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Abstract

Negative interest rates are present in various market places since mid-2014, following
the Negative Interest Rate Policy (NIRP) adopted by the European Central Bank in order
to lift growth or inflation. This spans difficulties for many market practitioners as there
is not yet any model which enables to handle negative interest rates in a coherent and
sounding theoretical manner.

Facing this lack of reliable model, the well-known Historical Approach (HA) appears
to be a good recourse. By tweaking the HA, we derive a data-driven and very tractable
tool allowing various users to generate a distribution forecast of the yield curves at future
discrete time horizon. So we provide here a robust and easy-to-understand reference fore-
casting model, suitable for the NIRP context, allowing to appreciate the prediction power
of any ongoing alternative parametric model. Besides the methodology development, var-
ious experiments are also reported here in order to shed light in depth on the benefit and
limit of our forecasting approach.
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1 Introduction

1.1 Context

The policy rates adopted by the US Federal Reserve System, the European Central Bank and
the Bank of England, facing the financial crisis started in 2007, have pushed the levels of interest
rates in many countries to unprecedented low levels for an extended period of time. Worse since
mid-2014 the European Central Bank (as well as Danmarks Nationalbank Sveriges Riksbank,
and most recently the Bank of Japan) has been developed a Negative Interest Rate Policy
(NIRP), despite unknown consequences and effects on financial markets. Negative interest
rates are now present in the market and this phenomenon seems to be persistent, so that we
cannot remain so indifferent.

2



Classical models for the interest rates (particularly the Gaussian ones) can generate neg-
ative interest rates, however they are not directly suitable to deal with the NIRP framework.
Negative rates make mathematically impossible for institutions to use their models and alter
basic investment principles. Indeed the principle of non-arbitrage is not satisfied and usual
pricers fail to be functional.

Though investigations on the area of negative interest rates are now emerging, as those in
[An-Ko-Sp; 2015], [Fr; 2016], [Fl-Pr; 2015], [Fl-Pr; 2015], [Re-Su; 2016], [Se; 2015], the use of
the negative interest rates requires to re-build the present financial principle and theory [Je;
2016]. Despites this lack of theoretically and economically sounding model, there is however
the need to have at disposal (acceptable and reliable) tool which allows us at least to generate
forecasting scenarios for the yield-curve evolution.

1.2 Literature and motivation

The generation of forward-looking yield curve scenarios is of importance, as it is at the heart of
interest rate risk management, as well as in the investment process prospection. Indeed, they
allow to derive distributions of portfolio exposures that depend on interest rate and associated
risk measures like VaR or Expected Shortfall.

One broadly used method to generate scenarios and associated risk measures is the historical
approach (HA) [Ba-Bo-Gi; 1998], [Gu-Mu; 2015], [Pi; 2009], [Pr; 2006]. This last one is a
nonparametric approach which has the advantage of incorporating a quite variety of historical
distributional patterns. The main idea behind the HA is to project the structure contained in
the past data into a considered future time horizon by starting from the initial present time.
The HA underlies the assumption that the future is essentially the repetition of a part of the
past. Though this is apparently a severe restriction [Pr; 2006], the HA remains to be largely
acceptable by practitioners and academics. Indeed, it provides a cheap benchmark approach
to measure risks facing the absence or difficulties linked to parametric approaches, probably
more acceptable but very often complex to implement. However, making just a projection of
past changes may not be enough. As pioneered by Barone-Adesi et al. [Ba-Bo-Gi; 1998], to
improve the quality of forecasting through the scenario generation [Gu-Mu; 2015], [Pi; 2009],
it is common now to make use of some filters in order to more reflect stylized facts as volatility
clustering for example.

Usually a HA based scenario relies on past returns of the invariant(s) risk(s) under consider-
ation [Gu-Mu; 2015], [Pi]; 2009]. As a such, the approach can fail if applied on the interest-rate
area in the context of NIRP where the zero value is reached. Fries C., Nigbur T. and Seeger
N. [Fr-Ni-Se; 2013] have introduced the notion of displaced historical simulation model, which
allows us to take into account negative risk variables, as spreads and interest rates.

The following five points are among the reasons which urge us to write this paper.

1. As the paper [Fri-Ni-Se; 2013] is rather devoted to the risk management VaR measure,
it would be beneficial for many users (particularly those who are involved on generating
Economical Scenario Generation) to have at disposal a clear document especially devoted
to the yield rates forecasting under the Negative Interest Rate Policy (NIRP).

2. As already mentioned above, considering the HA is a must, since not only it gives a cheap
cost solutions to the interest rate scenario generations, but it also provides as a reference
comparison with other results obtained from more elaborated models.

3. Though the HA is known and used in various contexts, a generic formulation leading to
a direct algorithm and implementation seems lacking, particularly for the interest rate
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framework. Such a conceptual tool is also beneficial as a basis for further development
of variants of the HA approach.

4. Various papers, as those quoted in our references, essentially deal with analyses related
to a one-period of time in coherence with the data time-scale. The forecasting problem
related to a series of discrete times is very often reduced to the iteration of one-period
approaches. However in some applications, as in Credit Valuation Adjustment or in Sol-
vency Capital Requirement computations, there is the need to consider the joint scenarios
corresponding to multiple time horizon.

5. Relative changes of interest rates to generate future scenarios, as is usually considered in
the equity framework, cannot apply at least directly under the NIRP framework. More-
over, as the interest rate can take the zero-value, there is also an issue when introducing
standard forecasting performance measures as the standard Mean Square Error.

1.3 Our contribution

Our findings are summarized over the following six points.

1. We derive here multiple-time-horizon forecasting distributions for the yield rates, which
are suitable to use facing to the NIRP affecting many European countries since 2014 and
considered as a great thunderbolt for the financial world. This is performed according to
a Historical Approach (HA) without resorting to a fully parametric model, conceptually
desirable but challenging to implement.

2. Instead of rolling one-step HA, as is usually proposed in literature when dealing with
the HA, our analysis allows to directly perform the joint forecasting for successive future
discrete times. Not only this is computationally advantageous, but it also allows to
better transfer the structure of time dependence evolution, which is lost when evolving
one-period by one-period.

3. Our result, displayed in the first part of the paper, can be viewed as providing a bench-
mark tool for comparison between forecasting distributions coming from alternative mod-
els. It may be also useful for anyone (investor, insurer, commercial vendor, asset man-
ager,. . . ) having the need to generate a quick projection of the interest rates, based on
a documented and theoretically founded approach requiring just some past data with a
given short or large size.

4. The problem linked with the impossibility to deal directly with the interest rate returns
in the projection is solved here by dealing with interest rate absolute changes, though
it should be possible to explore the idea of displaced relative changes as introduced in
[Fr-Ni-Se; 2013]. However, for shortness, this last approach is not explored in this paper.
For the issue related to the forecasting performance measures, as the common Mean
Square Error, we propose directly the use of returns associated with the corresponding
zero-coupon bonds.

5. By variants of HA, we mean both a direct plain approach (PA) and a Filtered Approach
(FA). The idea with the PA is just to project the past absolute changes of interest rates.
For the FA, there is there a willing to capture stylized facts in the projection, for which
it is common to make use of parametric models as the GARCH ones for example. In this
work to keep things easy to understand and implement, we have chosen to stay in the

4



nonparametric spirit by making use of the moving average and its exponential weighted
variants.

6. While the first part of this paper is devoted to the introduction of the methodology
allowing to generate forecasting distribution based on the historical data, in the second
part of our work, we provide a large numerical experiments illustrating our approach. For
doing we work with Germany interest rates (from January 2, 2014 to June 16, 2016). For
the considered dataset, it appears that for a very short forecasting horizon the HA plain
approach would be sufficient, while the inclusion of volatility provides more satisfactory
result for medium or large time horizon. Of course, the illustration part is just based on
very specific situations and one should not drawn any conclusion on the superiority or
not of the HA when compared with any other alternative models.

1.4 Outline

The development of ideas and formulas related to the methodologies we use to generate the
forecasting distributions are presented in Section 2.

Notations, very often used in this paper, are displayed in Section 2.1. In this part, as it
is emphasized in (7), (8) and (9), we have to differentiate between the times corresponding to
the forecasting period, the times used to extract past informations for the projection and the
ones used for filtering volatilities and correlations. Generic times, denoted as t?h(j) in (13), are
very important and introduced in order to ease the projection of past events over future time
horizon th’s. As mentioned in the introduction part, in order to deal with the forecasting issues
related to the NIRP framework, we make use of interest-rate Absolute Changes (AC) instead
of relative changes commonly used in equity markets for example.

In Section 2.2, the issue related to a multiple-time-horizon forecasting is considered by
making use of the historical Plain Approach (PA). The idea, under this last designation, is first
to isolate all sequences of past evolutions having the same length as the forecasting period,
and next to make projections based on them by starting with the present interest rates. The
future j-th realization y[j, h;m] for the future time th interest rate with the maturity τm is
defined in (19) by means of the historical scenario absolute change of the past interest rate with
the same maturity during the period

[
t?h−1(j); t

?
h(j)

]
. To allow some flexibility for the user to

incorporate her particular view in the forecasting, an-ad-hoc choice of probability π[j,m] for
the realization y[j, h;m] has to be done. Therefore, in absence of particular view, the forecast
distribution (22) may be chosen as given by an uniform probability as in (23). But analogously
to the common practice in the equity setting, an exponential weight, as (24), might be possible.
Then, from the forecasting distribution (22), we define pointwise forecasting (26) for the interest
rates with the maturity τm during the discrete future times t1, . . . , th, . . . , tH by considering
expectations with respect to the introduced forecasting distributions.

The quality of the prediction approach may be assessed by the absolute forecasting error
defined in (33) as the difference between the realized rate and its forecasting value. It is also
common to make use of the Root-Mean-Square-Error (30) as a sort of relative error measure.
Unfortunately this cannot be considered under the NIRP setting, essentially targeted in this
present work, since interest rates may take the zero-value. To overcome this difficult with
the direct yield rate relative changes, as in the reality of bond trades, we have simply made
the choice to make use in (37) the relative changes coming from the zero-coupon-bond prices
associated with the realized and predicted yield rates.

The Plain Approach (PA) with the interest rate absolute changes (AC), as developed in
Section 2.2, should appear to be the easiest and less costly approach to the interest rates
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multi-time forecasting, as it does not require anything1 other than the past data itself. The
underlying idea with the PA is just the direct projection of the crude structure of the past data
into the future times horizon. As is commonly known and performed in the equity area, to
enhance the forecasting result it should be useful to explore hidden stylized facts incorporated
in the historical dataset.

So in Section 2.3 the inclusion of volatilities in the forecasting distributions, but always
maintaining the use of interest rate AC, is performed. To this end, an introduction of some
model is required to filter these volatilities and the corresponding approach is refereed to
as Filtered Volatility Approach (FAV). We lean this last on the principle that the value of
future/present of the variable of interest (here the interest rate AC) is the result of an expected
trend and an unexpected shock on the volatility. Actually we specify this trend in (43) as just
a weighted average of past interest rate ACs over a rolling window. The volatility is then
obtained by considering the variance of these ACs, as shown in (48). Once these mentioned
trend and volatility are specified and calculated then, as shown (49), we can easily infer the
corresponding past shock. Our scenarios of future interest rates are then obtained in (69), by
taking into account the volatilities of interest rates and by projecting these past shocks with a
process with a trend (64) and volatility (65) also based on rolling window.

In Section 3, we provide numerical illustrations of the application of the methodology
developed in the previous Section. The dataset considered are German Inter-Dealer-Broker
daily rates from Steven-Analytics and available on www.Quandl.com. Their description are
given in Table 1 and the corresponding plots in Section 3.2. The considered period 2014-2016
covers negative rates accordingly to the NIRP.

Illustrations for the Forecasting using the HA with AC are performed in Section 3.3. Putting
apart the various plots for the predicted distributions, we have summarized their characteristics
in Table 2-4. The most important aspect in assessing a forecasting approach is the study on
the corresponding error measure. In the same section, we report the forecasting errors either
the absolute or the relative errors. In Section 3.4, we perform similar analyses as the ones
performed in the case of the plain HA as described above.

2 Main Results

2.1 Notations

Let us consider increasing times

t−(L+H+J−1) < . . . < t−(H+J−1) < . . . < t−k < . . . < t−1 < t0 < t1 . . . < th < . . . < tH (1)

with J , H and L are nonnegative integers. Here t0 and tH represent respectively the present
time and the last future time-horizon. Also J is used to give the number of scenarios which
can be directly generated from the data. The integer L is used to denote a rolling window, as
at least L ≥ 2. In (1) it is supposed that for some fixed nonnegative real number 4 one has

t−(k+1) − t−k ≈ 4 and th+1 − th ≈ 4. (2)

This means that there is a distance of 4 between two consecutive times, so that 4 = 1
360

corresponds to one day2.
1except the exogenous probability to use
2One should be aware that this not really true when considering daily data sample, as there is usually 253

days of open trading in the year and data jumps arise with week-end and national holidays
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We assume to have at disposal a dataset of yield-curves represented by the quantities

y?
(
t−k, t−k + τm

)
, m ∈ {1, . . . ,M} (3)

for all k ∈ {0, . . . , L +H + J − 1}. In (3) by M denotes a nonnegative integer and τm, with
0 < τm, is a time-to-maturity as 3m, 6m, 9m, 1y, 2y . . .. Therefore y?

(
t−k, t−k+ τm

)
represents

the yield-rate with the time-to-maturity τm which prevails at the time t−k. The case k = 0
corresponds to the present interest rates. The star notation is used to differentiate between
quantities induced by historical data and those linked to the future times.

Given these data in (3), our purpose in this work is to derive the yield-curves

y
(
th, th + τm

)
(·), m ∈ {1, . . . ,M} (4)

for any future time-horizon th, with h ∈ {1, . . . , H}. Each dot notation is used to indicate
the randomness linked to the preceding quantity. Actually we would like to derive J scenario
realizations for the yield-rate with the time-to-maturity τm at each future-time th. The j-th
scenario, with j ∈ {1, . . . , J}, is denoted as

y[j, h;m] ≡ y
(
th, th + τm

)(j)
. (5)

The proposed scenarios should be consistent with the data in (3) and are generated under the
principle of just projecting the encapsulated past structure over the future times th.

In order to assess the quality of our forecasting, the yield curves

y
(
th, th + τm

)
for h ∈ {1, . . . , H} and m ∈ {1, . . . ,M} (6)

are assumed to be available but not be used in our various approaches. This part of data in
(6) is usually referred to as the out-of-sample. Therefore, our study uses a dataset made by
L+ 2H + J yield-curves, each of these last has a number M of time-to-maturities.

The times in (1) can be divided into three parts:

t−{(H+L−1)+(J−1)}, . . . , t−{(H+1)+(J−1)} (7)

t−{H+(J−1)}, . . . , t0 (8)

and
t1, . . . , tH . (9)

As already mentioned above, the yield-curves corresponding to times in (9) are only used for the
assessment of the quality of our approach. The generation of scenarios is essentially done based
on yield-curves associated with times in (8). The yield-curves related to times in (7) are useful
for us when performing an approach based on filtering hidden volatilities and correlations. It
may be observed that the times in (8) themselves can be separated into J subgroups as

t−H , t−(H−1), . . . , t−1, t0 (10)

. . . . . . . . . . . . . . . . . . . . . . . .

t−{H+(j−1)}, t−{H−1+(j−1)}, . . . , t−{1+(j−1)}, t−{0+(j−1)} (11)

. . . . . . . . . . . . . . . . . . . . . . . .

t−{H+(J−1)}, t−{H−1+(J−1)}, . . . , t−{1+(J−1)}, t−{0+(J−1)}. (12)
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This observation leads us to introduce the generic times

t?h(j) ≡ t−{(H−h)+(j−1)} (13)

for h ∈ {0, . . . , H} and j ∈ {1, . . . , J}. Therefore the times sequence in (11) can be reformu-
lated as

t?0(j) = t−{H+(j−1)}, . . . , t
?
h(j) = t−{(H−h)+(j−1)}, . . . , t

?
H−1(j) = t−j, t

?
H(j) = t−(j−1).

The times in (10) and (12) are obtained respectively from the t?h(1)’s and t?h(J)’s. The larger j
is, the far from the present time t0 is t?h(j). Though in (13) it is considered that h ∈ {0, . . . , H},
by extension the times in (7) can be seen as t?−h(J) for h ∈ {1, . . . , (L− 1)}.

2.2 The plain approach (PA)

2.2.1 Past yield rate

Similarly to our notation in (5) to shorten, the past time-t?h(j) yield rate for the time-to-
maturity τm is denoted by

y?[j, h;m] ≡ y?
(
t?h(j), t

?
h(j) + τm

)
(14)

for h ∈ {0, . . . , H} ∪ {−(L− 1), . . . ,−1} and j ∈ {1, . . . , J}.

2.2.2 Past absolute yield rate change

The quantity
c?[j, h;m] ≡ c?

(
t?h(j)

)
= y?[j, h;m]− y?[j, h− 1;m] (15)

for h ∈ {1, . . . , H}, should be viewed as the past j-th realization of the absolute change of the
yield-rate with the time-to-maturity τm between the times t?h−1(j) and t?h(j). When starting
with the yield rate

y?[j, 0;m] = y?
(
t?0(j), t

?
0(j) + τm

)
then the past evolution of the yield-rate during the time-period t?0(j), . . . t

?
h(j), . . . t

?
H(j) may

be completely reconstructed by using the path of changes

C?[j,m] ≡
(
c?[j, 1;m], . . . , c?[j, h;m], . . . c?[j,H;m]

)
. (16)

2.2.3 Realizations for the yield rates at future time-horizons

Our forecasting approach for the yield-rates, with the time-to-maturity τm, at the future dis-
crete times t1, . . . , th, . . . , tH , is just to apply the j-th block C?[j,m] to the present time t0
interest rate

y[0;m] ≡ y
(
t0, t0 + τm

)
= y?

(
t?H(1), t

?
H(1) + τm

)
= y?[1, H;m]. (17)

Say differently, the j-th scenario for the (random) yield rate y
(
th, th + τm

)
(·) is recursively

defined, for all h ∈ {1, . . . , H}, by the relation

y[j, h;m] ≡ y[j, h− 1;m] + c?[j, h;m] (18)

= y[0;m] +
(
y?[j, h;m]− y?[j, 0;m]

)
. (19)
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As a consequence, we get the j-th path

Y [j,m] =
(
y[j, 1;m], . . . , y[j, h;m], . . . , y[j,H;m]

)
(20)

of the yield-rates with the time-to-maturity τm for the future period t1, . . . , tH .

2.2.4 Distribution of the yield rates at a future time-horizon

To each j-th path Y [j,m], of the yield rates at times th, we (exogenously) associate its corre-
sponding probability realization

π[j,m] (21)

with

0 ≤ π[j,m] and
J∑
j=1

π[j,m] = 1.

So the forecasting distribution for the yield rates, with the time-to-maturity τm, at the future-
time th is defined by the quantities(

y[j, h;m], π[j,m]
)
j∈{1,...,J}

. (22)

By so doing, we implicitly consider here that the Y [j,m]’s for all j are independent re-
alizations of the evolution of the yield rate with the time-to-maturity τm over the period
{t1, . . . , th, . . . , tH}. For 2 ≤ H, this is a mild assumption when compared with the common
approach [Pi; 2009] where the past one-period passages are taken as to be independent in the
projection.

The quantities π[j,m]’s are not directly observable from the data (3). It is up to the user
to (arbitrarily) impose their values depending on her view and perspective. In absence of any
information, a good choice should be naturally the uniform probability for which one has

π[j,m] =
1

J
for all j ∈ {1, . . . , J}. (23)

Other probability choices are done on the basis of availability of extra-informations or on the
basis of a special willing to include some particular fact. For example, by observing that

t?h(J) < t?h(1) for all h ∈ {1, . . . , H}

then it may be judicious to grant more probability for paths Y [j,m]’s, with small values of
j, as they correspond to scenarios happening at times closed to the present time. This is in
line with the market practitioners usage by giving more weights to past realizations closed to
the time where the projection is performed. Therefore one could make the probability choice,
associated with some fixed constant λ ≡ λ(m) ∈ (0, 1), such that

π[j,m] = Cλj for all j ∈ {1, . . . , J} and with C =
1− λ

λ(1− λJ)
. (24)

Assuming λ to depend on m may be useful since the yield rates with various maturities should
have their own dynamics though both of them are theoretically linked.
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2.2.5 Pointwise forecast

Even the the forecasting distribution as (22) is very useful, it is also important in practice to
derive a time-th point forecast of the yield-rate y

(
th, th + τm

)
(·). This may be done over its

expectation with respect to the probabilities π[j,m]’s according to the relation

ŷ
(
th, th + τm

∣∣t0) ≡ J∑
j=1

y[j, h,m]π[j,m]. (25)

Therefore a prediction of the yield rates, with the time-to maturity τm, over the future period
t1, . . . , tH is exactly given by

Ŷ(m) =
(
ŷ
(
t1, t1 + τm

∣∣t0), . . . , ŷ(th, th + τm
∣∣t0), . . . , ŷ(tH , tH + τm

∣∣t0)). (26)

Similarly to the expectation (25) of the forecasting distribution (22) of the yield-rate
y
(
th, th + τm

)
(·) at time-th, the corresponding variance is just given by

σ̂2
(
th, th + τm

∣∣t0) ≡ J∑
j=1

(
y[j, h,m]− ŷ

(
th, th + τm

∣∣t0))2π[j,m]. (27)

In (25), we have proposed the expectation of y(th, th + τm)(·) as a point-forecasting. The
mean is among the common estimates, and very often one is interested on graphing the region
delimited by the interval[

ŷ
(
th, th + τm

∣∣t0)− 2σ̂
(
th, th + τm

∣∣t0), ŷ(th, th + τm
∣∣t0)+ 2σ̂

(
th, th + τm

∣∣t0)]. (28)

The hope is that the observed and realized yield rate y(th, th + τm) at the future-time th is
more and less contained in the interval given in (28).

2.2.6 Assessment of the forecasting approach with respect to the point forecast

In (6) we assume to have at disposal the yield-curves

y
(
th, th + τm

)
for h ∈ {1, . . . , H} and m ∈ {1, . . . ,M} (29)

not used in the above approach, but are now useful to assess the quality of the forecasting
approach. It is common in literature related to forecasting to introduce the Mean-Square-
Error defined as

MSE ≡ 1

M

M∑
m=1

(
y
(
th, th + τm

)
− ŷ
(
th, th + τm

∣∣t0)
y
(
th, th + τm

) )2

. (30)

Unfortunately under the NIRP framework, as we consider here, such a quantity is useless since
it may arise that y

(
th, th + τm

)
= 0.

In contrast, it is always meaningful to consider the absolute forecasting error for the yield
rate for the time-to-maturity τm at the future time horizon th as

err_abs(h;m) ≡ y
(
th, th + τm

)
− ŷ
(
th, th + τm

∣∣t0). (31)
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When all the M maturities are considered, the mean absolute error is given by

MAE(th) ≡
1

M

M∑
m=1

∣∣∣err_abs(h;m)
∣∣∣ (32)

The quality of our forecasting during the future time-period t1, . . . , th, . . . , tH can be measured
by

MAE_tot ≡ 1

H

H∑
h=1

MAE(th). (33)

As mentioned above related to (30), the relative change

y
(
th, th + τm

)
− ŷ
(
th, th + τm

∣∣t0)
y
(
th, th + τm

)
may be mathematically meaningless as the denominator can be take the value zero and its
economical sense is also not clear if y

(
th, th + τm

)
< 0. Consequently, as is done in practice,

instead of the yield-rate relative change it more makes sense to consider returns associated
with the Zero-Coupon Bond (ZCB). Indeed, when at time t0 we invest on a ZCB with the
maturity τ , whose the value is

P (t0, t0 + τ) = exp
[
−y(t0, t0 + τ)τ

]
then one expect to get at the maturity t0 + τ the return

1− P (t0, t0 + τ)

P (t0, t0 + τ)
= exp

[
y(t0, t0 + τ)τ

]
− 1. (34)

Therefore we can define a NIRP consistent relative forecasting error as the difference between
the return obtained with the ZCB associated with the real yield rate y

(
th, th + τm

)
and the

return associated with the ZCB associated with the forecasting yield rate ŷ
(
th, th + τm

∣∣t0).
That is, we can introduce

err_rel(h;m) ≡ exp
[
y
(
th, th + τm

)
τm

]
− exp

[
ŷ
(
th, th + τm

∣∣t0)τm]. (35)

The mean forecasting error at the future time horizon th is defined as

MSE(th) ≡
1

M

M∑
m=1

(
err_rel(h;m)

)2
. (36)

Therefore, the quality of our forecasting during the future time-period t1, . . . , th, . . . , tH can be
measured by

MSE_tot ≡ 1

H

H∑
h=1

RMSE(th). (37)

2.2.7 Assessment of the distribution forecast

In the previous part 2.2.6, as in standard approach in the literature, we have analyzed the
assessment of the forecasting with respect to the forecasting point. Alternatively, it is also
meaningful to assess the quality of the forecasting distribution directly with respect to the
out-of-sample data.
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Similarly to (33), we introduce the absolute error under the j-th realization of the yield
rate y

(
th, th + τm

)
(·) with the maturity τm as

err_abs(j, h;m) ≡ y[j, h;m]− y
(
th, th + τm

)
. (38)

This allows us to defined the absolute error

MAEdist(th) ≡
1

M

M∑
m=1

J∑
j=1

∣∣∣err_abs(j, h;m)
∣∣∣π[j,m] (39)

The quality of our forecasting during the future time-period t1, . . . , th, . . . , tH can be measured
by

MAE_totdist ≡ 1

H

H∑
h=1

MAEdist(th). (40)

2.2.8 Comparison with results in the literature

To perform the forecasting for the whole period t1, . . . , tH , as in [Gu-Mu; 2015] and [Pi: 2009],
usually the authors essentially proceed period by period. That is, one starts with t = t0 to
t1 = t0+4 by projecting one historical realization among the various ones generated from the
underlying data. The next-period t = t1 to t2 = t1+4 is similarly treated by starting with the
result for the first period, and so on, until the time-end horizon tH . Such a procedure remains
to consider as independent the past realizations used for each period.
In contrast, our approach here is directly to generate the scenario for the whole period t1, . . . , tH
by pickaxing sequences of absolute interest changes with the lengthH instead of 1. By so doing,
we think to better transfer the dependence which does exist from the passage to a starting
point t until the time end period t+H4.

As our approach coincides with the usual ones for H = 1, then actually we are also con-
fronted with the dependency problem for the paths of interest changes C?[j,m] described in
(16). It means that theoretically we may improve our forecasting approach by including the
possible dependencies among the paths C?[j,m] and C?[j′,m′]’s for all various j, j′,m and m′.
In contrast with the interest rate absolute changes, which can immediately observed after easy
computations, the notion of dependency is more difficult to grasp not only from its defini-
tion itself but also due to its hidden aspect which has consequently to filter. We perform our
analysis in the Section 2.3.

Our solution to the forecasting for the time-period t1, . . . , th, . . . , tH is encapsulated in the
finite J dimensional forecasting distribution (22). The value of J depends on the dataset size
L + 2H + J . It may happen that the number of scenarios J is too small from the user’s
perspective, depending on her forecasting purpose, as for example in risk management and
pricing. In this case we can re-sample the distribution (22), in order to get a new one as(

ỹ[̃j, , h;m],
1

J̃

)
j̃∈{1,...,J̃}

(41)

for some large number J̃ of scenarios as is required by the user. To get (41), we proceed as
follows:

1) first fix the value of J̃ as wanted by the user;
2) then we re-label the realization y[j,m;h]’s of the yield-rates with the time-to-maturity

τm as just by the number j itself;

12



3) next we generate J̃ realizations ul of the uniform law on (0, 1);
4) for each l ∈ {1, . . . , J̃}, we decide the nature of the l-path Ỹ [l,m] of the yield-rates

according to:
- ỹ[̃j, h;m] = y[1, h;m] if 0 < ul ≤ π̃1
- ỹ[̃j, h;m] = y[l, h;m] if π̃j−1 < ul ≤ π̃j

where it is taken that π̃1 = π1 and π̃j = π̃j−1 + πj for j ∈ {2, . . . , J}.

2.3 Forecasting based on filtered volatilities (FAV)

The dependencies among the paths of past absolute changes C?[j,m] and C?[j′,m]’s may be
performed through the notion of volatilities for the yield-rates with the maturities τm. In [Gu-
Mu; 2015] and [Au-Tr; 2004], this has been done over the inclusion of the volatilities effects in
the future realizations. We also follow the same spirit in this section.

This means that a model allowing to rely on the yield rate changes evolution and volatilities
has to be introduced. For doing we will apply a principle which can be summarized by the
following.

Assuming to be at time t, the value xt+4 of a (real number) target variable, at the
future time horizon t+4 would be seen as the sum of an expected trend Tt+4|t and
an unexpected term Ut+4|t.
This trend may be thought as the result of previous values taken by the underlying
variable as xt−4, xt−24, . . ., other values of exogenous variables and probably some
fixed parameters. Usually the variables and their association in forming the expected
trend Tt+4|t is not known, though some common sense or economical feeling may
be helping for a proposition of its model. It is up to the modeler to make a choice
of its form, always under the constraint of a compromise between reliability and
tractability.
Usually the unexpected term Ut+4|t itself is seen as the product of Vt+4|t and St+4.
The first term Vt+4|t is usually connected to the volatility, which may be viewed
as measuring the magnitude of fluctuation of the variable x around its mean value.
Here we will limit ourself to the mean calculated trough the past values of the variable
x over a window with the length L.
The second term St+4 has to be viewed as the uncertainty shock unforeseeable from
time t.

Though not theoretically necessary, we have in mind to deal with the situation

1 +H ≤ L. (42)

This means that the last horizon H is small in comparison with the window length L used to
filter the volatilities. To deal with the situation with a long term horizon H is also meaningful
to consider, however numerical experiments tend to show that the approach we consider here
seems give good results under the assumption (42).
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2.3.1 Past trends

Concerning the mentioned quantities Tt+4|t’s, we introduce the the past trends measured at
time t?j(h) as

µ?[j, h;m] ≡
L∑
l=1

c?
(
t?h(j)− l4

)
wl(m;L)

=
L∑
l=1

(
y?
[
j, h− l;m

]
− y?

[
j, h− (l + 1);m

])
wl(m;L) (43)

where h ∈ {1, . . . , H} and j ∈ {1, . . . , J}. In (43), the wl(m;L)’s denote weights in the usual
sense, that is

0 ≤ wl(m;L) and
L∑
l=1

wl(m;L) = 1.

For the choice
wl(m;L) ≡ 1

L
(44)

then µ?[j, h;m] may be viewed as the average of the interest rate absolute changes at the
discrete times

t?h(j)− L4 = t?h−L(j), . . . , t
?
h(j)− l4 = t?h−l(j), . . . , t

?
h(j)−4 = t?h−1(j).

It corresponds to a trend giving by a moving average with the length L. Another possible
choice, is the exponential moving average for which the weights are of the form

wl(m;L) ≡ C
(
λ̃
)l with C =

1− λ̃
λ̃(1− λ̃L)

(45)

and λ̃ ≡ λ̃(m) ∈ (0, 1). The weight used here in (45) depends on the yield rate maturity τm,
the window length and it decreases with the distance from time t?h(j).

Observe that
t?h(j)− l4 = t?h−l(j) = t−{h+(l−1)+(j−1)}

which implies that µ?[j, h;m], as defined in (43), has really a sense even for the extreme
situation with j = J and h = 1 such that we have used of all of our data corresponding the
times described in (7). Consequently, there is no problem in the sequel to simplify things just
by writing

µ?[j, h;m] =
L∑
l=1

c?[j, h− l;m]wl[j,m]. (46)

For practical calculation, in the case of the uniform weight as defined in (44), then, instead of
(46), it would be more economic (by avoiding to perform the summation) to use the relation

µ?[j, h;m] =
1

L

(
y?[j, h− 1;m]− y?[j, h− (L+ 1);m]

)
. (47)

14



2.3.2 Past volatilities

The variance term, corresponding to the above mentioned Vt+4|t, is defined by

(σ?[j, h;m])2 ≡
L∑
l=1

(
c?[j, h− l;m]− µ?[j, h;m]

)2
wl(m;L) (48)

for h ∈ {1, . . . , H}.

2.3.3 Past shocks

To deal with Ct+4, always mentioned in the above principle, from µ?[j, h;m] and σ?[j, h;m],
we can introduce the corresponding realized shock as

z?[j, h;m] ≡ z?
(
t?h(j)

)
=

1

σ?[j, h;m]

(
c?[j, h;m]− µ?[j, h;m]

)
I{σ?[j,h;m]6=0}. (49)

It would be emphasized that this relation has to be considered for h ∈ {1, . . . , H} and of course
for j ∈ {1, . . . , J} and m ∈ {1, . . . ,M}. It is also important to observe that the shock in (49)
is non-trivially-defined whenever σ?[j, h;m] 6= 0. We have encountered real market situations
for which past yield rates for some maturities τm remained to be constants such that at last
one has σ?[j, h;m] = 0.

Observe that the definition (49) is equivalent to

c?[j, h;m] = µ?[j, h;m] + σ?[j, h;m]z?[j, h;m]. (50)

2.3.4 Distribution of the yield rates at a future time-horizon under the FAV

We also introduce a forecasting distribution as in (22), always by exogenously choosing the
probabilities π[j,m]. So the main task remains to define the appropriate realizations y[j, h;m]’s
for the yield-rate y

(
th, th+τm

)
(·). Instead of just projecting the absolute changes c?[l, h;m], as

done for the PA in Section 2.2, we would like now incorporate more dynamical consideration
over the introduction of trends and volatilities.

As for the past absolute change c?[j, h;m], given in term of the trend µ?[j, h;m], the
volatility σ?[j, h;m] and the shock z?[j, h;m] in (50), below in (67) we similarly introduce
the j-realization c[j, h;m] for the absolute change at the future time th in term of some trend

µ[j, h;m] = µ
(
j, th;m

)
and volatility

σ[j, h;m] = σ
(
j, th;m

)
which will be recursively introduced below. The fact that we stay within the historical approach
means that the past shocks z?[j′, h;m] are used instead of new unknown innovation shocks
obtained from the application of any parametric model. The realization

y[j, h;m]

is then found, as in (69) below, by using some suitable expression

c[j, h;m] = c
(
y
(
th, th + τm

)(j))
15



and the initial yield-rate level

y[0;m] ≡ y
(
t0, t0 + τm

)
= y?[1, H;m].

The term c[j, h;m] is devoted to model the yield-rate change, with the maturity τm, between
times th−1 and th.

To perform our forecasting approach, accounting for volatilities or FAV, to shorten let us
introduce the notations:

c̃(l;m) ≡ y
(
t−{l}, t−{l} + τm

)
− y
(
t−{l+1}, t−{l+1} + τm

)
≡ y?

(
l;m

)
− y?

(
l + 1;m

)
. (51)

Then we can define the trend prevailing for the future time t1 as

µ[j, 1;m] ≡ µ
[
j, t1;m

]
=

L−1∑
l=0

(
y?
(
l;m

)
− y?

(
l + 1;m

))
wl+1(m;L)

=
L−1∑
l=0

c̃(l;m)wl+1(m;L). (52)

It should be noted that this quantity in (52) does not depend on the integer j. This last is
just used in order to get homogeneous notations. Then the corresponding variance prevailing
for the future time t1 is defined as

(
σ[j, 1;m]

)2 ≡ L−1∑
l=0

(
c̃(l;m)− µ[j, 1;m]

)2
wl+1(m;L). (53)

Again this expression does not depend on j despite the notation used.
From the realized past shocks in (49) we define the j-th shock which applies at time t1 as a
weighted mean of the shocks arising at times t?H(j), . . . , t?H−l(j), . . . , t?1(j) as

z[j; 1;m] ≡
H−1∑
l=0

z?[j;H − l;m]θl+1(m;H). (54)

where

0 ≤ θl(m;H) and
H∑
l=1

θl(m;H) = 1. (55)

Usually one have in mind on the use of decreasing exponential weights such that

θH(m;H) ≤ . . . ≤ θl(m;H) ≤ . . . ≤ θ1(m;H).

There is no reason to restrict with weights with length H as we consider in (54). Our choice
of H is only guided with the willing to capture shocks in line with the length of the maximal
horizon of forecasting. It is possible to take another length for shocks depending on the view
considered for the forecasting.

From (52) (53) and (54) we define the j-th scenarios for the absolute change of the yield-
rate, with the maturity τm, between t1 and t0 by

c[j, 1;m] ≡ µ[j, 1;m] + σ[j, 1;m]z?[j, 1;m]. (56)
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Therefore the j-th scenario for the (random) yield rate y
(
t1, t1 + τm

)
(·), with the maturity τm

at time t1, is defined as
y[j, 1;m] ≡ y[0;m] + c[j, 1;m]. (57)

where y[0;m] is the initial rate as recalled in (17).
To deal with the candidate realization for the next time t2 we set

µ[j, 2;m] ≡

c[j, 1;m]w1(m;L) +

(L−2∑
l=0

c̃(l;m)wl+2(m;L)

)
(58)

where c[j, 1;m] is given in (56). Similarly to (53) we define(
σ[j, 2;m]

)2
≡
(
c[j, 1;m]− µ[j, 2;m]

)2
w1(m;L)

+
L−2∑
l=0

(
c̃(l;m)− µ[j, 2;m]

)2
wl+2(m;L). (59)

As in (54), from the realized past shocks in (49), we define the j-th shock which applies at
time t2 as

z[j, 2;m] ≡ z[j, 1;m]θ1(m;H) +
H−2∑
l=0

z?[j,H − l;m]θl+2(m;H). (60)

Therefore from (58), (59) and (60) we define the j-th scenarios for the absolute change of the
yield rate between t2 and t0 by

c[j, 2;m] ≡ µ[j, 2;m] + σ[j, 2;m]z[j, 2;m]. (61)

such that the j-th scenario for the (random) yield rate y
(
t2, t2 + τm

)
(·), with the time-to-

maturity τm at time t2, is given by

y[j, 2;m] ≡ y[j, 1;m] + c[j, 2;m] (62)

= y[0;m] +
(
c[j, 1;m] + c[j, 2;m]

)
. (63)

Consequently in general, the j-th scenarios for the (random) yield rates y
(
th, th + τm

)
(·),

with the time-to-maturity τm at times th, for h ∈ {2, . . . , H} has to be recursively generated.
Precisely, if

µ[j, h′;m], σ[j, h′;m], c[j, h′;m] and y[j, h′;m] are already defined

for any h′, with h′ ≤ h − 1, then we can move at the time-step th, for 2 ≤ h, by using the
following relations

µ[j, h;m] ≡
h−1∑
l=1

c[j, h− l;m]wl(m;L) +
L−h∑
l=0

c̃(l;m)wl+h(m;L) (64)

(σ[j, h;m])2 ≡
h−1∑
l=1

(
c[j, h− l;m]− µ[j, h;m]

)2
wl(m;L)

+
L−h∑
l=0

(
c̃(l;m)− µ[j, h;m]

)2
wl+h(m;L) (65)
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z[j;h;m] ≡
h−1∑
l=1

z[j, h− l;m]θl(m;H)

+
H−h∑
l=0

z?[j,H − l;m]θl+h(m;H) (66)

c[j, h;m] ≡ µ[j, h;m] + σ[j, h;m]z[j, h;m] (67)

and

y[j, h;m] ≡ y[j, h− 1;m] + c[j, h;m] (68)

= y[0;m] +
h∑
l=1

c[j, l;m]. (69)

With the equation (69) we obtain a j-th path Y [j,m] of the time-to-maturity τm yield
rates at the forecasting period t1, . . . , th, . . . , tH as mentioned in (20). Next a forecasting
distribution, as in (22), may be derived by taking for example an uniform probability as in
(23). Also pointwise forecast for this period t1 to tH can be computed as indicated in (25) and
(26).

3 Numerical Illustrations

3.1 Outline of the Numerical Illustrations

While dealing with models, it is easy to produce a unified vision of the research process and the
expected outcomes. However in practical terms, working with yield curve and interest rates
data do not perfectly fit with the models and proposed methodology. Thus it is necessary
to clearly describe the Data sources and their understanding in the financial environment
and slightly adapt the methodology to these data sources; this would prevent errors due to
data cleansing, miss of time reference, inaccurate sources. The data sample analysis and
standardization is used to make sure the sources can match on the same criteria (time horizon,
data quality and completeness, Unit value). This impacts directly the research results while
testing the model. We retrieve countries Interest Rates values and yield curve from Government
Bonds (Govies) where NIRP has a strong impact in Short term interest rates, mainly Germany.
We also take into consideration Switzerland, where long term Interest rates 20y and 30y have
slightly moved in negative territory in 2016.

3.2 Data description

Using interest rates and yield curve data request to introduce several sources, as various usages
of these data are done in the capital markets.

3.2.1 Data type

1)‘Fixing based date’: First, we need to consider in the financial environment sources from
Governments where rates values is observed at a ‘fixed’ time in the day. This means that the
estimated value for the day is given by the financial body of the government and reflects a
transparent process. However this is not the Real market prices of the bonds issued by the
country neither the market price of these bonds. Central Banks also publish a complete set of
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Figure 1: Actual yield rates for various maturity times (Germany)

economic data for rates, yield and credit demand by sector and types. We have not taken into
account these specific economic data set.

2)IBD Data: Second we have the market prices coming from inter-dealer broker network
(IDBs) where Rates are negotiated based on an institutional price. These prices or rate values
are produces by looking at various maturities and Yields of the secondary market negotiated
governments bonds. They are usually more reactive to market condition but would not per-
fectly reflect the NIRP. As these IDB rates represent transactions they are quoted on continuous
trading sessions all over the day, the more liquid the bond, the more price information you get.

3)Data providers: Third, there is reference yield curves based on Data provider (Bloomberg,
Reuters, EuroMTS and others), where price sources are link to commercial services transac-
tions. These sources may vary as some provider will produce not only the market data trans-
action and quotes, but also distributes by yield curves [An-Br-De-Mu; 1996] , instantaneous
forward rate curve [Sv; 1994]. These market provider allows you to get the complete list of
Bonds and there quotes, from which you can reconstruct a Zero coupon yield curve.

4)Financial information Website: It is today possible to access bond price and Yield using
public information provide such as Yahoo, Investing or others. However these sources are
usually not complete and do not cover all the bonds and yield maturities. They are still quite
useful to test the models

3.2.2 Country selection: Germany

We were able to get France Inter dealer broker (IDB) price on a daily basis for the complete
set of maturities. So we selected this sample to test our forecasting methodologies. The
Deutsche Bundesbank (BDB) yield data obtained from Stevens Analytics are used (available
on www.Quandl.com).
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3.2.3 Statistics corresponding to the data

The statistics of the data shown in Figure 1 are analyzed and presented in Table 1, where the
time-to-maturities for the described curves are given in the first column. All results are given
in the rest of columns term of percentage, except for the Kurtosis (which does not have unit).

Maturity Min [%] Max [%] Mean [%] Std [%] Skewness [-] Kurtosis [-]
6 months -0.58 0.20 -0.17 0.21 -0.03 1.95
1 year -0.58 0.16 -0.19 0.21 -0.08 1.87
3 years -0.60 0.44 -0.13 0.24 0.12 2.37
5 years -0.49 0.95 0.09 0.32 0.44 2.56
10 years -0.05 2.11 0.80 0.52 0.57 2.35
15 years 0.25 2.74 1.30 0.64 0.48 2.16
20 years 0.41 2.97 1.56 0.67 0.39 2.06
30 years 0.54 2.86 1.65 0.60 0.28 1.96

Table 1: Statistics of the historical yield rates

In each row , some descriptors of the yield-rate distributions are shown, corresponding to
each time-to-maturity considered. These results show that the yield-rate distribution does
not follow the Normal distribution, regardless of the time-to-maturity considered. The graphs
corresponding to the yield rates are shown in Appendix A plots in figures ranging from Figure 5
to Figure 12. Each figure corresponds to a time-to-maturity that ranges from 6 months to 30
years. And, each figure gives four types of information: yield rates, its associated histogram,
the first-order differenced yield rates and its histogram. From the histogram of the yield rates,
we can see that the yield-rate distribution is not Gaussian, and this can be confirmed by the
Kurtosis and Skewness values shown in Table 1. In addition, from the first-order differenced
yield rates, one can deduce that the corresponding yield rates are not stationary. The strength
of our approach is that we do not assume the stationary of the first-order differenced yield
rates.

In the following sections (Section 3.3 and Section 3.4), we compare the performance of
forecasting using three different approaches:

• forecasting with the plain approach using the uniform probabilistic distribution (π),

• forecasting with the plain approach using the exponential probabilistic distribution (π),

• forecasting with the filtered volatility approach using the uniform probabilistic distribu-
tion (π).

Recall that the mathematical expression for π function is given in (21).

3.3 Forecasting with the plain approach (PA)

3.3.1 Using uniform probabilistic distribution

The forecasting results obtained using the plain approach with the uniform probabilistic dis-
tribution (i.e., π[j,m] given in (21)) is shown in Table 2-4 and Figure 2. The results shown
in Table 2- 4 correspond to the forecasted yield-rate values, their corresponding actual values,
the absolute error between the forecasted and actual yield rate values, and the relative error
values. All the values are in percentage except for the absolute value, which is in bp. As
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explained earlier, the results correspond to several times-to-maturity ranging from 6 months
to 30 years. Table 2, Table 3, and Table 4 show the results corresponding to 1st, 3rd, and 5th
day of forecasting, respectively.

In general, for all the forecast horizon days considered, as the time-to-maturity increases
both the absolute error and the relative error. This tendency can also be observed with respect
to the forecast horizon day. That is, both the absolute and relative errors grow as the forecast
horizon day is further.

Maturity Yield_real (%) Yield_pred (%) Error_abs (bp) Error_rel (%)
6 months -0.58 -0.57 -1.00 -0.00
1 year -0.56 -0.55 -1.00 -0.01
3 years -0.54 -0.54 0.00 0.00
5 years -0.43 -0.44 1.00 0.05
10 years 0.02 0.03 -1.00 -0.10
15 years 0.33 0.38 -5.00 -0.79
20 years 0.52 0.58 -6.00 -1.34
30 years 0.71 0.80 -9.00 -3.39

Table 2: Error of prediction at 1-day horizon

Maturity Yield_real (%) Yield_pred (%) Error_abs (bp) Error_rel (%)
6 months -0.58 -0.57 -0.78 -0.00
1 year -0.57 -0.55 -1.78 -0.02
3 years -0.58 -0.54 -3.69 -0.11
5 years -0.48 -0.44 -3.56 -0.17
10 years -0.05 -0.02 -7.34 -0.73
15 years 0.26 0.37 -11.25 -1.77
20 years 0.44 0.57 -13.24 -2.93
30 years 0.63 0.79 -16.35 -6.07

Table 3: Error of prediction at 3-day horizon

Maturity Yield_real (%) Yield_pred (%) Error_abs (bp) Error_rel (%)
6 months -0.57 -0.57 0.43 0.00
1 year -0.58 -0.55 -2.57 -0.03
3 years -0.60 -0.55 -5.37 -0.16
5 years -0.49 -0.45 -4.13 -0.20
10 years -0.05 0.02 -6.68 -0.67
15 years 0.25 0.36 -11.48 -1.80
20 years 0.43 0.56 -13.46 -2.97
30 years 0.60 0.79 -18.68 -6.90

Table 4: Error of prediction at 5-day horizon

These results can also be observed from Figure 2. This figure shows eight graphs cor-
responding to the eight times-to-maturity considered (ranging from 6 months to 30 years).
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(a) Predicted yield distribution (6 months) (b) Predicted yield distribution (1 year)

(c) Predicted yield distribution (3 years) (d) Predicted yield distribution (5 years)

(e) Predicted yield distribution (10 years) (f) Predicted yield distribution (15 years)

(g) Predicted yield distribution (20 years) (h) Predicted yield distribution (30 years)

Figure 2: Predicted yield-curve distributions for various times-to-maturity
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Each graph represents for the 5 days of forecasting days, three types of plots are shown: the
distribution of the forecasted yield rates (gray), the mean and the standard deviation of this
distribution (black), and the actual yield rates (red).

From these results, one can first observe that for all the cases the error between the fore-
casted yield rates and the actual yield rates are within the standard deviation of the forecasted
yield-rate distribution. Further, one can also observe that in general the error grows as the fore-
cast day grows. This fact is also observable with respect to the time-to-maturity. That is, as the
time-to-maturity grows, the error also grows. Moreover, one can also observe that as the time-
to-maturity grows, the standard deviation of the yield-rate distribution also grows. In general,
the error values are relatively small for all the forecast horizon days and the times-to-maturity
considered. In the sequel, we show that this performance can be further improved by choosing
the plain approach with exponential probabilistic distribution (shown in Section 3.3.2) or the
filtered volatility approach with uniform probabilistic distribution (shown in Section 3.4).

3.3.2 Using exponential probabilistic distribution

Instead of using the uniform probabilistic distribution for π[j,m] given in (21) as shown in
Section 3.3.1, here we use the exponential distribution with λ=0.1. This λ value is chosen
heuristically to minimize the difference the actual yield rates and the forecasted yield rates.
Since the chosen λ value is small, the decay ratio of the corresponding exponential function is
fast, and this means that the sample corresponding to the present has more significance than
those of the past.

Maturity Yield_real (%) Yield_pred (%) Error_abs (bp) Error_rel (%)
6 months -0.58 -0.57 -1.00 -0.00
1 year -0.56 -0.55 -1.00 -0.01
3 years -0.54 -0.54 0.00 0.00
5 years -0.43 -0.44 1.00 0.05
10 years 0.02 0.03 -1.00 -0.10
15 years 0.33 0.38 -5.00 -0.79
20 years 0.52 0.58 -6.00 -1.34
30 years 0.71 0.80 -9.00 -3.39

Table 5: Error of prediction at 1-day horizon

Maturity Yield_real (%) Yield_pred (%) Error_abs (bp) Error_rel (%)
6 months -0.58 -0.58 -0.01 -0.00
1 year -0.57 -0.57 -0.02 -0.00
3 years -0.58 -0.56 -1.93 -0.06
5 years -0.48 -0.45 -2.72 -0.13
10 years -0.05 -0.00 -4.55 -0.45
15 years 0.26 0.32 -6.48 -1.02
20 years 0.44 0.51 -7.48 -1.65
30 years 0.63 0.72 -9.49 -3.49

Table 6: Error of prediction at 3-day horizon
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Maturity Yield_real (%) Yield_pred (%) Error_abs (bp) Error_rel (%)
6 months -0.57 -0.58 1.09 0.01
1 year -0.58 -0.57 -1.00 -0.01
3 years -0.60 -0.56 -3.91 -0.12
5 years -0.49 -0.46 -2.63 -0.13
10 years -0.05 -0.05 0.34 0.03
15 years 0.25 0.25 0.22 0.03
20 years 0.43 0.43 0.22 0.05
30 years 0.60 0.63 -2.88 -1.04

Table 7: Error of prediction at 5-day horizon

One can quickly observe that the results shown in Tale 2 are identical to those of Table 5.
This is because, the 1-day forecast horizon does not depend on the choice of the probabilistic
distribution. However, we clearly observe differences for other forecast horizon days. From
Table 6 and Table 7, one can observe that the forecasting performance obtained using the ex-
ponential probabilistic distribution is significantly better than those obtained using the uniform
probabilistic distribution.

On the other hand, while the monotonic growth of the error values with respect to the
time-to-maturity values is true for 3-day forecast horizon, this phenomenon is not observable
with 5-day forecast horizon. However, one can observe that both the absolute and relative
errors are small for all the horizon times and the times-to-maturity considered.

Further, Figure 3 shows once again eight graphs corresponding to the eight times-to-
maturity considered (ranging from 6 months to 30 years) but this time for the exponential
probabilistic function. As indicated previously, the errors are much smaller than those obtained
using the uniform probabilistic distribution. However, notice that the standard deviation val-
ues of the forecasted yield-rate distribution are in general larger than those corresponding to
the uniform probabilistic distribution. This is so, because the λ value is small, and, therefore,
the forecast is made with a relatively narrow window over the past yield-rate values.
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(a) Predicted yield distribution (6 months) (b) Predicted yield distribution (1 year)

(c) Predicted yield distribution (3 years) (d) Predicted yield distribution (5 years)

(e) Predicted yield distribution (10 years) (f) Predicted yield distribution (15 years)

(g) Predicted yield distribution (20 years) (h) Predicted yield distribution (30 years)

Figure 3: Predicted yield-curve distributions for various times-to-maturity
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3.4 Forecasting with filtered volatilities (FAV)

Finally, the filtered volatility approach is used with uniform probabilistic distribution (i.e.,
π[j,m] given in (21)) to forecast yield-rate distribution. The corresponding results are shown
in Table 8 - 10 and in Figure 4.

Maturity Yield_real (%) Yield_pred (%) Error_abs (bp) Error_rel (%)
6 months -0.58 -0.56 -1.85 -0.01
1 year -0.56 -0.55 -0.69 -0.01
3 years -0.54 -0.54 0.16 0.00
5 years -0.43 -0.43 0.38 0.02
10 years 0.02 0.00 1.53 0.15
15 years 0.33 0.33 0.34 0.05
20 years 0.52 0.52 -0.05 -0.01
30 years 0.71 0.73 -1.73 -0.64

Table 8: Error of prediction at 1-day horizon

Maturity Yield_real (%) Yield_pred (%) Error_abs (bp) Error_rel (%)
6 months -0.58 -0.56 -1.50 -0.01
1 year -0.57 -0.56 -0.97 -0.01
3 years -0.58 -0.55 -3.40 -0.10
5 years -0.48 -0.44 -3.88 -0.19
10 years -0.05 -0.03 -1.96 -0.20
15 years 0.26 0.27 -1.10 -0.17
20 years 0.44 0.45 -1.48 -0.32
30 years 0.63 0.65 -2.40 -0.87

Table 9: Error of prediction at 3-day horizon

Maturity Yield_real (%) Yield_pred (%) Error_abs (bp) Error_rel (%)
6 months -0.57 -0.57 -0.45 -0.00
1 year -0.58 -0.56 -1.87 -0.02
3 years -0.60 -0.55 -5.34 -0.16
5 years -0.49 -0.45 -4.42 -0.22
10 years -0.05 -0.05 0.21 0.02
15 years 0.25 0.24 1.34 0.21
20 years 0.43 0.41 1.50 0.33
30 years 0.60 0.61 -0.98 -0.35

Table 10: Error of prediction at 5-day horizon

In general, the error values obtained using this approach are the smallest among all the
three approaches considered in this study. A similar result tendency can be observed in this
approach as those observed from the previous two approaches. That is, the error values grow
as the time-to-maturity grows. However, this growth is not monotonic with respect to the
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(a) Predicted yield distribution (6 months) (b) Predicted yield distribution (1 year)

(c) Predicted yield distribution (3 years) (d) Predicted yield distribution (5 years)

(e) Predicted yield distribution (10 years) (f) Predicted yield distribution (15 years)

(g) Predicted yield distribution (20 years) (h) Predicted yield distribution (30 years)

Figure 4: Predicted yield-curve distributions for various times-to-maturity
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forecast horizon day. The error values can be larger for 3-day forecast horizon than those of
5-day forecast horizon.

Figure 4 clearly indicate that the error values obtained from this approach are smaller than
those obtained from the two previous approaches. Further, all the error values are smaller than
the standard deviation of the forecasted yield-rate distributions for all the times-to-maturity
considered. Moreover, the standard deviation values of the forecasted yield-rate distributions
are the smallest among all the approaches considered. This is because in this latter approach
the volatility of the past yield rates are taken into account to forecast the yield-rate values.
In addition, one can observe that all the forecasted yield-rate realizations are much smoother
than those obtained from the previous two approaches.

4 Conclusion
1. To the best of our knowledge, there is no available sounding theoretical model allowing

to forecast the yield rates under the NIRP framework. Facing this situation, the common
Historical Approach (HA) appears to be a good recourse.

2. This work should considered as providing for the users (practitioners or academics) a tool
that allows quickly to derive a forecasting distribution of the yield curves at a series of
discrete-time horizons based essentially on the historical data. We derive the theoretical
formulation required for the algorithm, which takes as inputs the data provided by the
user and returns as output the forecasting distribution.

3. This work is fully devoted to the derivation of the forecasting distribution by fully ex-
ploring the HA. We have performed this target by directly using the projection of past
realizations of the interest-rate absolute changes. This approach is referred here as the
Plain Approach (PA). Alternatively, we have explored the FAV (Filtered Approach using
Volatilities) which required the use of volatilities. Though not analyzed here, for short-
ness, it is also possible to include correlations in the forecasting approach. This direction
would be explored in a further investigation.

4. In contrast to the common HA approach, based on the iteration of one-period projection,
here we are able to propose a simultaneous forecasting for the yield curves at discrete-
time horizons. This has the advantage of to be less computationally demanding and also
better transferring the past dependent structure contained in all periods with the same
length as the future time horizon.

5. Even the reader is skeptical about the simplicity/naivety of the HA , it is a fact that the
corresponding derived results may provide a tool for comparison with other forecasting
obtained from complex or parametric models.
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Appendices
A Statistics of the source data

(a) yield rates (b) yield-rate histogram

(c) differenced yield rates (d) differenced yield-rate histogram

Figure 5: Yield rates and their differences for 6-month time-to-maturity

(a) yield rates (b) yield-rate histogram

(c) differenced yield rates (d) differenced yield-rate histogram

Figure 6: Yield rates and their differences for 1-year time-to-maturity
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(a) yield rates (b) yield-rate histogram

(c) differenced yield rates (d) differenced yield-rate histogram

Figure 7: Yield rates and their differences for 3-year time-to-maturity

(a) yield rates (b) yield-rate histogram

(c) differenced yield rates (d) differenced yield-rate histogram

Figure 8: Yield rates and their differences for 5-year time-to-maturity
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(a) yield rates (b) yield-rate histogram

(c) differenced yield rates (d) differenced yield-rate histogram

Figure 9: Yield rates and their differences for 10-year time-to-maturity

(a) yield rates (b) yield-rate histogram

(c) differenced yield rates (d) differenced yield-rate histogram

Figure 10: Yield rates and their differences for 15-year time-to-maturity
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(a) yield rates (b) yield-rate histogram

(c) differenced yield rates (d) differenced yield-rate histogram

Figure 11: Yield rates and their differences for 20-year time-to-maturity

(a) yield rates (b) yield-rate histogram

(c) differenced yield rates (d) differenced yield-rate histogram

Figure 12: Yield rates and their differences for 30-year time-to-maturity
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