
Economic networks and corporate default prediction

Andreea Constantin

March 2017

Abstract

This paper investigates the role of industry-specific effects and structural properties of

intersectoral customer-supplier relations on the corporate default prediction of individual

firms. We focus on a large sample of US exchange-listed companies over the period 1997-

2015 and show that default prediction models that account for input-output network

effects have better in-sample and out-of-sample accuracy compared to benchmark models

that focus only on firm-specific and macroeconomic attributes. We find that companies’

default intensities are related to the aggregate financial health of the industry in which

they operate and the competition level of customer/supplier industries. Moreover, the

prediction accuracy of the model is improved when we account for companies’ role as main

commodity suppliers in the aggregate economy, as well as their position in the structural

flow of commodities. Second-order effects, related to customers’ and suppliers’ position

in the sectoral network, also prove to be relevant.
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1 Introduction

Current credit risk models focus on companies’ risk profiles and macroeconomic conditions

as determinants of default, while the influence of default by one firm on the default risk

of another is not specifically explored. For example, in corporate default prediction

models that rely on doubly-stochastic settings, the default correlation between firms is

only driven by common exposures to macroeconomic factors or correlations across firm-

specific attributes. This means that firms’ defaults are conditionally independent and

the model does not allow for a direct impact of the default of one firm on the default

intensity of another firm.

This paper is the first to account for interconnections between firms’ economic activi-

ties, seen here as intersectoral input-output linkages, in reduced-form credit risk models.

This is motivated by recent theoretical results in ? and ?, that study the microfounda-

tions of aggregate fluctuations. The authors show that the “diversification argument”,

according to which microeconomic idiosyncratic shocks average out in the aggregate, is

not valid in the presence of a fat-tailed distribution of firm sizes and asymmetric sectoral

input-output linkages. These observations are also documented empirically.

Our empirical analysis is based on the multi-period corporate default prediction ap-

proaches presented in ? and ?, which estimate a term structure of firms’ default probabil-

ities using firm-specific and macroeconomic state variables. Thus, we use a decomposable

pseudo-likelihood function for components related to exits due to default (called default

exits) and exits due to reasons other than default (called other exits) in order to es-

timate firms’ default intensities. Following the literature on credit risk, we define the

financial health of firms in terms of a volatility-adjusted measure of leverage, called the

distance-to-default, and other macroeconomic and firm-specific attributes generally used

in corporate prediction models. However, until now there are no means to account for

the influence of other firms on a company’s conditional default probabilities.

The main contribution of our study is to address current limitations of the default

prediction literature by including cross-sectional and structural effects at industry level,

which capture companies’ exposures to financial conditions arising from economic ties to

the rest of the economy. In such way, we allow for firms’ estimated default intensities
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to depend on the financial health of the industry in which they operate or that of the

industries with which they have customer-supplier relations.

Firstly, we take an industry-level perspective and look at the effects on firms’ esti-

mated default intensity of industry-specific attributes, such as concentration and average

distance-to-default, which ? claim to be statistically insignificant. Secondly, we make

use of the structure of economic relations on which the US economy operates and test

whether incorporating the health condition and network connections formed by industries

that act as customers or suppliers can improve the performance of the credit risk model.

We start by analyzing the structural properties of the commodity-by-industry annual

direct requirements tables, disaggregated at summary level, and observe that the network

characteristics that focus on the supply side (such as the outdegree) are particularly

heavy-tailed. Industries’ concentration index also seems to have have a similar behaviour.

Following the results in ? and ?, these distribution-based features could have an impact

on the formation of aggregate fluctuations from industry-specific shocks and could affect

corporate default probabilities.

Further, we construct various industry-level attributes based on centrality measures

coming from the intersectoral customer-supplier network as well as combinations with

industry-specific characteristics. Given that the intersectoral network is based on input-

output tables of commodities needed for industrial production, this approach allows us

to introduce a reflection of the topology behind the production-based real economy in a

credit risk model. The justification behind using centrality measures relies on their ability

to capture different aspects about industries’ role in the flow of inputs and outputs relative

to the whole economy. The analysis is performed for both first-degree and second-degree

relations1.

The credit model estimation is based on the maximum likelihood procedure and uses a

large sample of quarterly observations for listed US industrial firms together with annual

input-output tables at summary level for the US economy. The period covered is 1997-

2015. As benchmark variables we use balance-sheet data, stock prices, and monetary

1First-degree relations refer to an industry’s supply and demand ties with other industries, whereas
second-degree relations refer to the supply and demand ties of an industry’s customers and suppliers.
? show that the rate of decay in the aggregate volatility of the US economy is affected by the degree
of fatness in the tails of both the first-order and second-order outdegree distributions. Their analysis is
based on the detailed level of input-output tables, covering 474 industries in 1997.

2



policy variables. We find that companies’ default intensities are strongly related to the

aggregate financial health of the industry in which they operate as well as the competition

level. Moreover, industry’ role as main commodity suppliers in the aggregate economy is

relevant for default prediction. The results also provide evidence that network effects go

beyond first-order connections and that accounting for second-degree connections helps

improve further the performance of the credit risk model. Out-of-sample evaluations con-

firm the hypotheses that exposures to customers credit risk and supply chain disruptions

on the suppliers’ side are relevant predictors of companies credit risk. Moreover, insuffi-

cient diversification of the customer and supplier base as well as exposures to variations

in the flow of commodities and payments in the aggregate economy also have an impact

on companies’ default intensities.

The remainder of the paper is structured as follows. Section ?? offers a discussion

of the related literature. Section ?? presents the credit risk model and forward-intensity

approach. In Section ??, we present the data and methods used to estimate the reduced-

form credit model. The main results are discussed in Section ??. Finally, Section ??

concludes.

2 Related Literature

This paper touches on two strands of literature. Firstly, it uses a credit risk modeling set-

ting, where a reduced-form approach is used to model firms’ default intensities. Second, it

explores the importance of network effects, that arise from companies’ customer-supplier

relations at sector level, on the in-sample and out-of-sample performance of the credit

model.

In the academic literature, credit risk has been studied through the lens of structural

models and reduced-form models. From the structural point of view, the capital struc-

ture of firms is the main determinant of default and a firm defaults when its assets are

insufficient relative to its liabilities. Typically, the asset process is modeled as a geometric

Brownian motion and the distance-to-default2, which is a volatility-adjusted measure of

2The distance-to-default is computed following the observation that a company’s equity can be seen
as a call option written on the firm’s assets, where the strike price is based on its liabilities. Roughly
speaking, it represents the number of standard deviations of asset growth by which the market value of
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leverage, determines a firm’s conditional default probability (see ?, ?, ?). Moodys KMV

(?) further developed the Black-Scholes-Merton structural model for industry practice

and is now the most important provider of estimates of default probabilities for listed

firms.

Considering the performance of the Black-Scholes-Merton structural model, empirical

studies show that the default probabilities generated by the model are significantly less

than the empirically observed default rates (?), they perform only marginally better as a

predictor in hazard models and in out-of-sample forecasts compared to a naive alternative

with the same functional form (see ?), and the model generates very large estimation error

when estimating credit default swaps (CDS) spreads (?). In our paper, we will use the

theoretical foundations of the Merton model and include firms’ distance-to-default as an

attribute in the reduced-form credit model, besides other balance-sheet, stock market

and monetary policy related variables.

Reduced-form models consider default risk in terms of exogenous variables, such as

firm-specific, sector-specific, and macroeconomic state variables. They were first intro-

duced by ? and ? and initially relied on a discriminant analysis of companies’ accounting

variables. Further, reduced-form models used binary response models where historically

observed default events are modeled with logit and probit regressions (see ?, ?, ?, and ?).

Altman’s Z-score and Ohlson’s O-score are now widely known as measures of financial

distress. More recent papers acknowledge that the probability of default of a firm depends

on the prediction horizon (see ?, ?, ?). In this paper we use the doubly stochastic Poisson

intensity model proposed by ? and further adopted by ?, whose maximum likelihood es-

timation that has the advantage of being decomposable between default and other exits

components. We conduct a similar exercise, using a reduced-form econometric approach

that is extended to include network and industry-level effects.

Moreover, the paper is related to the literature on economic and financial networks.

This is a rather recent research topic in economics and finance which yielded mixed results

prior to the 2007-2009 financial crisis. Pioneering theoretical work on financial networks,

contagion, and systemic risk was done by ? and ?, who offer an identification of the

stylized elements of financial systems. However, their conclusions that system stability

a firm’s assets exceeds that of its outstanding liabilities.
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increases with the number of links have been challenged as being dependent on the type

of flows that take place between the nodes and the resultant network structures (see ?,

?, and ?). ? use bilateral interbank data for German banks and show that there is a

highly persistent tiered core-periphery structure which was ignored in previous theoret-

ical research. Moreover, flow maps associated with financial activities of Indian banks,3

show that the networks representing contingent claims exposures (e.g. derivatives) are

much more concentrated in the core compared to networks associated with credit-based

interbank lending and borrowing; the least concentrated networks, which display limited

clustering, are the payment and settlement systems (see ? for the Austrian payment and

settlement systems, ? for Fedwire). Our study is also related to ?, who combine network

linkages with distress prediction for European banks.

Concerning input-output economies, this paper is related to ? who analyze systemic

risk in the context of linear intersectoral exposures. Their main result is to show that

the distributions of outdegrees and second-order connections4 are determining the rate at

which the impact of idiosyncratic shocks on the aggregate volatility is vanishing. They

conclude that the law of large numbers fails for asymmetric networks, which have power-

law tail structures for nodes’ outdegrees. However, their analysis is performed using the

detailed level of input-output tables, covering 474 industries in 1997, whereas our study

is based on less disaggregated data (64 industries excluding the governmental sectors)

that spans a longer period of time (yearly coverage for 1997-2014).

3 Corporate default prediction model

In this section we describe the econometric model for estimating firms’ default intensities,

starting from the approach in ? and ?. We present in Appendix ?? an overview of the

theory behind the conditional default probabilities and forward intensity rates and limit

this section to describing the econometric model.

For making predictions about the corporate default rates we need to introduce the

3Reserve Bank of India Financial Stability Report, December 2011.
4The outdegree of a node in the intersectoral network summarizes the industry’s importance as

supplier to the rest of the economy. Second-order connections look further in the network, at the
importance as suppliers (customers) of the industries that are economically linked to a specific node.
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combined exit intensity git and default intensity fit, related to two independent Poisson

processes used to model companies’ exit and default times. In our study, the two intensi-

ties are defined by the conditional probabilities of exiting the sample or defaulting during

over the coming year. The combined exit intensity covers exit events related both to

default and other exit reasons, so it will naturally include the default intensity. Further,

we will model fit and git as functions of state variables Xit = (Uit, Yt), that are available

at time t. We let Uit represent the firm-specific variables of firm i, that cease to be ob-

servable after its exit time, and Yt represent the vector of macroeconomic variables that

are observable at all times. Following ? we choose the exponential function for the two

exit intensities, as it is non-negative and yields fit ≤ git
5:

fit = exp (α0 + α1 · xit,1 + α2 · xit,2 + α3 · xit,3 + ...+ αk · xit,k) (1)

git = fit + exp (β0 + β1 · xit,1 + β2 · xit,2 + β3 · xit,3 + ...+ βk · xit,k) (2)

Predicting default and other exit probabilities boils down to estimating the param-

eters α = {α1, α2, ..., αk} and β = {β1, β2, ..., βk} of the model specified in Equations

?? and ??. The model specified in ? uses a maximum likelihood function to estimate

the parameters α̂ and β̂, and is based on the assumption that different firms are X-

conditionally independent. This implies that the default of one firm has no direct impact

on the default intensity of another firm nor on the dynamics of state variables, and any

dependency arises from the correlation among firm-specific variables or firms’ exposure

to common factors. The pseudo-likelihood function used for estimating the default and

combined exit intensities is constructed as :

Lτ (α, β; τC , τD, X) =
N∏
i=1

T−1∏
t=0

Lτ,i,t(α, β) (3)

The likelihood function above can be decomposed in pseudo-likelihood components

by separating the terms involving α, related to defaults, and β, related to other types of

5However, other non-negative functions that ensure the default intensity is no greater than the com-
bined exit intensity can be used as well.
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exit:

L(α) =
N∏
i=1

T−1∏
t=0

Li,t(α),

L(β) =
N∏
i=1

T−1∏
t=0

Li,t(β).

where

Li,t(α) = 1t0i≤t,τCi>t+τ︸ ︷︷ ︸
(1)

· exp(−fit)

+ 1t0i≤t,τCi 6=τDi,τCi≤t+τ︸ ︷︷ ︸
(2)

· exp(−fit)

+ 1t0i≤t,τCi=τDi≤t+τ︸ ︷︷ ︸
(3)

·[1− exp(−fit)]

+ 1t0i>t︸ ︷︷ ︸
(4)

+ 1τCi≤t︸ ︷︷ ︸
(5)

Li,t(β) = 1t0i≤t,τCi>t+τ exp[−(git − fit)]

+ 1t0i≤t,τDi 6=τCi,τCi≤t+τ · exp[1− exp[−(git − fit)]]

+ 1t0i≤t,τDi=τCi≤t+τ + 1t0i>t + 1τCi≤t

In the above equations τCi represents the combined exit time and τDi represents the

time of default of company i. These two moments are modeled as stopping times of inde-

pendent Poisson processes with stochatic intensities (see Appendix ?? for more details).

The likelihood for each firm is a sum of indicator functions multiplied by their respective

probabilities 6. Hence, the likelihoods above specify five independent indicator functions

which define five independent cases that can occur during the following year: (1) the firm

does not exit the sample and is considered as surviving, (2) the firm exits due to other

reasons than default, (3) the firm exits the sample due to default, (4) the firm has not

yet entered the sample, and (5) the firm has already exited the sample.

Decomposing the likelihood function allows for a significant degree of tractability,

as we will need to maximize separately the component related to the default intensity,

6The indicator function 1A<B is equal to one if A < B or zero if A ≥ B.
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L(α), from that related to other exit intensities, L(β)7. Recall that for isolating the other

exit intensities, which depend only on the β coefficients, we have to subtract the default

intensities from the combined exit intensities.

The main contribution of this paper is to extended the econometric model to include

new attributes for modeling fit and git in order to capture network effects and the potential

propagation of default risk across economically linked sectors. This approach, similar to

the one used in ?, allows firms’ default intensities to respond to the financial health

conditions in their sector and the ones with which they have customer-supplier relations.

Firstly, we look at the effects of industry-average distance-to-default on firms’ estimated

default intensity and test the observation made by ? that the industry-average of firms’

distance-to-default is not a significant default predictor. Secondly, we make use of the

structure of economic relations and test whether incorporating the health condition of

industries that act as customers or suppliers can improve the performance of the credit

risk model.

4 Data and Empirical Analysis

This section describes the datasets and the variables used in the default prediction model,

a summary of their characteristics and analysis of their expected effects in the estimated

model. The econometric model is estimated using quarterly data.

4.1 Data

The empirical implementation of the model is based on three types of data for the state

variables used to estimate the intensities for default and other exits: firm-specific, macroe-

conomic, and sector level input-output data. We focus on US public firms, including

financial institutions, over the period 1997-2015.

Firm-level data comes from Wharton Research Data Services (WRDS) using the

CRSP/ Compustat merged database. Accounting, delisting, and industry classification

data is taken from the Compustat quarterly file, while stock market data is taken from the

CRSP daily files. The accounting items we collect are: total assets, cash and short-term

7See Proposition 2 in ? for a similar approach.
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investments, net income-loss, common shares outstanding, total long-term debt, and to-

tal current liabilities. We remove companies that have missing data for entire accounting

variables, the delisting date and reason of deletion, or for the industry classification code.

Also, we only use companies that have at least 8 quarterly observations and winsorize the

accounting variables at 99.5% and 0.05%. In case an accounting observation is missing

during the period a company appears in the database, we substitute it with the closest

previous observation. The variable for the reason of deletion is coded from 1 to 10, out of

which we separate code 2 (bankruptcy under Chapter 11) and code 3 (bankruptcy under

Chapter 7) as being related to default, and consider the other codes as representing other

types of exit. Companies with no deletion date are considered as surviving. Overall, our

dataset consists of 8’886 companies that were active for at least 2 years during 1997-2015.

Table ?? shows for each year over 1997-2015 the number of companies in our sample

that were active, as well as the number of bankruptcies and other types of exits. We

can see that over time the number of listed, active companies in the US economy de-

creased continuously from about 6’000 in 1997 to 2’800 in 2015. The highest number

of bankruptcies is observed between 1999-2002, where events such as the collapse of the

dot-com bubble affected a large number of listed companies. Another increase in the

number of bankruptcies takes place after the 2008-2009 financial crisis. Compared to ?,

who use numerous sources for the default and bankruptcy data (e.g. Bloomberg, Compu-

stat, Moody’s reports etc.), we can see that the number of defaults in our sample, which

relies only on bankruptcies from Compustat, is smaller. This might affect the estimation

of the corporate default model.

As macroeconomic variables we use the trailing 1-year return on the S&P500 index

and the 3-month annualized US Treasury bill rate, which are taken from the WRDS

CRSP files. The input-output data for US industries at summary level8 is taken from

the Bureau of Economic Analysis of the US Department of Commerce. We focus on the

commodity-by-industry annual direct requirements table, denoted W , which indicate the

commodity inputs required directly for a dollar of industry output. Each entry (I, J)

in matrix W calculates the share of industry I’s product in industry J ’s production

8The summary level input-output data is disaggregated over 64 industries, excluding governmental
sectors.
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technology. If we sum over the columns for row I, we obtain the outdegree of industry I,

which corresponds to the industry’s share in the input supply of the entire US economy.

4.2 Benchmark covariates

Firstly, we focus on a set of covariates that will be considered in the benchmark model and

which is based on a selection of firm-specific and macroeconomic attributes similar to the

ones used in ? and ?. Then we will introduce novel attributes based on the structure of

the input-output industry-level tables, which will allow us to incorporate direct impacts

from neighboring industries on the exit intensities of individual companies.

The covariates used in the benchmark model are listed below.

1. Trailing 1-year return on the S&500 index. We expect the estimated default inten-

sity to decrease when the equity market performs well.

2. 3-month annualized US Treasury bill rate. We expect to have a negative relation

between firms’ default probabilities and the 3-month Tbill, due to the fact that lower

rates are generally used during recessions in order to stimulate economic growth.

3. Trailing return: is the firms’ stock return over the previous year. We expect to have

a negative relation between the forward default intensity and firms’ trailing return.

4. Cash/TA: is the ratio between cash and short-term investment to total assets; it

characterizes the liquidity position of a firm, thus we expect to have a negative

relation with the default intensity.

5. NetInc/TA: is the ratio between net income to total assets. A loss is registered as

a negative net income. This ratio measures the profitability of a company, therefore

we expect the default intensity to decrease when net income to total assets increases.

6. Size: is the logarithm of the ratio between a firm market equity value to the average

market equity value of the whole S&P500. The market equity value is computed as

the stock price multiplied by the number of shares outstanding at the end of each

quarter. Firms’ size is negative if it has a smaller market capitalization than the

average market capitalization and positive otherwise. Given that large firms are
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generally thought to have more financial flexibility and diversified operations, we

expect to find a negative relation between size and default intensities9.

7. DtD: the distance-to-default is based on companies’ volatility-adjusted leverage

and is used for assessing how far is the firm from the default point. It is measured

in units of standard deviations of asset growth and is based on the structural model

of Black-Scholes-Merton, which considers a firm’s equity to be a call option written

on the underlying assets and the strike being part of the debt level. We construct

it similarly to ? and ?10. Previous studies11 suggest that DtD is among the most

important and significant predictors of credit risk; we expect to observe a negative

relation between the default intensity and DtD.

8. Mkt/Book: market-to-book ratio is computed using the ratio between the market

value and the book value of assets. The market value of assets comes from the con-

struction of the DtD. The effect of the market-to-book ratio on the forward default

intensity is uncertain, as this measure captures both the growth opportunities of

companies and the extent of the market misvaluation. Depending on which of the

two parts dominates, the relation with the default intensity should be negative for

the former and negative for the latter.

Table ?? reports annualized descriptive statistics for the macroeconomic and firm-

specific variables mentioned above and which represent the basis of the benchmark credit

risk model. Table ?? presents correlations between the firm-specific variables. We can see

that DtD is strongly correlated to Size (46.5%) and also to NetInc/TA (27.5%). More-

over, Mkt/Book has an important correlation to Cash/TA (31.5%) and DtD (27.3%).

These results are in line with those reported by ?, who also use Compustat balance sheet

data for industrial firms. Compared to ?, all results presented in our study use the cur-

rent values of variables; we also tested the level and trend decomposition of firm-specific

variables and found essentially the same results.

9However, ? and ? suggest that the relationship is not significant, while ? finds that size is a
significant determinant of default risk.

10More details are in Appendix ??.
11See ?, ?, ?, ?.
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4.3 Industry-specific covariates

In order to analyze the importance of possible cross-sectional effects on the default inten-

sity of a company due to the financial health of its industry peers or due to the structure

of economic ties arising from its operations, we test industry level attributes related to

the distance-to-default, concentration, and network centrality. We will explain in this

section how these attributes are constructed.

As the industry concentration and average distance-to-default rely on quarterly data,

all variables based on these two attributes will also have a quarterly frequency. However,

network centrality measures are built solely on the annual input-output tables, meaning

that they will have only annual frequency. For the estimation of the econometric model,

we transform all variables based on network centrality measures to quarterly frequency, by

giving the same value to all quarters in a specific year. This implies that the variability of

centrality-based attributes will be lower compared to the rest of the state variables, which

could lead to an underestimation of their relevance in the respective model specifications.

Firstly, we assign each firm i to one of the 64 industries appearing in the input-output

tables, based on its Nord American Industry Classification Code (NAICS). Table ??

details the number of companies that were part of each industry over the period 1997-

2015, together with the defaults and other exits. Overall, we have 8’886 companies, that

registered 341 defaults (3.84%) and 5415 other exits (61%). The industries with most

listed companies are Computer and electronic products and Chemical products, which

also register the highest number of defaults. However, the industries with high default

frequencies are General merchandise stores and Air transportation, with about 16% of

the companies in these industries defaulting over the period. Industries that performed

well, with no defaults of listed companies, are Utilities, Motor vehicles and part dealers,

several types of Transportation, Legal services, and Amusements, gambling, and recreation

industries among others.

Even though the bankruptcy rate of 3.84% is in line with the one observed in the liter-

ature, not all defaults are reflected as balance sheet observations in our dataset, as some

companies stop releasing quarterly balance sheet reports some time before they register

default or go through bankruptcy proceedings. Overall, we only have about 25% of the
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bankrupted companies that filled quarterly information while being in bankruptcy pro-

ceedings. In order to better differentiate between healthy companies and distressed com-

panies that end up bankrupt, we will consider companies that delisted due to bankruptcy

to be in default status for one year prior to the default announcement. For simplicity, we

will refer in the rest of the study to companies that exited the sample due to Chapter 11

or Chapter 7 bankruptcy as having defaulted.

For each of the industries we compute the average distance-to-default, its concentra-

tion index, and the centrality measures arising from the economic network in which it

operates. The average distance-to-default for industry I in each quarter t is computed as

in Equation ??.

DtDI,t =
1

nI,t

nI,t∑
i=1

DtDi,t (4)

nI,t is the number of companies in industry I and DtDi,t is the distance-to-default of

company i for quarter t.

The concentration index of industry I is computed using the Herfindahl-Hirschman

Index12 and is shown in Equation ??.

HHII,t =

nI,t∑
i=1

(MSi,t)
2 (5)

MSi,t represents the market share of firm i with respect to the whole industry. The

index takes values in the interval [0, 1]. High values for HHII,t indicate low competition

and high market power of few companies in the industry. The concentration index and

industry-average distance-to-default are computed at quarterly frequency.

Industries’ centrality measures are based only on the annual input-output tables Wt,

which can be represented by a directed weighted graph called the intersectoral network

of the economy. Each node in the graph corresponds to an industry, and a directed link

(I, J) with weight wIJ > 0 exists from node I to node J if industry I is an input supplier

to industry J . We will use the notions of intersectoral network and input-output matrices

to refer to the structure of intersectoral flows.

12The index was developed independently by the economists A.O. Hirschman (in 1945) and O.C.
Herfindahl (in 1950). Hirschman presented the index in his book, National Power and the Structure of
Foreign Trade (Berkeley: University of California Press, 1945). Herfindahl’s index was presented in his
unpublished doctoral dissertation, Concentration in the U.S. Steel Industry (Columbia University, 1950).
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The general concept of centrality is used for different aspects of the ’importance’ or

’influence’ of nodes within a network. The centrality measures we are interested in capture

the opportunity of an industry to influence others as an important supplier (outdegree)

or customer (indegree) and its exposures to risk (eigencentrality) or flow of resources

(betweenness).

The weighted outdegree of sector I at time t is defined as the share of sector I’s output

in the input supply of the entire economy:

OutDegI,t =
∑
J 6=I

wIJ,t (6)

where the sum considers the N−1 industries J , other than I, in the intersectoral network.

The outdegree is related to sector I’s role as supplier and is computed by summing the

weights it directs to its customers (outgoing links).

The weighted indegree is defined as the share of inputs from the rest of the economy

used by industry I with respect to its total input needs. It is computed by summing the

incoming supply links and is related to sector I’s role as customer:

InDegI,t =
∑
J 6=I

wJI,t (7)

The outdegree and indegree can hardly be considered centrality measures, as we do not

need to know the whole network structure in order to calculate them for each node.

Betweenness centrality measures the importance of nodes in terms of the flow they

control, in the sense that nodes with high betweenness are along many of the shortest

paths between all possible pairs of nodes. It can also be interpreted as an index of

frequency for commodities’ variability reaching a node. It is computed based on the

shares of shortest distances between pairs of nodes that pass through a specific node. For

node I we have:

BTWI,t =
∑
J,K 6=I

gJ,I,K
gJ,K

(8)

where gJ,K is the number of shortest paths between nodes J and K and the distance or
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length of a path is the sum of the weights of its edges.13

Eigencentrality, also called eigenvector centrality, is defined as the principal eigenvec-

tor of the input-output matrix. It can be seen as a weighted degree measure in which

the centrality of a node is proportional to the sum of centralities of its suppliers or cus-

tomers. Depending on whether we use matrix W , where entry (I, J) is from supplier I to

customer J , or its transpose, there is the supplier-based eigencentrality (also called the

in-eigenvector) or the customer-based one (out-eigenvector):

EigenCentCI,t ≡ νCI,t =
1

λCt

∑
J 6=I

wIJ,t · νCJ,t

EigenCentSI,t ≡ νSI,t =
1

λSt

∑
J 6=I

wJI,t · νSJ,t (9)

where λSt is the biggest eigenvalue of the input-output matrix W at time t, and is associ-

ated with the eigenvector νSt .14 The relationship between the eigenvalue and correspond-

ing eigenvector of matrix W can also be represented as W · ν = λ · ν.

Table ?? reports descriptive statistics for industries’ concentration and centrality mea-

sures. We can see that the average concentration index for the 64 industries in our sample

is about 23%, with a minimum of 2% and a maximum of almost 100%, meaning that

over the years there are some industries with almost no competition at all and where the

market power is controlled by few companies. However, given that the 75th percentile

for the concentration index is 27.7%, most industries’ are formed by many firms that

share the market power. Concerning the centrality measures, the skewness and kurtosis

indicate that outdegree and customer-based eigencentrality are the most asymmetric and

display the heaviest tails. This means that in terms of out-going links, that proxy for

the influence as commodities supplier to the rest of the network, the industries show

important heterogeneity, where a small number of sectors have a disproportionately im-

portant part as input suppliers to others. These distribution-based observations, coupled

with results in ? and ?, point to the possibility of aggregate fluctuations forming from

industry-specific shocks, which could impact corporate default probabilities.

In network theory, the underlying degree distribution of a network is crucial in de-

13See the algorithm explained in ?.
14Similarly, for λCt and νCt we use the transpose of W .
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termining its resilience to shocks. Theoretical research on networks mainly focuses on

two types of networks: Poisson (or random) networks and power-law (also called scale

free) networks. The main difference between the two is that in the random network

the links have the same probability to exist and the nodes have on average similar de-

grees, independent of network’s history, whereas power-law networks typically have other

characteristics like clustering and correlations between degrees. Moreover, depending

on the types of flows depicted by the network, power-law degree distributions provide

high resilience to random failure but a high sensitivity to attack strategies that focus on

highly connected nodes, whereas Poisson degree distributions are similarly sensitive in

both cases. Most real-world networks, such as financial networks, the world-wide-web,

and input-output tables are documented to be power-law networks, where the degrees

are usually well fitted by power-law distribution with an exponent between 2 and 3.15

Figure ?? shows in detail the evolution over the period 1997 to 2014 of industries’ con-

centration and customer-based centrality distributions. The distribution of the outdegree

does not change much over time in terms of main shape, however the number of indus-

tries considered outliers tends to increase. Industries’ distributions along customer-based

eigencentrality and concentration are also quite stable over time.

Figure ?? analyzes further whether the outdegree of the nodes for the intersectoral

network has a distribution that behaves as a power-law16. The figure illustrates the

double logarithmic plot of the empirical distribution of outdegrees and their respective

fitted power-law model for a selection of years spanning 1999-2014. As in the case of

other real-world economic and financial networks (e.g. the Brazilian financial network

analyzed by ?, and the detailed input-output tables for the US economy by ?), the tails

of the outdegree distributions exhibit a linear decay in log-scale, with small changes over

the years. This suggests that the networks are not random, but rather have Pareto tails

for the degree distribution. This characteristic is specific for most real-world complex

15? shows that for a power-law (Pareto) distribution x−ζ , all moments m ≥ ζ − 1 diverge. This
means that it has a well-defined mean over x ∈ [1,∞] only if ζ > 2, and it has a finite variance only if
ζ > 3. Most identified power laws in nature have exponents such that the mean is well-defined but the
variance is not, meaning that they are prone to black swan behavior, where unexpected tail events are
consequential.

16? show that if the empirical distribution of outdegrees of the intersectoral network can be approxi-
mated by a Pareto (or power-law) distribution with shape parameter ζ ∈ (1, 2), the aggregate volatility
in the economy decays at a rate slower than ζ−1

ζ .
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network, where the nodes display widely differing degrees.

Using the approach proposed by ? we estimate, using maximum likelihood, the tail

exponent ζ and the tail threshold xm for power-law distributions fitted to outdegrees. The

results in Figures ?? and ?? provide evidence for the Pareto tail hypothesis. Figure ??

shows the estimates and their respective standard errors of the power-law shape parameter

for industries’ outdegrees, over the period 1997 to 2014. We can see that in the case of

output-input tables disaggregated at 64 industries, the shape parameter (or exponent) is

always smaller than 2.5, and for about half of the years it could statistically be smaller

than 2. This means that in all cases, the variance of the distribution is undefined and

shocks to industries that play an important role as commodities suppliers will not diversify

away and can lead to aggregate fluctuations. The differences with respect to ?, whose

analysis yields tail exponents smaller than 1.5 for detailed input-output tables, may come

from the level of data disaggregation (more than 400 industries compared to 64 in our

study), as it is well known that more aggregation leads to more uniform characteristics

and smoothing of variability across industries. To a lesser extent, the different exponents

may also be due to different parametrization of estimations.

Given that supply chains provide the channels of distress transmission across indus-

tries, we will further analyze the hypothesis that the importance of industries in the

input-output structure of the economy has effects on companies’ default intensities. Fi-

nally, the new covariates tested in the credit risk model are based on assigning firms to

industries and analyzing the following structural and cross-sectional effects:

• Industry-specific variables (ISV): we include variables that capture the industry

context in which firms’ operate. We test the average distance-to-default DtDI,t

and the concentration index HHII,t.

• First-order customer-suppliers connections: based on the input-output matrices, we

test the importance of industries’ position in the intersectoral network as measured

by InDegI,t (commodity inputs coming from suppliers), OutDegI,t (commodity

outputs going to customers), betweenness, and customer and supplier-based eigen-

centrality. Moreover, we also construct attributes for each insdustry by combining

their customers’ input shares or suppliers’ output shares with their concentration
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index and average distance-to-default:

CustomerISVI,t =
∑
J 6=I

wIJ,t · ISVJ,t

SupplierISVI,t =
∑
J 6=I

wJI,t · ISVJ,t (10)

where ISV stands for the industry-specific variables mentioned above. We thus

have CustomerDtDI,t , SupplierDtDI,t , CustomerHHII,t , and SupplierHHII,t .

• Second-order customer-supplier connections: for each industry, we take into account

possible cascade effects by looking one step further in the network, at the customers

and suppliers of the immediately neighboring industries. We compute the following

attributes for industry specific variables:

Customer2ndISVI,t =
∑
J 6=I

∑
K 6=J

wIJ,t · wJK,t · ISVK,t

Supplier2ndISVI,t =
∑
J 6=I

∑
K 6=J

wJI,t · wKJ,t · ISVK,t (11)

where Customer2ndI,t stands for the customers of the customers of industry I and

Supplier2ndI,t for the suppliers of the suppliers of industry I. For each industry I,

we also consider its customers and suppliers’ centrality measures, based on second-

order connections:

CustomerCMI,t =
∑
J 6=I

wIJ,t · CMJ,t

SupplierCMI,t =
∑
J 6=I

wJI,t · CMJ,t (12)

where CM denotes the centrality measures defined above. Therefore, we test the

relevance of customers’ and suppliers’ indegree, outdegree, and betweenness. Given

that supplier-based eigencentrality already takes into account the centrality of an

industry’s suppliers, and similarly for the customer-based one, we will only compute

the reciprocal second-order connections, namely using the supplier-based eigencen-

trality of customers and the customer-based eigencentrality of suppliers. These
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second-order connections refer to the importance of suppliers in terms of the im-

portance of the customers they serve, and vice-versa for customers. Computing

weighted customers’ out-degree is equivalent to the second-order connections stud-

ied by ? for the detailed US input-output tables.

Regarding the economic interpretation, we expect to find effects related to industries’

concentration index, which was shown by ? to be empirically linked to lower average

stock returns and implicitly lower risk. Moreover, we expect default intensities to be re-

lated to customers’ indegree, which proxy for customers’ payment obligations and can be

seen as exposure to customers’ credit risk, and suppliers’ outdegree, which accounts for

competition for input resources and business supply risk. On the other hand, customers’

outdegree, which captures their role as main commodity providers to other industries,

and suppliers’ indegree, which captures their role as commodity buyers from other in-

dustries, do not make much economic sense and we would not expect them to provide

relevant results. However, we include them in different model specifications in order to

see whether arbitrarily constructed variables using customer-supplier connections could

lead the model to deliver significant results, in which case we could not rule out spurious

results in the other specifications.

5 Empirical Results

This section presents the estimation results for the default intensity parameters ({α1, α2,

..., αk} in Equation ??) related to different credit model specifications, using the maximum-

likelihood (ML) procedure.17 We group the results by the industry-specific attribute

used to test the cross-sectional and structural effects related to industries’ position in the

customer-supplier network. The default horizon used in all estimations is one year.

We will follow the standard approach in the credit risk literature and use the Cumu-

lative Accuracy Profile (CAP) and its summary statistic, the Accuracy Ratio (AR)18 to

evaluate the performance of different credit risk model specifications. We will differen-

tiate between the in-sample AR, which uses the whole dataset both for estimating the

17We consider that the coefficients for other exit parameters are not of interest for default prediction
and are not shown in this paper for reasons of space. However, they can be made available upon request.

18For more information about the CAP and AR, please see Appendix ??.
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model and assessing its prediction performance,19 and the out-of-sample AR, which is the

true performance measure as it splits the data sample in two subsamples, one for esti-

mating the model - called the training sample - and one for evaluating the model - called

the testing sample. The in-sample AR cannot be used to determine whether a model is

superior to another, as it is susceptible to overfitting, and gives only a first indication

about their performance. We also show results of likelihood ratio tests, which are used to

compare the goodness of fit of the models with respect to the benchmark specification.

5.1 Estimation of default intensity parameters

The ML estimations for the benchmark default intensities are shown in column (0) of Ta-

bles ??-??, which present results using the whole data sample from 1997q1 to 2014q4. As a

reminder, the benchmark model includes firm-specific and macroeconomic variables taken

from the standard credit risk literature, while it ignores cross-sectional industry effects

and customer-supplier connections. We can see that most coefficients, both for macroeco-

nomic and firm-specific variables, have the expected sign and are significant at 1% level.

Moreover, the benchmark coefficients are stable across different model specifications: bet-

ter past stock returns, both at company-level as well as on the aggregate market, reduce

companies’ default intensities; the same applies for increased company profitability, big-

ger relative size, and tighter monetary policy. Interestingly, firm’s distance-to-default has

the expected sign but does not appear to be significant in the benchmark model, even

though it becomes significant in other model specifications. This may be because of its

high correlation with SizeComp and NetIncTA, which are both highly significant. The

market-to-book ratio is not significant in any of the specifications.20

Table ?? shows the ML estimates for default intensity coefficients when we account for

variables based on industries’ average distance-to-default, on the left side, and industries’

concentration, on the right side. We can see that for our sample, firms’ default intensity

is highly sensitive to the DtD of the industry in which it operates, with a strongly

significant but positive coefficient, meaning that a decrease in the aggregate volatility-

19For in-sample AR, the model’s fitted values are compared to the actual realizations using the same
dataset. We report it together with the estimation results in Tables ??-??.

20However, the results for other-exit estimations show that both firms’ distance-to-default and market-
to-book ratio are significant.
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adjusted leverage of the industry increases individual companies’ default intensity over the

next year. Adding this variable alone to the estimations increases the in-sample accuracy,

as measured by the AR, from 85.66% in the benchmark model, to 86.40%, even though

part of the better performance may be due to firm level DtD becoming significant. This

results contradicts the observation by ? that the industry-average distance-to-default is

not significant in the estimation of default intensities. Moreover, combining industries’

DtD with their customer-supplier connections from the commodities’ input-output tables

does not seem to bring improvements in terms of in-sample fit. We have significant

coefficients for firms’ sensitivity to DtD of industries that act as customers, both as first

and second connections, but without being translated in better in-sample AR.

Further, we can see that the concentration level of the industry where a firm operates

has a negative association with companies’ default intensity, though it is not statistically

significant. This confirms the hypothesis that companies in industries with high com-

petition, and low entry barriers, tend to have higher default intensities. The results of

combining the customer-supplier connections and industries’ concentration level show a

positive and statistically significant association with companies’ default intensities for the

next year. In the case of customer industries, the in-sample accuracy also increases to

86.18%. This result could be explained by a limited diversification of the client base in

the case of high aggregate customer concentration, which gives more exposure to clients’

credit risk. Looking at second level connections gives significant coefficients, though they

do not help to improve the model in-sample AR.

In the following part, we analyze the results for model specifications that include

variables based on network centrality measures. As mentioned before, network centrality

measures are built solely on the annual input-output tables, therefore they will have lower

variability compared to the state variables of the benchmark model. This constraint

makes it more difficult to obtain results where centrality measures prove relevant for

corporate default prediction, making any significant results we find even stronger.

Table ?? presents the effects of industries’ role as main commodity customers or sup-

pliers to the rest of the economy firms’ default intensities. The model specifications use

industries’ indegree, outdegree, and their combination with customer-supplier connec-

tions. Including only industries’ indegree does not yield significant coefficients; however,
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including both the industry-specific indegree together with that of customer industries

gives a good performance both in terms of in-sample AR (86.37%) as well as significance

of coefficients. A positive indegree coefficient means that the more an industry depends

on inputs from the rest of the economy, the higher companies’ default intensities; the

same effect happens if an industry’s customers are among important consumers of in-

puts. This result is consistent with the hypothesis of exposure to customers’ credit risk.

On the other hand, exposure to suppliers’ indegree does not yield significant coefficients,

nor improvements in the in-sample fit.

The coefficient related to industry-specific outdegree is positive and significant at 1%,

meaning that the more important an industries’ role as commodity supplier, the higher the

default intensities of companies operating in that industry. Including only the outdegree

helps improve the in-sample fit by 0.3 percentage points. This result is expected, as the

outdegree captures the general exposure toward customers, and confirms the previous

results related to customers’ indegree. The role played by an industry’s commodity

suppliers as major suppliers towards the rest of the economy (suppliers’ oudegree) is

also statistically and economically relevant, as it captures companies’ exposure to the

risk of supply chain disruptions21. On the other hand, the role played by a customer as

important supplier in the economy (customers’ outdegree) does not prove to be useful for

predicting corporate default.

The relevance of an industry’s exposure to the flow of commodities in the intersectoral

network, as captured by the betweenness centrality, is analyzed in the left side of Table

??. Firstly, we can see that there is a statistically significant and positive association

between a company’s default intensity over the next year and its industry role as bridge

in the supply chain. This observations is also valid for second-order connections: having

economic ties to a supplier with high betweenness increases the default intensity and yields

the best in-sample fit with respect to the benchmark specification (86.49% vs. 85.66%.)

This confirms the hypothesis that an industry’s structural position in the general flow

of commodities, which exposes it to variations in the availability of commodities as well

as payment flows, is having an impact on companies credit and business risk. The right

21Operational accidents and natural disasters are a good example of risks that can cause extensive
supply chain disruption, as it was the case of Toyota, Sony and other Japanese companies that needed
to suspend production in the wake of the 2011 earthquake and tsunami. See ?
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side of table ?? analyzes the performance of the default prediction model when variables

based on industries’ eigencentrality are introduced. At industry-level, we show results

for in-eigencentrality, where the centrality of an industry is high if its suppliers have high

centrality. We can see that while the coefficient is positive and statistically significant,

the in-sample AR of the model is not greatly improved. The same is valid for the second-

order connections, where we consider the supplier-based eigencentrality of customers and

the customer-based eigencentrality of suppliers.

Figure ?? shows how the in-sample estimated default intensities compare to the actual

number of defaults (depicted as bars) over the sample period. The exponential model

seems to fit reasonably well the empirical defaults; moreover, introducing industry-level

variables in the benchmark specification does not change the shape of fit, rather leads to

local adjustments. For example, including industry-average distance-to-default lowers the

estimated credit risk during 1998-2000 (which the benchmark model seems to overstate)

and increases it during 2004-2007 and 2013-2014. On the other hand, including supplier

betweenness does not change much the benchmark fit, except for a short overstatement

of credit risk in mid-2001.

Further, we look at Exide Technologies, a company in the Electrical equipment, appli-

ances, and components industry that went through two Chapter 11 bankruptcy protection

filings, in 2002 and 2013. The company emerged with debt reductions from both cases,

in 2004 and 2015. Even though there were a couple of critical financial distress episodes,

in our sample the company is registered with one exit event due to default in April

2015. In Figure ??, which shows the in-sample estimated default intensities for Exide

over 1997q1-2014q4, we can see that the corporate default model is able to pick spikes

in credit risk for several quarters preceding both bankruptcy filings. As before, different

specifications including industry effects appear as variants to the benchmark model. For

this specific example, customer-based centrality seems to provide the highest estimated

default intensities before and during the bankruptcy periods. Other increases in credit

risk were also registered during 2005 and 2007-2009.

23



5.2 Out-of-sample performance

For assessing the ability of a model to predict corporate default, we need to split the

data sample into two parts, such that the data used to estimate the model (called the

training sample) is different from the data used to evaluate it (called the validation or

testing sample). This procedure ensures that the model performance, compared to other

alternatives, is not overstated. There are two ways to split the dataset in training and

testing samples: using time separation for two consecutive periods or creating a cross-

sectional separation for estimation and prediction.

In the case of over-time out-of-sample (OT-OOS) performance, we use an iterative

procedure in which for each out-of-sample quarter over 2007q1-2014q4 we estimate the

model specification, based on all data available up to that point in time, and use it to

determine firms’ default intensities for the upcoming year. For each iteration, we collect

the estimated default intensities and use them in the end to calculate the out-of-sample

AR.

The out-of-sample results using over-time sample separation are shown on the left

side of Table ?? and evaluate the accuracy ratio for a selection of model specifications

that include industry-specific effects and customer-supplier relations. It appears that the

main channel of distress transmission, which has a quantitative impact on firms’ default

probability, is through supplier industries. Compared to the in-sample fit, the OT-OOS

AR is more strict in assessing models’ prediction power, with the benchmark model

already scoring very high with an AR of 94.54%. The highest AR, of about 95.08%,

is obtained for the model specification including suppliers’ outdegree,22 meaning that

the importance of an industry’s suppliers as main commodity providers to the rest of

the economy is increasing companies’ default intensities. This observation highlights the

possible impact of business risk, and more specifically supplier risk, related especially to

episodes of supply-chain disruptions.

Considering the possible impact of other firms’ financial health on companies’ default

probabilities, we can see in that an industry’s average distance-to-default helps predict

the default of individual companies (OT-OOS AR of 94.91%). This specification was also

among the best performing specifications in terms of in-sample fit and contradicts the

22See second-order connections in Equation ??.
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claims in ? regarding the ineffective use of industry-average distance-to-default. Other at-

tributes that increase model’s prediction power are the concentration level inside supplier

industries and suppliers’ customer-based eigencentrality, which indicates the importance

of suppliers in terms of the importance of the customers they serve.

For the cross-sectional out-of-sample evaluation (CS-OOS), we employ the k-fold

cross-validation method, where the original sample is randomly partitioned in k equal

sized subsamples, or block. Then, for each of the k subsample, we retain one subsample

for testing and use the remaining k − 1 subsamples to train the model. This method

insures that each observation is used for validation exactly once and that all observations

are used both for training and testing. In our case, we use k = 100. The CS-OOS AR is

computed after all k subsamples have been used for validation.

The right side of Table ?? shows the prediction performance of different credit model

specifications using cross-validation. The AR in this case is significantly different from the

OT-OOS AR, as the latter uses only the years 2007-2014 as out-of-sample data, whereas

for cross-validation all observations are considered for out-of-sample. From this point

of view, CS-OOS should be compared to in-sample AR, allowing to account for models’

over-fitting. We can see that, with few exceptions, models including industry-specific

and customer-supplier effects tend to out-perform the benchmark model, which has an

AR of 84.50%. The specification including suppliers’ betweenness proves to be the best

performing one, with an AR of 85.51%. This result reinforces the importance of exposures

to variations in the availability of commodities and payment flows through suppliers.

Customer concentration is also among the best performers, confirming the in-sample

observation that a lack of customer base diversification negatively affects companies’

credit risk. Overall, the ranking of model prediction performance obtained with cross-

validation matches the initial results based on in-sample AR.

6 Conclusion

This paper tests the relevance of attributes based on the structure of intersectoral customer-

supplier networks for the prediction of corporate default. Using industry-specific variables

and customer-supplier relations allows us to incorporate direct impacts from neighboring
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industries on the default intensities of individual companies. We employ a reduced-form

corporate default model used in ? and ?, who rely on a set of macroeconomic and firm-

specific variables to estimate the intensities of default and other types of exits. The

model is based on two independent doubly-stochastic Poisson processes that enable a

separable likelihood function for default and other-type of exits. One of the limitations

of the original model is the conditional independence of companies’ default hazard rates,

meaning that the model does not allow for the default or other exit of a company to

have a direct influence on the default or other exit intensity of another firm. The only

type of default intensity dependence between companies stems from their common depen-

dence on macrovariables or from the correlation across firms of firm-specific covariates.

In our study, we specifically test whether including the customer/supplier structural role

of industries, and various combinations with industry-specific attributes such as average

distance-to-default and concentration level, influence firms’ default intensity.

The use of commodity-to-industry input-output tables is motivated by the observation

in ? that the law of large numbers fails for asymmetric networks, which have power-law

tail structures for nodes outdegrees, meaning that the impact of idiosyncratic shocks on

the aggregate volatility is not vanishing as fast as previously thought. Moreover, ? also

studies the microfoundations of aggregate fluctuations and shows that the “diversification

argument” is not valid in the presence of a fat-tailed distribution of firm sizes, because

shocks to firms with highest market power will propagate at aggregate level. Our analysis

shows that both the distribution of industries’ concentration indices, which is based on

firms’ size, and the distribution of network measures based on out-going links, that relate

to industries’ role as commodity suppliers, are heavy tailed and asymmetric. These initial

observations point to the possibility of aggregate fluctuations forming from industry-

specific shocks, which could impact corporate default prediction.

The empirical method used in this study is based on the maximum likelihood esti-

mation of the default intensity function, where we set the default horizon at one year.

We find empirically that industry-level attributes such as distance-to-default and compe-

tition are relevant for the prediction of corporate default. Moreover, the results provide

evidence that economic ties to customer/supplier industries that have low competition

relate positively to companies’ default intensities. The best in-sample fit, as measured by
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the accuracy ratio, is obtained when accounting for industry-average distance-to-default

and industries’ exposure to the flow of commodities in the economy, as captured by be-

tweenness. We also observe that arbitrarily built network-based variables do not yield

significant results, which helps confirm that the results obtained for economically mean-

ingful variables are not artefacts.

The over-time out-of-sample prediction performance points to the superiority of the

supplier-based model specifications but is generally more pessimistic than the in-sample

accuracy when assessing improvements over the benchmark. Overall, the financial health

context of an industry, as measured by industry-average distance-to-default, helps predict

individual corporate defaults in out-of-sample tests. This result contradicts previous ob-

servations in the literature. Concerning the customer-supplier relations, cross-sectional

out-of-sample results confirm the hypotheses that exposures to customers’ credit risk,

assessed by customers’ indegree, and supply chain disruptions, measured by suppliers’

outdegree, are relevant predictors of companies’ credit risk. Moreover, insufficient di-

versification of the customer and supplier base as well as exposures to variations in the

flow of commodities and payments in the aggregate economy also have an impact on

companies’ default intensities.
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Figure 1: The figure shows the evolution over the period 1997 to 2014 of industries’
concentration and centrality distributions. On each box, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers,
and the outliers are plotted individually using the ’o’ symbol.
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2014.
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Figure 3: The figure shows the estimates and their respective standard errors of the
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supplies that exited the Compustat sample in April 2015 due to Chapter 11 bankruptcy
filing.
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Table I: Number of companies, defaults/bankruptcies, and other exits for 1997-2015

Year Active firms Defaults Other exits

1997 6034 0 190

1998 5904 10 331

1999 5595 30 432

2000 5388 56 487

2001 4914 42 365

2002 4499 27 248

2003 4156 16 314

2004 4022 16 442

2005 3969 16 254

2006 3884 11 290

2007 3799 5 321

2008 3598 7 210

2009 3356 17 189

2010 3259 15 283

2011 3127 20 209

2012 3066 15 203

2013 3095 16 186

2014 2965 8 186

2015 2828 10 185

The table reports the number of active firms, defaults/bankruptcies, and other exits for each year over

the period 1997-2015.
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Table II: Descriptive statistics for macroeconomic and firm-specific attributes

Mean Std. dev. Min .25pctl Median .75pctl Max Skewness Kurtosis

Macroeconomic variables

Trailing S&P500 0.083 0.189 -0.397 -0.011 0.114 0.211 0.466 -0.489 2.839

3m T − bill 2.570 2.126 0.010 0.150 2.190 4.790 6.000 0.098 1.365

Firm-specific variables

Trailing return 0.224 1.561 -0.972 -0.306 0.000 0.333 28.521 10.841 164.882

Cash/TA 0.202 0.236 0.000 0.025 0.101 0.302 0.990 1.438 4.254

NetInc/TA -0.017 0.124 -1.693 -0.016 0.007 0.020 0.988 -4.964 67.170

Size -4.314 2.140 -9.903 -5.881 -4.345 -2.859 2.227 0.166 2.720

Market/Book 2.085 3.093 0.262 0.908 1.337 2.211 56.899 10.017 148.765

DtD 4.024 3.197 -2.174 1.811 3.533 5.566 26.011 1.540 8.114

The table reports annualized descriptive statistics for the attributes used in the benchmark credit model.

For macroeconomic variables, Trailing S&P500 is the return of the S&P500 over the previous year and

3m T − bill is the three-month Treasury rate. For firm-specific variables, Trailing return is firm’s

stock return over the previous year, DtD is the distance-to-default, Cash/TA is cash and short-term

investments over the total assets, NetInc/TA is the net income over the total assets, Size is log of firm’s

market equity value over the average market equity value of an S&P500 company, and Market/Book is

the market to book ratio using the total asset values.

Table III: Correlation matrix for firms-specific variables

Trailing return Cash/TA NetInc/TA Size Market/Book DtD

Trailing return 1.000 0.059 0.028 0.026 0.120 0.123

Cash/TA 0.059 1.000 -0.171 -0.107 0.315 0.068

NetInc/TA 0.028 -0.171 1.000 0.240 -0.037 0.275

Size 0.026 -0.107 0.240 1.000 0.082 0.465

Market/Book 0.120 0.315 -0.037 0.082 1.000 0.273

DtD 0.123 0.068 0.275 0.465 0.273 1.000
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Table IV: Number of companies by industry: Part 1 of 2.

Firms Defaults (%) Other exits (%)

Farms 27 1 3.70 16 59.26

Forestry, fishing, and related activities 6 0 0.00 4 66.67

Oil and gas extraction 302 9 2.98 168 55.63

Mining, except oil and gas 100 4 4.00 44 44.00

Support activities for mining 58 1 1.72 29 50.00

Utilities 209 0 0.00 112 53.59

Construction 80 4 5.00 43 53.75

Wood products 35 3 8.57 17 48.57

Nonmetallic mineral products 49 3 6.12 31 63.27

Primary metals 96 4 4.17 60 62.50

Fabricated metal products 113 3 2.65 57 50.44

Machinery 329 11 3.34 204 62.01

Computer and electronic products 1150 41 3.57 739 64.26

Electrical equipment, appliances, and components 135 2 1.48 78 57.78

Motor vehicles, bodies and trailers, and parts 110 6 5.45 55 50.00

Other transportation equipment 71 3 4.23 33 46.48

Furniture and related products 44 4 9.09 21 47.73

Miscellaneous manufacturing 297 12 4.04 201 67.68

Food and beverage and tobacco products 195 4 2.05 117 60.00

Textile mills and textile product mills 39 2 5.13 28 71.79

Apparel and leather and allied products 123 7 5.69 74 60.16

Paper products 75 2 2.67 52 69.33

Printing and related support activities 43 1 2.33 32 74.42

Petroleum and coal products 55 2 3.64 27 49.09

Chemical products 912 30 3.29 465 50.99

Plastics and rubber products 85 4 4.71 57 67.06

Wholesale trade 367 18 4.90 229 62.40

Motor vehicle and parts dealers 32 0 0.00 17 53.13

Food and beverage stores 44 3 6.82 33 75.00

General merchandise stores 44 7 15.91 20 45.45

Other retail 353 27 7.65 205 58.07

Air transportation 42 7 16.67 17 40.48

The table reports the number of companies that were active for each industry during 1997-2015 as well

as the number of defaults/bankruptcies and other exits.
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Table IV (Continued): Number of companies by industry: Part 2 of 2.

Firms Defaults (%) Other exits (%)

Rail transportation 16 0 0.00 9 56.25

Water transportation 24 0 0.00 11 45.83

Truck transportation 51 5 9.80 28 54.90

Transit and ground passenger transportation 5 0 0.00 4 80.00

Pipeline transportation 55 0 0.00 25 45.45

Other transportation and support activities 40 2 5.00 23 57.50

Warehousing and storage 4 0 0.00 4 100.00

Publishing industries, except internet (includes software) 579 19 3.28 451 77.89

Motion picture and sound recording industries 53 3 5.66 38 71.70

Broadcasting and telecommunications 355 13 3.66 242 68.17

Data processing, internet publishing, and other 301 9 2.99 159 52.82

Federal Reserve banks, credit intermediation, and other 49 3 6.12 27 55.10

Securities, commodity contracts, and investments 90 5 5.56 39 43.33

Insurance carriers and related activities 83 2 2.41 61 73.49

Funds, trusts, and other financial vehicles 16 0 0.00 14 87.50

Other real estate 62 1 1.61 27 43.55

Rental and leasing services and lessors of intangible assets 105 7 6.67 47 44.76

Legal services 5 0 0.00 4 80.00

Computer systems design and related services 277 7 2.53 199 71.84

Miscellaneous professional, scientific, and technical services 232 8 3.45 151 65.09

Administrative and support services 186 6 3.23 124 66.67

Waste management and remediation services 61 4 6.56 41 67.21

Educational services 42 1 2.38 23 54.76

Ambulatory health care services 160 12 7.50 100 62.50

Hospitals 28 0 0.00 16 57.14

Nursing and residential care facilities 47 2 4.26 36 76.60

Social assistance 8 0 0.00 7 87.50

Performing arts, spectator sports, museums, and other 19 1 5.26 13 68.42

Amusements, gambling, and recreation industries 50 0 0.00 29 58.00

Accommodation 63 1 1.59 48 76.19

Food services and drinking places 164 5 3.05 102 62.20

Other services, except government 36 0 0.00 28 77.78

Total 8886 341 3.84 5415 60.94

The table reports the number of companies that were active for each industry during 1997-2015 as well

as the number of defaults/bankruptcies and other exits.
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Table V: Descriptive statistics for industries’ competition and centrality measures

Competition Indegree Outdegree EigenCentC EigenCentS Betweenness

Mean 0.230 0.374 0.373 0.079 0.117 9.407

Std. dev. 0.206 0.124 0.425 0.097 0.041 11.924

Min 0.020 0.099 0.000 0.000 0.032 0.000

.25pctl 0.100 0.278 0.057 0.013 0.084 3.146

Median 0.152 0.364 0.243 0.045 0.116 6.416

.75pctl 0.277 0.461 0.494 0.096 0.149 8.531

Max 0.990 0.791 2.177 0.631 0.257 70.540

Skewness 1.819 0.430 1.849 2.180 0.284 2.944

Kurtosis 5.936 3.116 6.501 8.286 2.502 13.304

The table reports descriptive statistics for industries’ competition and centrality measures. Competition

is computed as the sum of squared market shares of companies in each industry (the HHI index),

indegree is the share of commodity inputs used from the rest of the economy, outdegree is the share

of commodity outputs delivered by an industry towards the rest of the economy, eigencentrality is the

relative importance of industries in the sectoral network, and betweenness is industries’ exposure to the

flow of supply-chain commodities in the economy. See Section detailed in Section ?? for more information.
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Table VII: Default intensity coefficients when considering industry indegree/outdegree
and customer-supplier effects.

InDegree OutDegree

(0) (1) (2) (3) (4) (1) (2) (3) (4)

Intercept -9.612*** -9.794*** -9.910*** -9.659*** -10.970*** -9.843*** -9.816*** -10.124*** -10.185***

(0.492) (0.551) (0.505) (0.544) (0.608) (0.502) (0.506) (0.569) (0.573)

TrailingRet -0.571*** -0.585*** -0.579*** -0.568*** -0.660*** -0.607*** -0.581*** -0.552*** -0.562***

(0.183) (0.187) (0.185) (0.183) (0.198) (0.190) (0.186) (0.181) (0.183)

SP500 -0.768** -0.782** -0.781** -0.751** -0.662 -0.782** -0.763** -0.763** -0.760**

(0.420) (0.423) (0.419) (0.419) (0.417) (0.420) (0.420) (0.421) (0.419)

T3m -0.291*** -0.288*** -0.285*** -0.293*** -0.309*** -0.287*** -0.289*** -0.296*** -0.299***

(0.047) (0.048) (0.047) (0.048) (0.047) (0.047) (0.047) (0.047) (0.048)

CashTA 0.750*** 0.819*** 0.614** 0.747*** 0.755*** 0.680** 0.643** 0.602** 0.663**

(0.288) (0.293) (0.289) (0.287) (0.292) (0.288) (0.292) (0.298) (0.302)

NetIncTA -1.675*** -1.801*** -1.612*** -1.722*** -1.748 -1.649*** -1.602*** -1.570*** -1.621***

(0.470) (0.469) (0.471) (0.467) (0.466) (0.472) (0.474) (0.477) (0.474)

SizeComp -0.685*** -0.662*** -0.688*** -0.681*** -0.684*** -0.683*** -0.692*** -0.689*** -0.680***

(0.061) (0.061) (0.061) (0.061) (0.061) (0.061) (0.062) (0.062) (0.062)

Mkt2Book 0.033 0.029 0.024 0.031 0.020 0.025 0.028 0.033 0.031

(0.034) (0.034) (0.034) (0.034) (0.034) (0.035) (0.034) (0.034) (0.034)

DtD -0.075 -0.076 -0.072 -0.078 -0.068 -0.068 -0.071 -0.078 -0.083

(0.054) (0.054) (0.054) (0.054) (0.054) (0.054) (0.054) (0.054) (0.054)

∼Degree 0.904 2.222** 0.391*** 0.770**

(0.773) (1.260) (0.138) (0.376)

Customer∼Degree 1.040*** 1.456*** 0.583** -0.976

(0.322) (0.378) (0.267) (0.787)

Supplier∼Degree 0.612 1.124 1.424** 1.278

(1.552) (2.298) (0.714) (0.811)

Likelihood ratio (χ2) 1.357 10.117 0.147 15.352 8.048 4.808 4.171 11.366

(p-value) (0.174) (0.001) (0.968) (0.001) (0.003) (0.016) (0.024) (0.005)

In-sample AR (%) 85.66 85.72 85.96 85.61 86.37 85.97 85.71 85.78 86.13

The table shows results for maximum likelihood estimates of the default intensity function

({α1, α2, ..., αk} in Equation ??). Column (0) covers the benchmark model, where only macroeconomic

and firm-specific variables are used to assess companies’ default probabilities. The following columns

show results for specifications including variables based on industries’ indegrees/outdegrees (InDeg in

Equation ??, OutDeg in Equation ??), which capture industries’ role as commodity customers/providers

in the economy. Customer-supplier effects, as detailed in section ??, are also included. The likelihood

ratio test assesses the models’ goodness of fit with respect to the benchmark. In-sample fit is evaluated

in the last line, using the accuracy ratio (AR). In parentheses are the standard errors for the estimated

coefficients. Statistical significance at the 10%, 5% and 1% level is indicated by *, **, and ***.
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Table VIII: Default intensity coefficients when considering industry centrality and
customer-supplier effects.

Betweenness Eigencentrality

(0) (1) (2) (3) (4) (1) (2) (3) (4)

Intercept -9.612*** -9.825*** -9.787*** -10.789*** -10.774*** -9.938*** -9.847*** -10.688*** -10.524***

(0.492) (0.497) (0.499) (0.519) (0.516) (0.507) (0.503) (0.569) (0.622)

TrailingRet -0.571*** -0.592*** -0.576*** -0.585*** -0.579*** -0.550*** -0.577*** -0.508*** -0.593***

(0.183) (0.187) (0.186) (0.186) (0.185) (0.181) (0.185) (0.174) (0.191)

SP500 -0.768** -0.769** -0.824** -0.637 -0.681 -0.797** -0.761** -0.777** -0.824**

(0.420) (0.420) (0.421) (0.422) (0.420) (0.421) (0.419) (0.419) (0.426)

T3m -0.291*** -0.290*** -0.282*** -0.332*** -0.314*** -0.279*** -0.286*** -0.317*** -0.294***

(0.047) (0.047) (0.047) (0.048) (0.048) (0.047) (0.047) (0.048) (0.048)

CashTA 0.750*** 0.852*** 0.723** 0.734** 0.767*** 0.751*** 0.631** 0.578** 0.753**

(0.288) (0.291) (0.288) (0.289) (0.290) (0.288) (0.289) (0.287) (0.312)

NetIncTA -1.675*** -1.770*** -1.633*** -1.669*** -1.669*** -1.569*** -1.686*** -1.412*** -1.604***

(0.470) (0.466) (0.470) (0.463) (0.463) (0.475) (0.469) (0.480) (0.480)

SizeComp -0.685*** -0.681*** -0.678*** -0.682*** -0.677*** -0.695*** -0.683*** -0.686*** -0.685***

(0.061) (0.061) (0.061) (0.060) (0.060) (0.062) (0.061) (0.061) (0.062)

Mkt2Book 0.033 0.033 0.029 0.036 0.033 0.025 0.023 0.034 0.028

(0.034) (0.033) (0.034) (0.033) (0.034) (0.034) (0.034) (0.034) (0.034)

DtD -0.075 -0.074 -0.077 -0.080 -0.080 -0.076 -0.072 -0.091** -0.072

(0.054) (0.054) (0.054) (0.052) (0.053) (0.054) (0.054) (0.055) (0.055)

Centrality 0.016*** 0.009 2.025*** 2.385**

(0.004) (0.006) (0.615) (1.064)

CustomerCentrality 0.039*** 0.011 2.962*** -0.380

(0.013) (0.014) (1.058) (1.866)

SupplierCentrality 0.237*** 0.206*** 15.682*** 4.818

(0.039) (0.042) (3.311) (4.559)

Likelihood ratio (χ2) 10.609 8.190 30.677 34.545 11.001 7.216 2.116 14.791

(p-value) (0.001) (0.002) (0.000) (0.000) (0.000) (0.004) (0.095) (0.002)

In-sample AR (%) 85.66 85.69 85.78 86.49 86.45 85.81 85.89 85.31 85.94

The table shows results for maximum likelihood estimates of the default intensity function

({α1, α2, ..., αk} in Equation ??). Column (0) covers the benchmark model, where only macroeconomic

and firm-specific variables are used to assess companies’ default probabilities. The following columns

show results for specifications with variables based on industries’ centrality in the input-output economy,

measured by betweenness and (supplier-based) eigencentrality. We also include customer-supplier effects,

as detailed in section ??. The likelihood ratio test assesses the models’ goodness of fit with respect to

the benchmark. In-sample fit of the model is evaluated in the last line, using the accuracy ratio (AR).

In parentheses are the standard errors for the estimated coefficients. Statistical significance at the 10%,

5% and 1% level is indicated by *, **, and ***.
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Table IX: Accuracy ratios (%) for over-time and cross-sectional out-of-sample tests.

Over-time separation Cross validation

ISV Supplier Customer ISV Supplier Customer

DtD 94.91 94.61 93.88 84.69 84.27 84.54

Concentration 94.46 94.75 93.34 84.43 84.62 84.94

InDeg 94.64 93.97 93.84 84.53 84.26 84.85

OutDeg 94.05 95.08 94.05 84.84 84.80 84.78

Betweenness 94.18 94.43 94.07 84.81 85.52 84.76

EigenCentS 93.83 94.60 93.61 84.65 84.23 84.84

The table shows results for the prediction performance, as measured by out-of-sample accuracy ratios,

for a selection of relevant model specifications that include industry-specific effects and customer-supplier

relations. The bolded values represent an improvement compared to the benchmark specification, which

has an AR of 94.54% for over-time out-of-sample and 84.50% for cross-validation. ISV represent specifi-

cations where the attributes used were either based on an industry’s internal context (average distance-

to-default and concentration) or its position in the customer-supplier network. The columns Supplier

and Customer refer to attributes where we account for customers and suppliers’ internal context and

industry-position in the commodities’ supply-chain. See Section ?? for more details.

Appendices

A Conditional default probabilities and forward in-

tensity rates

In this section we describe the probabilistic model for firms’ default starting from ?, who

a use doubly stochastic Poisson intensity model to estimate default probabilities over

multiple periods. In a doubly stochastic setting, the time of default (τiD) of a firm i is

modeled as the first jump of a Poisson process, whose intensity λit is itself random. The

stochastic intensity is a function of some state variables whose dynamics is not affected

by default. Besides default, public companies are delisted from trading on the stock

exchange as a result of mergers and acquisitions, going back to private company, and

other reasons. When studying default, it is important to differentiate whether companies

leave the sample as a result of bankruptcy or because of other reasons. This is done by

introducing a second independent Poisson process governing other types of exit, whose
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intensity φit is also stochastic.

For example, let us introduce the counting processes N and M as independent Poisson

processes with conditionally deterministic time-varying intensities. We denote by Nit the

default counting process of firm i with intensity λi,t and denote Mit to be the other

exit counting process with intensity φi,t. We define the default time as stopping time

τDi = inf{t ∈ R+|Nit > 0,Mit = 0} and the exit time due to other reasons as τOi =

inf{t ∈ R+|Mit > 0, Nit = 0}. The survival probability for the interval [t, t + τ ] is given

by the probability of having no jump in the combined counting process between time t

and t + τ , meaning that the combined exit time τCi = inf{t ∈ R+|Nit + Mit > 0} is not

yet reached.

Therefore, given that the company survived until time t, the conditional survival and

default probabilities to time t+ τ can be expressed as 23:

P (τCi > t+ τ) = Et
[
exp

(
−
∫ t+τ

t

(λis + φis)ds

)]

P (τDi < t+ τ) = Et
[∫ t+τ

t

exp

(
−
∫ s

t

(λiu + φiu)du

)
· λisds

]
As the instantaneous intensities λit and φit are only known at or after time t, ? propose

to use the approach of forward intensity rates. They introduce the quantity ψit(τ) to be

the spot combined exit intensity for default and other exits together and denote by

Fit(τ) the conditional distribution function of the combined exit time evaluated at t+ τ .

Therefore, 1−Fit(τ) is the probability of surviving over the period [t, t+ τ ], which is also

given in equation ??, and:

ψit(τ) ≡ − ln(1− Fit(τ))

τ
= −

ln E
[
exp

(
−
∫ t+τ
t

(λis + φis)ds
)]

τ

Thus, the surviving probability over the period [t, t+τ ] can be also expressed as exp(−ψit(τ)·

τ). Moreover, ? makes the assumption that ψit is differentiable and define the forward

23Please refer to proof of Proposition 1 in ?
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combined exit intensity as:

git(τ) ≡ F ′it
1− Fit

= ψit(τ) + ψ′it(τ).

which gives ψit(τ)τ =
∫ τ

0
git(s)ds. In order to define the forward default intensity, we

need to separate the combined exit time of firm i, τCi, from the default time, τDi. If

the firm exits due to default we have τCi = τDi, otherwise it exits due to other reasons

while not being in default and we have τCi < τDi. The forward default intensity fit(τ)

for [t + τ, t + τ + ∆t] is defined by the conditional probability of defaulting in the time

interval given that the firm has survived until t+ τ :

fit(τ) ≡ eψit(τ)·τ · lim
∆t→0

Pt(t+ τ < τDi = τCi ≤ t+ τ + ∆t)

∆t

= eψit(τ)·τ · lim
∆t→0

Et
[∫ t+τ+∆t

t+τ
exp

(
−
∫ s
t

(λiu + φiu)du
)
λisds

]
∆t

.

The default probability over the period [t, t+τ ] can now be written as
∫ τ

0
e−ψit(s)sfit(s)ds.

The approach in ? models fit(τ) and git(τ) as exponential functions of some state

variables and uses a maximum likelihood function to estimate the two exit intensities.

The likelihood for each firm is :

Lτ,i,t(α, β) = 1t0i≤t,τCi>t+τ · Pt(τCi > t+ τ)

+ 1t0i≤t,τCi=τDi≤t+τ · Pt(τDi = τCi ≤ t+ τ)

+ 1t0i≤t,τCi 6=τDi,τCi≤t+τ · Pt(τDi 6= τCi, τCi ≤ t+ τ)

+ 1t0i>t + 1τCi≤t

The likelihood for each firm is a sum of indicator functions multiplied by their respec-

tive probabilities, covering five independent cases that can occur during time interval

[t, t + τ ]. Discretizing the model allows us to express the forward default and combined

exit probabilities in terms of fit and git, which we will estimate. The discretized version
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of the probabilities expressed in the likelihood function is:

Pt(τCi > t+ τ) = e−
∑τ−1
s=0 git(s)∆t

Pt(τDi = τCi ≤ t+ τ) =

=

1− e−fit(0)∆t if τCi = t+ 1,

e−
∑τCi−t−2
s=0 git(s)∆t · (1− e−fit(τCi−t−1)∆t) if t+ 1 < τCi ≤ t+ τ

Pt(τDi 6= τCi, τCi ≤ t+ τ) =

=

e
−fit(0)∆t − e−git(0)∆t if τCi = t+ 1,

e−
∑τCi−t−2
s=0 git(s)∆t × (e−fit(τCi−t−1)∆t − e−git(τCi−t−1)∆t)) if t+ 1 < τCi ≤ t+ τ

B Construction of distance-to-default

One measure relevant to estimating the default risk of a firm is its distance-to-default.

? describe the distance-to-default as the number of standard deviations of annual asset

growth by which the asset level exceeds the firm’s liabilities. Here we follow ?, ?, and ?

and define the distance-to-default of a given company at time t, over the period T , as:

DtDi,t =
ln (VA,t/Lt) +

(
µA − 1

2
σ2
A

)
T

σA
√
T

Typically, the chosen time horizon T is of four quarters. We can see that for computing

DtDi we need the debt value Lt with time to maturity T , the market value of assets VA,

the mean rate of asset growth µA, and asset volatility σA. We will explain next how to

solve iteratively for asset market value and asset volatility.

We use the ? formula and state the market value of equity VE, seen as a call option

on VA with time to expiration T and strike price Lt, and its volatility (derived from Ito’s

Lemma and the Geometric Brownian Motion assumption of the model):

VE = VAΦ(d)− Le−rTΦ(d− σA
√
T ) (13)
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VEσE = VAσA
δVE
δVA

(14)

where

d1 =
ln (VA/L) +

(
r + 1

2
σ2
A

)
T

σA
√
T

and r is the risk-free rate and Φ is the cumulative density function of the standard normal

distribution.

We calculate σA together with VA by solving equations ?? and ?? in an iterative

procedure. For each quarter, we look at daily stock price information over the previous

year and use the estimate of the volatility of equity, σE, as initial value for σA. We then

use the Black-Scholes formula and compute VA for each trading day over the last year,

using the daily price information and the number of shares outstanding for VE,t and the

sum of total liabilities and half of total long term debt for Lt. As risk-free rate, we use

the one-year T-bill rate at daily frequency. We compute the asset volatility σA as the

standard deviation of daily VA and use the new σA for the next iteration. We repeat

this procedure until the value σA converges up to a tolerance level of 10E-4. Once σA

converged, we use its value in the Black-Scholes formula to compute the final market asset

values. Finally, we estimate the drift µA with the mean of changes in ln(VA). We repeat

the above procedure for each end of the quarter, with an estimation window always kept

at one year, in such way that we obtain VA, µA, and σA needed to compute DtDi,t.

C Computing the accuracy ratio

There are several ways to evaluate the ability of a model to discriminate between different

classes of objects, which in our case represent defaulted and non-defaulted firms. Two of

the most commonly used statistics are the Cumulative Accuracy Profile (CAP) and its

summary statistic, the Accuracy Ratio (AR), and the Receiver Operating Characteristic

(ROC) and its summary statistic, the area below the ROC curve (AUC) (see ?). The

CAP (which is explained in details in ?) is the most popular technique currently used

in economic and financial practice, whereas the ROC curves are mostly used in medicine
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and psychology.24 In this paper, we follow the standard in the credit risk literature and

use the CAP and the accuracy ratio to evaluate the performance of different credit risk

model specifications. In this way, we can compare our results with the previous ones

In order to compute the accuracy ratio, we start by ranking the companies according

to their estimated default intensity as predicted by the mode, from highest to lowest.

Then, for every integer λ ∈ 1..100, we check how many companies actually defaulted

(Mλ) among the companies within the λ% of firms with the highest default risk and

record the corresponding number of defaulted companies as a percentage of total number

of defaulted companies (M) in the sample over the time horizon:

f(λ) =
Mλ

M

where f(λ) takes values between 0 and 1, and is an increasing function of λ. Moreover,

f(0) = 0 and f(100) = 1. In case of a perfectly performing default risk model, which

would capture all defaults for each integer λ, f(λ) would be given by:

f(λ) =
λ ·N
M

for λ <
M

N
, and f(λ) = 1 for λ ≥ M

N

In case we would have no information about the likelihood of default, the companies

would be ranked randomly and we would eventually obtain f(λ) = λ.

For testing the performance of the credit risk model, we need to compute f(λ) for

each quarter, while always keeping one-year horizon, and take the average f(λ) over

all quarters covered by the testing sample. In the case of an uninformative model, the

average f(λ) function would correspond to a 45◦ line. The performance of a model is thus

measured by the area between the graph of the average f(λ) function and the 45◦ line,

where a further lying average f(λ) function from the 45◦ line means a better performance.

The accuracy ratio is defined as the ratio between the area associated with the model’s

average f(λ) function and the one associated with a perfectly performing model (see

Figure ??, where AR = αR/αP .)

24The relationship between the accuracy ratio and the area under the ROC curve is AUC = 1/2 ×
(AR+ 1)
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Figure 6: Source: ?. This figure illustrates the concept of a Cumulative Accuracy
Profile. For each percentage λ on the horizontal axis, the polygon shows the fraction
of companies that defaulted within one year that were ranked in the λ% of firms with
the highest estimated default probability at the beginning of the period. The upper line
represents the case of perfect information, where all defaults are assigned to the lowest
rating scores. The straight line below represents the naive case of zero information or
random assignment of rating scores. The Accuracy Ratio is the ratio of the performance
improvement of the model being evaluated over the naive model (αR) to the performance
improvement of the perfect model over the naive model (αP ).
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