� i(t − 1)
(33)

with,

� i(t) = (1− � β)� i(t − 1) + � β
�̃ 2
i (t)

�̃ 2
I (t)

(34)

being the EMA of the squared relative volatility �̃ 2
i =�̃ 2

I .
Finally, the stable estimate of the normalized beta is:

�̃ i(t) =
Φ̂i(t)
�̂ I(t)

; (35)

from which the estimated reactive beta of stocki is deduced as:

� i(t) = �̃ i(t)
�

L i(t) I (t)
Si(t) L(t)

�
L(t)F(t): (36)

For this estimation, the normalized stable beta�̃ i(t) is �denormalized� by the factor that
combines the three main components: the speci�c leverage e�ect on beta,(L i=Si)(I=L ), the
systematic leverage e�ect,L(t), and the sensitivity of beta to the relative volatility, F(t).

Every term impacts the hedging of a certain strategy:

• the term with ‘ − ‘ ′ does not have signi�cant impact on beta, as it is compensated
in L i=L, which models the short-term systematic leverage e�ect on correlation in Eqs.
(30, 36) (introduced in Sec. 2.2), whereas the levelsL i and L were introduced in the
reactive volatility model. However, it could impact the correlation by+10% if the
market decreases by10%.
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• the term with L iI=(LSi) that models the speci�c leverage e�ect on volatilities (intro-
duced in Sec. 2.1.2) could impact beta by10% if the stocks underperform by10%.
This term impacts the hedging of the short-term momentum strategy.

• the term with f that models the sensitivity of beta to the relative volatility (introduced
in Sec. 2.3) could impact the beta by10% if the relative volatility increases by 10%.
This term impacts the hedging of the low volatility strategy.

3 Empirical �ndings

3.1 Data description

For the empirical calibration of ‘ − ‘ ′, we chose the CBOE S&P 500 Implied Correlation
Index (ICI), which is the �rst widely disseminated market-based estimate of implied average
correlation of the stocks that comprise the S&P 500 Index (SPX). This index begins in July
2009, with historical data back to 2007. We take the front-month correlation index data
from 2007 and roll it to the next contract until the previous one expires. We also use the
daily S&P 500 stock index. For the empirical calibration of the other parameters of the
beta neutral model, we use the daily S&P 500 stock index and 600 American stocks from
the S&P 500 index and the Nasdaq 100 index from January 1, 2000, to May 31, 2015. We
also consider the 600 largest European stocks from the Euro Stoxx 600 index, over the same
period. The same data are used for both calibration parameters and empirical tests.

3.2 Empirical tests

In this section, we show that exposure to the common risk factors can sometimes lead to a
high exposure of market neutral funds to the stock market index if the betas are not correctly
assessed. Indeed, although market neutral funds should be orthogonal to traditional asset
classes, such is not always the case during extreme moves (Fung and Hsieh, 1997). For
instance, Patton (2009) tests the zero correlation against non-zero correlation and �nds
that approximately 25% of the market neutral funds exhibit some signi�cant non-neutrality,
concluding that �many market neutral hedge funds are in fact not market neutral, but overall
they are, at least, more market neutral than other categories of hedge funds.� The beta
neutral model can help hedge funds be more market neutral than others. To demonstrate
this, we empirically test the e�ciency of our methodology in estimating the beta neutral
model using the most popular market neutral strategies (low volatility, momentum and
size):

• low volatility (beta) strategy: buying the stocks with the highest30% beta and shorting
those with the lowest30% beta (estimated by the standard methodology);
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• short-term momentum strategy: buying the stocks with the highest15% one-month
returns and shorting those with the lowest15% one-month returns;

• long-term momentum strategy: buying the stocks with the highest15% two-year re-
turns and shorting those with the lowest15% two-year returns;

• size strategy: buying the stocks with the highest30% capitalization and shorting those
with the lowest 30% capitalization.

The construction of the four most popular strategies is explained in Appendix B. For
each strategy, we compare two di�erent methods to estimate the beta: the standard method
(with L i = Si, L = I , ‘ = ‘ ′ = 0, and f = 0) and our improved method. We analyze the
90-day correlations of the strategy with the stock index. If the strategy was well hedged, the
correlation would �uctuate by approximately 0 within the theoretical 10% standard deviation
(10% is obtained with uncorrelated Gaussian variables for 90-day correlations).
Table 1 summarizes the average correlation and its standard deviation of the four strategies
with the stock index for the US and Europe markets. This average correlation re�ects the
existence of a bias in the hedging strategy. We see the highest bias for the low volatility
strategy when hedged with the standard approach (−25:5% for USA and−22:4% for Europe).
The standard deviation is approximately20%, i.e., twice as high as expected if the volatility
were stable, which means that the e�ciency of the hedge is time-varying. This could represent
an important risk for fund of funds managers, where hidden risk could accumulate and arise
especially when the market is stressed. Indeed, the bias seems to be higher by approximately
−60% for both the USA and Europe when the market was stressed in 2008. We see that
the use of the beta neutral model reduces the bias in the low volatility factor, and that the
residual bias comes from the selection bias (see Appendix A). When using the standard
methodology, the possible loss in 2008 would have been−9:6% (= −60%× 40%× 8%=20%)
for a 40% stock decline with a fund invested entirely on a low volatility anomaly with a bias
of −60% and a target annualized volatility 8% for the fund and 20% for the index.
We also see a signi�cant bias for the short-term momentum strategy when hedged with
the standard approach (approximately−13:1% in the USA and in Europe). The standard
deviation is approximately 18%. The e�ciency of the hedge depends on the recent past
performance of the strategy. As soon as the strategy starts to lose, the e�ciency will decline
and risk will arise, as in 2009. Again, we see that the beta neutral model reduces the bias in
the short-term momentum factor. The biases and standard deviations are lower for the long-
term momentum strategy (−6:3% in the USA, with a 18:3% standard deviation) and are of
same magnitude for the size strategy (−7:6% in the USA with a 17:0% standard deviation).
The beta neutral model further reduces the bias and the standard deviation. This is also
valid for the European market.

We conclude that the beta neutral model reduces the bias of the low volatility factor
when it is stressed by the market. The remaining residual is most likely explained by the
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Strategy \ Method standard improved

U
S

low volatility -25.54% (21.73%) -16.79% (21.43%)
short-term momentum -13.09% (18.96%) 6.06% (18.50%)
long-term momentum -6.27% (18.28%) -2.95% (16.54%)

size -7.56% (17.00%) -1.84% (17.26%)

E
ur

op
e low volatility -22.39% (19.97%) -14.68% (20.94%)

short-term momentum -13.05% (17.51%) -0.64% (14.52%)
long-term momentum -4.42% (18.03%) -1.55% (17.23%)

size 3.12% (17.15%) 3.79% (15.63%)

Table 1: Correlation over the whole sample (and its standard deviation in parentheses)
between the stock index and each of the standard and improved strategies for the US and
Europe markets. The residual bias for the low volatility strategy in the improved method
can be explained by the selection bias as demonstrated in Appendix A. Period: 2000-2015.

selection bias (see Appendix A for a formal proof). The improvement is more signi�cant for
the momentum factors and for the size factor in the U.S. only.

We also illustrate these �ndings by presenting the correlation between the stock index
and the low volatility strategy (Figure 5) and the short-term momentum strategy (Figure 6),
which are the strategies with the highest bias. A period surrounding the �nancial crisis was
chosen (2007-2010). One can see that the beta, computed by the standard methodology, is
highly negatively exposed to the stock index in 2008. In turn, the exposure is reduced within
the beta neutral model. The improvement becomes even more impressive in extreme cases
when the strategies are stressed by the market. We see that in some extreme cases (stress
period with extreme strategies), the common approach could generate high biases (−50% for
the short-term momentum strategies in 2008-2009 and−71% for the beta strategy in 2008).
In each case, our methodology allows one to signi�cantly reduce the bias.
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Figure 5: Ninety-day correlation of the low volatility factor with the stock index in the Eu-
ropean market(a) and in the USA market (b) . Solid and dashed lines present the proposed
beta neutral model and the standard methodology, respectively. The dotted horizontal line
shows the selection bias of−19:10%, as shown in Appendix A. A time frame surrounding
the �nancial crisis is chosen. Period: 2007-2010.
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Figure 6: Ninety-day correlation of the short-term momentum factor with the stock index
in the European market (a) and in the USA market (b) . Solid and dashed lines present
the proposed beta neutral model and the standard methodology, respectively. A time frame
surrounding the �nancial crisis is chosen. Period: 2007-2010.
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