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Abstract

This paper investigates the impact of High Frequency quoting on the efficiency

of prices in order driven call auction markets. Based on the framework of noisy

rational expectations equilibria, we first provide a theoretical model where HFT

and non–HFT traders coexist in a transparent order–driven call market. As the

pre–call order batching procedure evolves in time, HFTs improve the precision

of their signal by collecting public information through various electronic net-

works. To this extent, price efficiency is accelerated significantly as additional

information is impounded into prices. Moreover, the model predicts that price

efficiency is positively related to the number of HFTs in the market. To test

empirically the prediction of our model, we utilize a unique set of intraday data

that includes HFT flagged messages, enabling us to distinguish between com-

puter and human trading. Our empirical analysis provides evidence that HFTs

contribute significantly to price efficiency, corroborating our theoretical analysis.
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1. Introduction

In the past decade there has been a burst of algorithmic and high–frequency

trading activity in financial markets, attributed to the increased computational

power and the improvement of electronic network communication systems in

terms of speed, accessibility and quality. Nowadays, a large proportion of total

volume of transactions in electronic markets (e.g., stock currency and com-

modity markets) is triggered by High–Frequency Trading programs (hereafter

referred to, also, as HFTs) that are designed to operate at ultra–high speeds

during the intraday trading process (e.g., millisecond accuracy). In particular,

HFTs receive market information, analyse it and, subsequently, submit, adjust

or cancel orders into the electronic system, aiming for capital gain opportunities

that arise from temporal and/or longer term asset price movements. Further-

more, algorithmic trading is often used by investors and fund managers as a

means of reducing the cost of trading, via the application of ‘slice and dice’

techniques, as well as by market makers for various order handling and liquidity

supply services (Brogaard, 2010; Jovanovic and Menkveld, 2011; Hendershott

et al., 2011; Chlistalla, 2012; Foucault et al., 2015; Serbera and Paumard, 2016).

The common presence of HFTs and non–high frequency traders (hereafter

referred to, also, as nHFTs) has raised several questions regarding the efficient

operation and the stability of financial markets. On one hand, it is argued that

HFTs reduce transaction costs and improve information speed and price effi-

ciency, while enhancing liquidity through their ability to provide simultaneous

access to interlinked electronic trading platforms (Hasbrouck and Saar, 2013;

Conrad et al., 2015). On the other hand, the presence of HFTs may increase

the possibility of abnormal price variations, through the rapid dissemination of

quotes, or, even worse, of market failures (e.g., flash crashes) (Biais and Wool-

ley, 2011; Huang and Wang, 2009; Madhavan, 2012; Hasbrouck and Saar, 2013;

Chordia et al., 2013; Kirilenko et al., 2015).

Market regulators, financial practitioners and researchers have already turned

their attention on high-frequency trading and its impact on market quality (e.g.,
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liquidity, volatility and information speed). To this extent, there is an ongo-

ing attempt to adjust investors trading strategies to the presence of HFTs, to

invent new trading platforms and rules that will encapsulate the properties of

high frequency and algorithmic trading, and to reduce the probability of mar-

ket failures within the existing trading framework (Biais and Woolley, 2011;

Madhavan, 2012; OHara, 2015; Foucault et al., 2015).

The present study contributes to the current understanding of the effect of

HFTs on the price formation process in modern electronic markets. We examine,

both analytically and empirically, the efficiency of prices generated by the call

auction trading mechanism within a transparent order–driven setting. More

specifically, based on the notion of noisy rational expectations equilibria, we

develop a theoretical framework where nHFTs coexist in the market with HFTs

(Grossman and Stiglitz, 1976; Grossman, 1976; Grossman and Stiglitz, 1980;

Admati, 1985). Due to the nature of call auction mechanisms, one may argue

that HFTs may not have an incentive to enter such markets. Indeed, HFTs

are designed to trade continuously at ultra–high speeds, whereas trading in call

auctions is conducted at a predetermined point in time. Nonetheless, HFTs are

able to collect and process information fast and, thus, to form signals that are

superior compared to the information set available to the rest of the (human)

trading public. Therefore, HFTs may participate in call auction markets not

because of their speed advantage but due to their informational advantage.

Herein, we first develop a static competitive equilibrium model where human

insiders possess a private signal about the asset value. On the other hand, HFTs

view the same signal as human insiders but with greater precision, due to their

ability to collect and process the available public information over multiple

data streams and electronic trading networks. We show that price efficiency

improves with the number of machines in the market increased. We also extend

the static model to incorporate strategic trading by including a price elasticity

term into the standard Grossman and Stiglitz (1980) framework, as in Rindi

(2008). We show that price efficiency is inversely correlated with the price

elasticity factor. Subsequently, we build a dynamic (multi–period) model where
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competitive traders consider past equilibrium prices to adjust their bids. In this

respect, we assume that as the order batching process evolves HFTs improve

their precision by assimilating more information. Hence, their orders become

more informative, accelerating the price discovery process.

To investigate empirically the prediction of our model, we employ a unique

set of high–frequency data from the Euronext Paris market that includes the

entire trading and order placement history for the CAC 40 stocks in year 2013.

A significant advantage of the database used in the present study is that it

includes flagged messages that pertain to HFT activity, proxied by the ratio of

individual order lifetime over the average order lifetime for modifications and

cancellations.1 Therefore, we are able to distinguish directly between HFTs and

nHFTs.

For the purposes of our analysis we re–construct preopening indicative prices

and opening prices in terms of both HFT and nHFT data (e.g., Biais et al., 1999;

Madhavan and Panchapagesan, 2000; Barclay and Hendershott, 2003; Anagnos-

tidis et al., 2015). Subsequently, we examine empirically the information content

of auction prices using the Weighted Price Contribution (WPC) statistic of Bar-

clay and Warner (1993) together with the unbiasedness regression methodology

of Biais et al. (1999). We find evidence that HFTs contribute significantly to

price efficiency as the opening time approaches.

The paper is organized as follows: Section 2 provides a review of the lit-

erature. Section 3 develops the analytical framework. Section 4 presents an

empirical application on the Paris market. Finally, Section 5 concludes the

paper.

1The HFT classification is provided by the AMF (Autorité des Marchés Financiers).
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2. Literature review

2.1. High frequency and algorithmic trading

The increasing interest on the effect of HFTs on the quality of financial mar-

kets has attracted considerable attention and has thus resulted in a large and

ever-growing body of microstructure literature. Although HFTs are frequently

labelled as a potential source of abnormal price movements, there is overwhelm-

ing evidence that trading by means of machine learning methods may actually

improve market quality. For instance, Brogaard (2010), Carrion (2013) and

Brogaard et al. (2014) study the NASDAQ market and indicate, collectively,

that the presence of HFTs accelerates price discovery and price efficiency, while

enhancing the provision of liquidity. Hasbrouck and Saar (2013) investigate,

also, the ‘low latency’ trading environment in the NASDAQ market and pro-

vide significant evidence of positive correlation between high-frequency trading

activity and market quality. In particular, the authors show that HFTs tend

to reduce the spreads (i.e., the cost of trading) and short–term volatility, while

increasing market depth (i.e., liquidity).

Hendershott et al. (2011) examine empirically the NYSE market and find

that the rapid increase of algorithmic trading during the past decade has nar-

rowed the spreads and reduced adverse selection costs for traders. Moreover,

the authors find that algorithmic trading has improved market liquidity. In the

order–driven setting, Hendershott et al. (2009) find that algorithmic trading

in the DAX market improves price efficiency. Similarly, Boehmer et al. (2014)

show that algorithmic trading has, on average, a positive effect on price effi-

ciency and liquidity in 42 international equity markets around the world (order

and quoted driven systems).

At this point it is pertinent to note that observers often refer to algorithmic

trading and high-frequency trading as two equal entities. Nonetheless, HFTs are

designed to act, exclusively, within the domain of millisecond or microsecond ac-

curacy, whereas algorithmic trading machines (also known as ATs) aim, mostly,

to carry out various order handling and liquidity providing strategies on behalf
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of investors and market makers, without necessarily being ultra fast. Essen-

tially, high frequency trading is a subset of algorithmic trading, with emphasis

placed both on order handling and execution speed (Chlistalla, 2012).

Although there is ample evidence of the positive effect of HFTs on traditional

aspects of market quality, like liquidity and price efficiency, there are studies sug-

gesting that, under circumstances, HFTs may contribute to the occurrence of

market failures, such as flash crashes, the sharpening of price variations (e.g.,

widening of spreads) and the rise of systematic risk. Kirilenko et al. (2015), for

example, investigate the NASDAQ flash crash on May, 2010. The authors show

that the emergence of the sharp volatility spike at 2:45 is significantly related

to the fast reaction of HFTs on the rapid depletion of liquidity. Boehmer et al.

(2014) also find that algorithmic trading intensity is positively correlated with

price volatility. In a theoretical paper, Biais et al. (2015) show that high speed

connections (i.e., HFTs) enable investors to profit from trading by searching for

desirable quotes at the spot and, by doing so, they impose additional adverse se-

lection costs on slow traders. Chaboud et al. (2014) study algorithmic data from

the EBS electronic trading system for currency pairs (euro–dollar, dollar–yen

and euro–yen). The results of this study suggest that machine trades are often

correlated, giving rise to systematic market risk. Similarly, Brogaard (2010)

investigates data from the Nasdaq OMX and finds that order flows generated

from HFTs are cross–correlated, possibly imposing additional non–diversifiable

(il)liquidity risk on investors’ portfolio selection strategies.

Thus far, the majority of related empirical studies have focused on the US

Exchanges, mainly the NASDAQ dealers’ market and the NYSE specialists’

market, whereas order–driven systems have attracted less attention. From this

point of view, the present study aims to shade further light on the impact of

high frequency trading on the quality of automated electronic markets, focusing

on the call auction mechanism.
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2.2. Call auction trading

Call auction venues differ significantly from continuous systems in that orders

are aggregated without trading, leading to the emergence of crossed supply–

demand schedules. Subsequently, at a pre–specified point in time, buy and sell

orders are matched and executed at a single equilibrium price. Due to their

ability to aggregate disperse information about fundamental values into one

single price, call auctions are typically adopted by Exchanges as ideal trading

mechanisms during periods of increased market stress, such as the opening and

the closing.

Because bidding is only theoretical during the batching period, pre–call com-

munication games may emerge between investors. In particular, the pre–trade

period in transparent call mechanisms may offer a learning environment where

investors submit, adjust or cancel their orders by observing the flow of indicative

clearing prices and the dynamics of the prevailing bids and asks. This is the

case in the models of Jordan (1982), Vives (1995) and Biais et al. (1999), where

competitive agents (i.e., traders, brokers and/or market makers) react to the

disclosed information and drive the asset price to its equilibrium value. More-

over, Medrano and Vives (2001) and Biais et al. (2009) show that the presence

of privately informed strategic traders, who attempt to manipulate the market,

may add noise to the price discovery process, thus slowing down the speed of in-

formation. Lastly, Madhavan and Panchapagesan (2000) show that the presence

of liquidity traders may also add noise to the price discovery process, through

the submission of aggressive price–inelastic orders (e.g., market orders).

Information revelation and price discovery in the call auction mechanism

have been studied empirically in several studies in the past. Ciccotello and

Hatheway (2000), Cao et al. (2000), Barclay and Hendershott (2003), Barclay

and Hendershott (2008) and Pagano et al. (2013) investigate the NASDAQ deal-

ers’ market opening. Madhavan and Panchapagesan (2000) examine the NYSE

opening procedure and the role of specialists in price discovery and price effi-

ciency. In the order–driven trading framework, Biais et al. (1999) and Pagano

and Schwartz (2003) and Hillion and Suominen (2004) analyze the opening
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and the closing auctions of the EURONEXT Paris stock market, respectively.

Comerton-Forde and Rydge (2006) and Moshirian et al. (2012) study the open-

ing and closing auctions in the Australian order–driven stock market. Hauser

et al. (2012) examine the behaviour of opening prices in the Tel Aviv Stock

Exchange after the introduction of a random opening time, while Kalay et al.

(2004) investigate, in the same market, the elasticity of clearing prices during

the preopening period. Lastly, Anagnostidis et al. (2015) analyze the opening

price discovery process in the Greek order–driven market.

The aforementioned studies indicate, altogether, the importance of market

stability at periods of increased uncertainty, such as the opening or the closing.

Additionally, they hint that the call auction is probably, until now, the most

efficient mechanism for revealing prices after periods of no trade. The present

study examines the case where informed and liquidity traders compete with

HFTs within an order–driven transparent call system. Therefore, our results

contribute to the current understanding of the impact of HFTs on the price

formation process in automated call auction trading, complementing the existing

literature. Our analysis is closely related to the recent study of Boussetta et al.

(2016) who investigate the role of HTFs in the preopening period of the Paris

market. The authors utilize a 2 year sample period, extending from 2012 to

2013, for the 120 SBF Index stocks. The authors report that HFTs play a

significant role in the price discovery process through their quoting activity.

3. Analytical backround

3.1. Price efficiency in a static market with competitive traders and asymmetric

information

Following previous literature (e.g., Vives, 1995), we consider an automated

transparent call market where a single risky asset with random ex–post liqui-

dation value, u ∼ N(0, σ2
u),

2 and a risk–less asset are traded. Furthermore, we

2For simplicity we assume that E(u) = 0.
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normalize the return of the risk free asset to zero and, for the sake of simplicity,

we assume that market agents do not hold an initial endowment. The trad-

ing public consists of K fast HFT machines, M slow–human informed (nHFT),

L uninformed and Z liquidity/noise traders. HFTs enter the market to exploit

profitable opportunities using information that is collected through various elec-

tronic networks. Therefore, HFTs in our analysis are considered as privately

informed traders, while information acquisition for HFTs is based on costly

resources (Rindi, 2008). Regarding slow (human) informed traders, each one

holds a small piece of private information. They view the asset price, however,

with less precision compared to HFTs that have access to superior information

and increased processing power. Uninformed traders arrive in the market to

exploit profitable opportunities, like HFTs, whereas they do not hold private

information. Noise traders arrive in the market for liquidity purposes (e.g., to

close a short position).

All agents act as price takers; i.e., they do not influence strategically the

clearing price with their order placement activity.3 Further, informed and unin-

formed traders are assumed to be risk averse and, therefore, they have negative

exponential expected utility functions of the form U(W ) = − exp−AW , with A

and W being the risk aversion coefficient and the terminal wealth, respectively;

for simplicity, we assume that all agents have the same risk–aversion parameter

(A). Also, HFTs, slow nHFT informed investors, uninformed investors and noise

traders have, respectively, the demand functions QF (F indicates Fast), QS (S

indicates Slow), QU (U indicates Uninformed) and Q, with Q ∼ N(0, σ2
Q).

4

3In transparent order–driven systems strategic insiders may submit manipulative large or-
ders to affect the clearing price. Thus, in this case it is expected that additional noise is
incorporated into prices (Medrano and Vives, 2001; Biais et al., 2009). Also, large liquidity
investors may often influence the clearing price by submitting price inelastic market orders
(Madhavan and Panchapagesan, 2000). In highly traded environments, however, where liquid-
ity is plentiful, the effect of such orders on equilibrium prices is less pronounced (Madhavan
and Panchapagesan, 2000).

4Our model includes a finite number of traders, whereas several studies focus on markets
with a “continuum of traders” (e.g., Aumann, 1964; Vives, 1995; Foucault et al., 2011; Biais
et al., 2015). With an infinite number of agents in the market, a conventional assumption
is that errors in expectations cancel out and, therefore, signals are perfect in the aggregate.
However, call auctions are usually less popular than continuous markets and, thus, in our
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Because traders have continuous access to the evolution of the indicative

price–volume pair, we assume that they behave rationally in the sense that,

before posting their quotes, they update their expectations by observing the

disseminated information; risk averse traders submit limit orders whereas liq-

uidity/noise traders submit market orders.5 After bidding, the market clears

and trading takes place.

Uninformed traders do not hold private information and, thus, they use their

prior beliefs conditional on the observed indicative price, p, to decide about their

future investments. In particular, they maximize their expected utility

E[U(W )] = E[−e−AW ] (1)

where W = QU (u−p∗) is the terminal wealth and p∗ is the clearing price. Note

that since u is normally distributed, W is also normal

W ∼ N(QU (E(u|p)− p∗), Q2
UV ar(u|p)). (2)

Using the properties of normal distribution, it is straightforward to show that

maximizing the expected utility is equivalent to maximizing the following quan-

tity (certainty equivalent)

E(W )−
A

2
σ2
W . (3)

Taking first order conditions, the following demand function is derived for un-

informed traders

QU =
E(u|p)− p

A V ar(u|p)
. (4)

In contrast to uninformed traders, slow (human) informed investors hold a

analysis we prefer to assume a finite number of market participants. From this point of view,
our model is closer to reality.

5We assume that the demand of liquidity trading is exogenous.
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private signal s with s ∼ N(0, σ2
s), such that

s = u+ e (5)

where e ∼ N(0, σ2
e) is a residual term and e⊥u (σ2

e > 0).6 On the other

hand, because HFTs have i) fast access to multiple data streams and electronic

trading netwroks and ii) increased computational and analytical capabilities,

they form a unique private signal that improves their position against human

traders (informed and uninformed).7 Therefore, it is reasonable to assume that

HFTs observe the same signal s, as slow privately informed investors, but with

greater precision, so that EF (e) = ES(e) = 0 and V arS(e) = σ2
e = σ2

S ≥ σ2
F (S

and F are for Slow and Fast respectively), where σ2
F is the variance of HFTs’

signal with σ2
S ∈ [σ2

F ,+∞) (σ2
S,F > 0). It, also, follows that 1/σ2

F ≥ 1/σ2
S .

8

Similar to equation (4), we derive the demand function for informed traders

QF,S =
E(u|s, p)− p

A V ar(u|s, p)
=

E(u|s)− p

A V ar(u|s)
(6)

where F and S correspond to HFTs and slow nHFT informed traders. Notice

that equation (6) implies that informed traders’ signal s contains all information

about the asset price. Thus, informed traders are indifferent to observing the

indicative price p.

Proposition 3.1. There exists a unique static linear equilibrium such that price

efficiency is given by the following relation

V ar(u|p = αs+ βQ)−1 =
1

σ2
u

+
1

σ2
e + (β/α)2σ2

Q

, (7)

6For simplicity we have assumed that all insiders observe the same private signal, s.
7In a similar manner, Biais et al. (2015) assume that the signal of HFTs is perfect in the

aggregate, within a market consisting of infinite traders. Our model, however, differs in that
we consider a finite amount of traders.

8Our model is similar to that of Hirshleifer and Luo (2001) who consider a competitive
market with rational, overconfident and liquidity traders. In their framework, rational traders
perceive the true distribution of e, whereas overconfident traders believe, falsely, that the
variance of e is smaller than the true variance.
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where α and β are (uniquely defined) real numbers such that

β

α
=

ZA

K/σ2
F +M/σ2

S

. (8)

Proof. We begin by assuming that uninformed traders view the asset price as a

linear function of the private signal s and the demand of noise traders (Rindi,

2008; De Jong and Rindi, 2009):

p̂ = αs+ βQ, (9)

for some real numbers α and β. Uninformed traders consider the above–

mentioned conjecture to form the conditional expectation and variance of u.

In view of the theorem of projection for normal variables, the following condi-

tional moments are obtained:

E(u|p = αs+ βQ) =
ασ2

u

α2σ2
u + α2σ2

e + β2σ2
Q

p (10)

and

V ar(u|p = αs+ βQ) = σ2
u

(

α2σ2
e + β2σ2

Q

α2σ2
u + α2σ2

e + β2σ2
Q

)

. (11)

Accordingly, given that u and e are jointly normal, we use the projection theorem

to derive the conditional expectations for informed traders:

EF,S(u|s) = s
σ2
u

σ2
u + σ2

F,S

= γs (12)

and

V arF,S(u|s) = σ2
F,S

σ2
u

σ2
u + σ2

F,S

= γσ2
F,S (13)

where γ = σ2
u/(σ

2
u + σ2

F,S) and, as before, F and S correspond to fast HFT and

slow nHFT informed investors.

The market condition to calculate the clearing price is that the excess de-
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mand is zero:

KQF +MQS + LQU + ZQ = 0 (14)

Using the conditional expectations derived earlier, equation (14) becomes

K
γs− p

γA σ2
F

+M
γs− p

γA σ2
S

+ L
E(u|p)− p

A V ar(u|p)
+ ZQ = 0. (15)

Next, we rearrange equation (15) to acquire

s

(

K

Aσ2
F

+
M

A σ2
S

)

+ ZQ = −L
E(u|p)

A V ar(u|p)
+

p
L

A V ar(u|p)
+ p

(

K

γAσ2
F

+
M

γA σ2
S

)

,

(16)

which is equivalent to

s

(

K

Aσ2
F

+
M

A σ2
S

)

+ ZQ = Rp = R(αs+ βQ) = Rαs+RβQ, (17)

for some constant R.

At the final step of our analysis, we impose rational expectations by matching

the coefficients on the left and the right hand sides of equation (17).9 By doing

so, we obtain the following conditions that uniquely determined the unknown

constants: R = Z/β, Rα =
K

Aσ2
F

+
M

A σ2
S

and
α

β
=

K

ZAσ2
F

+
M

ZA σ2
S

.

The proof is concluded upon rewriting equation (11) to obtain price-efficiency

as follows,

V ar(u|p = αs+ βQ)−1 =
1

σ2
u

+
1

σ2
e + (β/α)2σ2

Q

, (18)

β

α
=

ZA

K/σ2
F +M/σ2

S

, (19)

where, as before, σ2
S ∈ [σ2

F ,+∞), σ2
S > 0. Equation (18) represents the infor-

mativeness of p about the liquidation value, u, of the asset (Vives, 1995).

We observe that the risk aversion coefficient A is inversely correlated with

9Realizations coincide with expectations in equilibrium.
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Figure 1: Top: V ar(u|p)−1 as a function of the number of HFTs (K), A =
3, Z = 10,M = 10, σ2

u = 0.4, σ2
s = 0.5, σ2

F = 0.05, σ2
S = 0.1 and σ2

Q = 0.1.

Bottom: V ar(u|p)−1 as a function of the risk aversion coefficient (A), K =
10, Z = 10,M = 10, σ2

u = 0.4, σ2
s = 0.5, σ2

F = 0.05, σ2
S = 0.1 and σ2

Q = 0.1.

market efficiency; when traders are more/less risk averse (that is, the risk aver-

sion coefficient A increases/decreases) market efficiency is lower/higher. This

result is natural in the sense that bids become less/more aggressive and, there-

fore, information is impounded into prices with lower/higher speed (see Figure

1). Also, noise trading (i.e., Z) is inversely correlated with price efficiency

(Grossman and Stiglitz, 1976, 1980).

Regarding high frequency trading, it is clear that as the number of machines,

K, increases, price efficiency improves (see Figure 1). The same result holds for

the accuracy of HFTs signal. Indeed, as σ2
F decreases, price informativeness

increases and vice versa. Moreover, as the number of human informed traders,

M , increases, clearing prices reflect more information. They are never fully

revealing, however, due to the presence of noise in the market.
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3.2. Price efficiency in a static market with strategic traders and asymmetric

information

In this Section, following Rindi (2008), we consider a transparent call auction

market where informed traders act strategically; that is, they take into account

the impact of their own orders on the clearing price. As before, to maximize

expected utility, informed traders use the following first order condition:

γs− p−
θp

θQS

QS −AQSγσ
2
S = 0. (20)

In contrast to the competitive equilibrium, the price p in equation (20) is a

function of informed traders’ demand. Therefore, price impact (i.e., θp
θQS

) is

now incorporated into the model. Solving for QS , we acquire

QS =
γs− p

ωS +A γσ2
S

, (21)

where ωS =
θp

θQS

is the price elasticity term. Similarly, we can derive the

demand functions for HFTs and uninformed traders:

QF =
γs− p

ωF +A γσ2
F

, (22)

QU =
E(u|p)− p

ωU +A V ar(u|p)
, (23)

where ωF and ωU are the corresponding price impact rates. We can now for-

mulate and prove the analogue of proposition 3.1 for the strategic equilibrium.

Proposition 3.2. There exists a unique strategic linear equilibrium such that

price efficiency is given by the following relation

V ar(u|p = αs+ βQ)
−1

=
1

σ2
u

+
1

σ2
e + (β/α)2σ2

Q

, (24)
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where α and β are (uniquely defined) real numbers with

β

α
=

Z

Kγ/(ωF + γA σ2
F ) +Mγ/(ωS + γA σ2

S)
. (25)

Proof. As in the proof of Proposition 3.1, we postulate that uninformed traders

view the asset price as a linear combination of the private signal s and the

demand of noise traders,

p̂ = αs+ βQ, (26)

for some real numbers α and β, to be determined. Next, we substitute the

expressions for the demand functions into the market clearing condition (14),

which yields,

K
γs− p

ωF + γA σ2
F

+M
γs− p

ωS + γA σ2
S

+ L
E(u|p)− p

ωU +A V ar(u|p)
+ ZQ = 0. (27)

Upon rearrangement, equation (27) becomes

s

(

Kγ

ωF + γAσ2
F

+
Mγ

ωS + γA σ2
S

)

+ ZQ =

−L
E(u|p)

A V ar(u|p)
+ p

L

A V ar(u|p)
+

p

(

K

ωF + γAσ2
F

+
M

ωS + γA σ2
S

)

,

(28)

that is equivalent to

s

(

Kγ

ωF + γAσ2
F

+
Mγ

ωS + γA σ2
S

)

+ZQ = Rp = R(αs+βQ) = Rαs+RβQ, (29)

for some constant R. Matching the coefficients yields the following three condi-

tions for the unique determination of the parameters,

R = Z/β, (30)

Rα =
Kγ

(ωF + γAσ2
F )

+
Mγ

(ωS + γA σ2
S)

(31)
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and
α

β
=

Kγ(ωS + γA σ2
S) +Mγ(ωF + γA σ2

F )

Z(ωF + γAσ2
F )(ωS + γA σ2

S)
. (32)

Further, by manipulating equation (32), we acquire

β

α
=

Z

Kγ/(ωF + γA σ2
F ) +Mγ/(ωS + γA σ2

S)
. (33)

We can now utilize equations (18) and (33) to compute price efficiency for the

strategic equilibrium and thus complete the proof.

Notice that the risk aversion coefficient is inversely correlated with price ef-

ficiency, as in the competitive market model. Similarly, the increase of noise

trading, Z, has a negative effect on price efficiency. The amounts of insider (M)

and HF (K) trading are both positively correlated with price efficiency, as in

the competitive equilibrium. Also, as the precision of HFTs increases, the infor-

mation content of equilibrium prices improves. More importantly, notice that

as the price impact of informed, uninformed and/or HF traders increases, price

efficiency diminishes. In other words, when traders consider the effect of their

demands on the price formation process, they are willing to trade less aggres-

sively and, therefore, information is incorporated into prices with a smaller rate.

By contrast, when traders increase competition (ωF,S decreases), information

is incorporated into prices faster (Rindi, 2008). In the extreme case where ω is

equal to zero, we obtain the pure competitive equilibrium.

3.3. Price efficiency in a dynamic market with competitive traders and asym-

metric information

3.3.1. Derivation of the equilibrium

In this section, we extend the derived static model to a time-dependent call-

auction mechanism. We consider that the order batching takes place during a

predefined time period from tstart to tend that can, without loss of generality, be

normalized so that tstart = 0 and tend = 1. Bidding can occur at discrete time

increments tn and in order to simplify the algebra we assume that the sequence
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{tn} is infinite and lim t → ∞ = 1. With this premise all variables in the static

model are a priori functions of time.

At time instance tn we have,

E[U(Wn)] = E[−e−AWn ] (34)

where Wn = QUn
(u − pn) is the terminal wealth and pn is the clearing price.

Similarly to the static case, maximization of the expected utility is equivalent

to the maximization of,

E(Wn)−
A

2
σ2
Wn

. (35)

For the case of uniformed traders, first order conditions yield the following

demand function

QUn
=

E(u|pn−1)− pn
A V ar(u|pn−1)

, (36)

where pn−1 = {p0, p1, ..., pn−1} is the set of past equilibrium prices that all

traders observe.

As before, nHFT informed investors receive a private signal s with s ∼

N(0, σ2
S), such that

s = u+ e (37)

where e ∼ N(0, σ2
e) and e⊥u (σ2

e > 0). On the other hand, HFTs observe the

same signal s but with greater precision than human insiders, so that

s = u+ e (38)

with EF (e) = 0 and V arF (e) = σ2
F ≤ σ2

e = σ2
S (σ2

S > 0). Moreover, we

assume that as the call auction procedure evolves, HFTs aggregate information

and, in turn, their position improves relative to that of nHFT insiders; i.e. we

assume that σF = σFn
, the function |σ2

Fn
− σ2

S | is increasing with n and that

limn→∞ σFn
= σF∞

.

By employing the same first order conditions as in (36) we can derive the
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demand function for informed traders

QFn,Sn
=

E(u|s, pn−1)− pn
A V ar(u|s, pn−1)

=
E(u|s)− pn
A V ar(u|s)

(39)

where F and S correspond to HFTs and slow nHFT informed traders. We are

now ready to prove the existence and uniqueness of a linear equilibrium for the

dynamic call auction.

Proposition 3.3. At each time instance, tn, there exists a unique linear dy-

namic equilibrium such that price efficiency is given by the following relation

V ar(u|pn)
−1 =





















σ2
u −

σ4
S

σ2
s +A2Z2

n

σ2
Qn

K2
n

σ4
Fn

+
M2

n

σ4
S





















−1

. (40)

where Zn, Kn and Mn denote the magnitude of noise trading, the number of

HFTs and the number of nHFTs, correspondingly.

Proof. For the derivation of the equilibrium, we assume that uninformed traders

view the asset price at time instance tn as a linear function of the private signal

sn = s, the demand of noise traders Qn and the set of past prices pn−1. In other

words, we assume that, at all times, the following (linear) flow rule holds,

pn = αnsn + βnQn + φ(pn−1), (41)

with αn, βn denoting components of sequences of real numbers, to be deter-

mined, and φ being a linear functional.10 The flow of available information is

illustrated in Figure 2. Uniformed traders utilize the above flow rule to form

the conditional expectation and variance of u, E(u|pn−1) and V ar(u|pn−1), re-

10We assume that the private signal s and the public signal pn−1 are independent, condi-
tionally on the liquidation value of the asset.
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} 

Figure 2: Evolution of the order batching process. In each round traders observe
the sequence of past prices to form their expectations.

spectively. These can be easily derived using the projection theorem for normal

variables, as shown in the static version of the model presented earlier. For

informed traders, the following conditional expectations are obtained:

EF,S(u|s) = s
σ2
u

σ2
u + σ2

Fn,S

= γF,Ss (42)

and

V arF,S(u|s) = σ2
Fn,S

σ2
u

σ2
u + σ2

Fn,S

= γF,Sσ
2
Fn,S

(43)

where γF,S = σ2
u/(σ

2
u + σ2

Fn,S
).

Now, in order to calculate the clearing price we set the excess demand to

zero:

KnQFn
+MnQSn

+ LnQUn
+ ZnQ = 0 (44)

Using the conditional expectations derived earlier, equation (44) becomes

Kn

γF s− pn
γFA σ2

Fn

+Mn

γSs− pn
γSA σ2

S

+ Ln

E(u|pn−1)− pn
A V ar(u|pn−1)

+ ZnQ = 0. (45)

Solving for the equilibrium price yields

pn = s

(

Kn

A σ2
Fn

+
Mn

A σ2
S

)

B−1 + Ln

E(u|pn−1)

A V ar(u|pn−1)
B−1 + ZnQnB

−1, (46)

with

B =
Kn

γFA σ2
Fn

+
Mn

γSA σ2
S

+
Ln

A V ar(u|pn−1)
. (47)

In equilibrium, realizations must coincide with expectations and, therefore, by
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matching the coefficients we acquire the following conditions,

αn =

(

Kn

A σ2
Fn

+
Mn

A σ2
S

)

B−1 (48)

βn = ZnB
−1 (49)

φ(pn−1) = Ln

E(u|pn−1)

A V ar(u|pn−1)
B−1. (50)

To infer on price efficiency, we first re–write equation (46) as follows:

Γ−1Bpn − Γ−1LnQUn
= s+ Γ−1ZnQn, (51)

where

Γ =
Kn

A σ2
Fn

+
Mn

A σ2
S

. (52)

Uninformed traders know QUn
(and pn that is observed) and, thus, they can

extract from the clearing price, using equation (51), the following (noisy) signal

Θ = s+ Γ−1ZnQn = s+
A σ2

Fn
σ2
S

Knσ2
S +Mnσ2

Fn

ZnQn, (53)

which is a linear transformation of pn and, therefore, observationally equivalent

with pn; that is, E(u|pn) = E(u|Θ) and V ar(u|pn) = V ar(u|Θ) (Rindi, 2008;
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De Jong and Rindi, 2009). Finally, we calculate price efficiency,

V ar(u|pn)
−1 = V ar(u|Θ)−1 = (54)











σ2
u −

σ4
S

σ2
s +A2Z2

n

σ4
Sσ

4
Fn

σ2
Qn

K2
nσ

4
S +M2

nσ
4
Fn











−1

= (55)





















σ2
u −

σ4
S

σ2
s +A2Z2

n

σ2
Qn

K2
n

σ4
Fn

+
M2

n

σ4
S





















−1

. (56)

and thus complete the proof.

It is easy to observe that as the order batching procedure evolves and the

precision of HFTs, 1/σ2
Fn

, increases, price efficiency improves ceteris paribus.

The same argument holds for the number of HFT machines, Kn; price efficiency

improves with Kn increased and vice versa. The effect of HFTs and nHFTs

appears to be symmetric; however, this is not the case in our model since the

temporal relaxation of the accuracy of HFTs σ2
Fn

affects price efficiency in a

significant way.

3.3.2. On the speed of information revelation

Having derived the equilibrium for the dynamic case, we advert to the study

of the speed of information revelation. More specifically, we examine how the

inclusion of HFTs affects price efficiency V ar(u|pn)
−1 and the rate at which

V ar(u|pn)
−1 approaches its equilibrium value as n → ∞. The key point in our

asymptotic analysis is our assumption that the accuracy of the signal of HFTs

is a function of time and, in particular, a sequence σ2
Fn

that converges to σ2
F∞

as n → ∞.

Consider, first, equation (54) and fix the number of machines (Kn), insiders

(Mn) and noise traders (Zn, Qn). Evidently, (54) is now free from memory–
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related terms with the exception of σ2
Fn

. As n increases, the only term that

changes and thus drives price efficiency towards its equilibrium value is σ2
Fn

. In

this case, the global maximum of price efficiency is

lim
n→∞

V ar(u|pn)
−1 = (57)





















σ2
u −

σ4
S

σ2
s +A2Z2

n

σ2
Qn

K2
n

(σ2
F∞

)2
+

M2
n

σ4
S





















−1

, (58)

where σ2
F∞

≤ σ2
S is the limit of σ2

Fn
as n approaches infinity.

Next, assume that the variance of the signal of HFTs σ2
Fn

converges to σ2
F∞

with a rate of convergence n−r, r > 0; note that the rate can be sub–linear or

super–linear depending on whether r is smaller or larger than unity.11 With this

rate fixed, we wish to determine the rate of convergence of V ar(u|pn)
−1. It is

easy to show, after a straightforward series of calculations, that the term σ4
Fn

=

(σ2
Fn

)2 in equation (54) is present both in the nominator and the denominator,

V ar(u|pn)
−1 =

(

(σ2
uM

2
nσ

2
s + σ2

uA
2Z2

nσ
2
Qn

σ4
S − σ4

SM
2
n)σ

4
Fn

+ (σ2
uσ

2
sσ

4
S − σ8

S)K
2
n

σ2
sσ

4
SK

2
n + (M2

nσ
2
s +A2Z2

nσ
2
Qn

σ4
S)σ

4
Fn

)

−1

.
(59)

Therefore, using standard calculus for sequences of numbers, we can easily de-

duce that the rate of convergence of V ar(u|pn)
−1 is n−2r. This result asserts

that as the order batching process evolves in time (i.e., as consecutive rounds

yield indicative clearing prices) and HFTs improve the precision of their signal,

the rate of information revelation is accelerated drastically. To illustrate this

finding, Figure 3 plots the evolution of V ar(u|pn) after n = 10 rounds for two

11Recall that in our model the precision of HFTs increases with time, relative to that of
human insiders. Therefore, it is expected that it will converge towards its limit value, at some
rate, as time evolves.
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Figure 3: The evolution of V ar(u|pn) after n = 10 rounds for two cases: i)
σ2
Fn

= σ2
e(1/n) and ii) σ2

Fn
= σ2

e(1/n
2). We also fix the following parameters:

A = 3, Zn = 10,Kn = 10,Mn = 10, σ2
u = 0.2, σ2

s = 0.5, σ2
S = σ2

e = 0.3 and
σ2
Qn

= 0.1.

cases: i) σ2
Fn

= σ2
e(1/n) and ii) σ2

Fn
= σ2

e(1/n
2).12 We also fix the following pa-

rameters: A = 3, Zn = 10,Kn = 10,Mn = 10, σ2
u = 0.2, σ2

s = 0.5, σ2
S = σ2

e = 0.3

and σ2
Qn

= 0.1. Evidently, the error decays after each round while converging

to its limit. Notice, also, the effect of the rate of convergence of σ2
Fn

, as for

case (ii) the residual noise decays considerably faster; in fact, only after a few

rounds.

3.4. Discussion

In the present Section we presented an analytical background that describes

the bidding activity in a transparent order–driven single call market, where

HFTs coexist with human insiders and uninformed traders. Our theoretical

framework contributes to the relative microstructure literature on rational ex-

12In round n = 1 we assume that σ2

Fn
= σ2

e = σ2

S
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pectations models (e.g., Vives, 1995), incorporating the effect of HF quoting on

the asset equilibrium price. The main findings from the model, regarding the

activity of HFTs in the auction market, are as follows:

• Price efficiency in the call auction market increases (decreases) with the

number of HFTs increased (decreased). In other words, as the amount

of HF quoting increases (decreases), clearing prices become less (more)

noisy.

• Price efficiency increases with the precision of the signal of HFTs increased.

HFTs gather information from multiple data sources and faster than any

other human (slow) trader, forming superior signals about the true value of

the asset. Thus, as the order batching procedure evolves, the informational

content of HF quotes submitted into the system increases and, in turn,

equilibrium prices become less noisy.

In addition to these findings, we provide some basic features of the speed of

convergence of the asset price to its equilibrium value. In specific, we show that

the asset price incorporates information at a rate of (n−2r), where n−r is the

speed with which HFTs aggregate public information. Thus, HFTs contribute

significantly to the price discovery process.

In the subsequent analysis we examine empirically the predictions of our

model using an intraday data set from the order driven Paris stock market

opening call. The Paris preopening period is transparent and, therefore, market

participants are able to observe the evolution of the indicative price–volume pair

and, in turn, to submit or adjust their orders. Thus, the order batching process

can be viewed as a sequence of theoretical market clearings where rational agents

drive the price to its equilibrium value as time evolves. Consequently, the pre–

opening period constitutes a natural laboratory to examine our model findings.

Our study is closely related to that of Biais et al. (1999), who find that

preopening indicative prices in the Paris Bourse become more informative as

the clearing time approaches; the authors refer to this feature as a “learning

pattern”. In this respect, they argue that investors learn from each other by
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observing the preopening order flow, thus submitting more informative orders as

the opening time approaches. Herein, we are interested to examine the presence

of such learning patterns and, more important, to investigate the magnitude

of the effect of HF quotes on the informativeness of preopening and opening

prices in the Paris market. As predicted by our model, we expect that HFTs

accelerate price discovery and price efficiency due to the information content of

their quotes. Thus, we expect that prices predict better the true value of the

asset when machines are active in the market.

4. An empirical application

4.1. The Paris Euronext market

Stock trading at the Euronext Paris Platform is conducted in two main

ways: a) the order–driven market model and b) the LP quote driven market

model. The former is the one examined in the present study, whereas the

latter concerns securities which are traded continuously via the quotation of

designated Liquidity Providers (LPs), much like the operation of the NASDAQ

dealers’ market.

The order–driven system includes either continuous or periodic auction trad-

ing. The first mechanism concerns the more liquid securities, like those com-

prising the CAC 40 Index, whereas the second is for the less liquid securities.

The continuous double auction mechanism, examined herein, is operated under

the following daily time schedule:13

1. 07:15–09:00 Preopening phase – Order accumulation period

2. 09:00 Opening auction

3. 09:00–17:30 Main trading session: Continuous session

4. 17:30–17:35 Pre–closing phase – Order accumulation period

5. 17:35 Closing auction

13The trading day schedule can be found in the ‘Euronext Notice 4-01 Universal Trad-
ing Platform Trading manual’, available at: https://www.euronext.com/en/regulation/

harmonised-rules
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6. 17:35–17:40 Trading at the last phase (at the close)

7. 17:40–07:15 After hours trading

The opening call auction procedure lasts 1 hour and 45 minutes. During

this time period investors are allowed to submit, modify, or cancel orders, while

observing the disclosed information on the evolution of the indicative clearing

price–volume pair and the prevailing bid–ask quotes. Since trading is absent,

all orders are stored into the central limit order book with price–time execution

priority. Three main types of orders are allowed during the preopening period:

a) market on opening orders, b) pure market orders and c) limit orders.14 Also,

market on opening orders and pure market orders have priority against limit

orders at the time of the auction. Figure 4 illustrates the formulation of crossing

supply and demand lines, due to the absence of trade, for a hypothetical set of

limit prices and quantities. Notice that because stock prices are discrete, it is

possible that more than one equilibrium values are present.

After the end of the accumulation period, the electronic system considers the

supply–demand schedule formed by the queuing orders, seeking for the price that

maximizes the trading volume; that is, the equilibrium value. If the maximum

volume principle suggests more than one equilibrium prices, then the opening

price is set according to the minimum volume surplus principle. Lastly, if more

than one prices satisfy the minimum surplus principle, then the system fixes as

the opening price the one that is closer to the reference price; the latter is usually

the price of the last trade before the preopening period. After the opening price

is set, buy and sell orders are matched and executed in a single trade and at a

single opening price. Unexecuted market or limit orders are sent forth to the

main session with the original price and time priority; market orders are stored

as limit orders at the opening price.15

14Because they do not include price preference, market and on open sell (buy) orders are
aggregated at the best ask (bid).

15For additional details on the EURONEXT Paris stock market opening and main sessions,
see, also, Biais et al. (1999) and Biais et al. (1995), respectively.
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Figure 4: A hypothetical supply–demand schedule at the opening.

4.2. Data sample

The data sample used in the present study is retrieved from the EUROFIDAI–

BEDOFIH high frequency database and includes 32 stocks from the CAC 40

Index in 2013 (251 trading days).16 The sample encompasses two main files: i)

trades and ii) orders. The first contains information about the trading history in

the EURONEXT Paris market. More specifically, the data set includes informa-

tion about the time (accurate to the microsecond), the price and the quantity

of negotiations. The second includes information about the order placement

history; time of submission, price, size, side, duration, type, validity and time of

release from the system (either because of execution or because of cancellation).

An important aspect of the data set, crucial to our work, is a unique HFT

flag that accompanies order and trade messages. In particular, and in line with

16For the sake of consistency, we select to work on stocks that are continuously listed on the
CAC 40 index from 2010, while we have excluded stocks that exhibit missing values within
the sample period (2013). The Paris market data included in the BEDOFIH database are
provided by the AMF. Further Information on the BEDOFIH database can be found at:
https://www.eurofidai.org/en/Intraday_Bedofih_Equipex_en.html
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the AMF documentation, each message is categorized according to the following

list:

a) HFT: High Frequency trader

b) nHFT: Non–High Frequency trader

c) MIXED: Mixed trader (Bank account applying HFT)

The particular classification is based on the average lifetime of total order can-

cellations, compared to the average lifetime of individual traders’ cancellations

and modifications. For instance, a trader who cancels or modifies orders too

fast, compared to the average speed of cancellations or adjustments, is classified

as HFT. The nFHT and MIXED flags are similarly applied. It is important to

mention that once a trader is classified as HFT, nHFT or MIXED, this flag is

immutable.

4.3. Preliminary analysis

This Section provides a preliminary analysis of the preopening and opening

trading activity in the Paris market that motivates the empirical analysis of the

present study. Table 1 reports the average, across days and stocks, number of

submissions, modifications and cancellations, during the preopening period, in

15 minute frequency and for each trader type; HFT, MIXED and nHFT. The

first thing to notice is that HFT activity is practically absent until 8:00, whereas

it rapidly increases prior to open. The average number of submissions in the

last 15 minutes is 158.3 and 190.6 for HFT and MIXED traders, respectively,

whereas the corresponding values are less than 2 before 8:00. On the other

hand, nHFT submissions are more prevalent at the start and at the end of the

preopening session.17 The average number of nHFT submissions is 61.9 between

7:15 and 7:30, whereas it decreases to 8.8 until 8:30. Subsequently, it increases

to 108.5 until 8:45 to reach 51.4 prior to open. As far as modifications and

17Boussetta et al. (2016) also report that nHFT traders submit their quotes at the start at
at the end of the preopening session for the 120 SBF stocks in the Paris market and for the
years 2012 and 2013.
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cancellations is concerned, they are almost negligible for all types of traders

during most of the preopening period, whereas they increase significantly prior

to opening.

Turning into the order book volume, Table 1 reports the volume (i.e., stand-

ing shares) percentage relative to total order book volume in 15 minute fre-

quency for the preopening period and for each trader type. The total num-

ber of nHFT shares is consistently higher during the entire preopening period,

compared to the other types of trading; the average nHFT preopening volume

percentage is approximately equal to 80.6%. Notice, also, that as the preopen-

ing time approaches the volume percentage associated with nHFTs is relatively

reduced, whereas for HFT and MIXED traders it increases. At the opening,

nHFT volume accounts for, approximately, 77.3% of totally submitted shares,

whereas the corresponding percentage for HFT and MIXED traders is 4% and

18.8%, respectively. Interestingly, by comparing the average number of order

submissions with the volume percentage, we infer that HFT related orders are

smaller than nHFT orders prior to open. This finding is consistent with the

argument that HFT algorithms are frequently employed by investors for the ap-

plication of ‘slice and dice’ techniques, to reduce price impact or to camouflage

their informational advantage (Barclay and Warner, 1993; Chakraborty et al.,

2012).

Table 2 reports means for the opening volume, number of trades, value of

transactions, percentage of value of transactions relative to total daily value of

transactions, as well as HFT, nHFT and MIXED trading activity, for the 32

stocks in our sample. Evidently, the opening trade accounts for, approximately,

1.5% of total daily traded volume.18 This percentage is rather low compared

to the 10% reported by Biais et al. (1999) for the opening auction of the CAC

40 stocks in 1993. Observe, however, that the percentage of HFT and MIXED

trades at the opening is significantly increased; almost 67.5%, on average, of

18Similar to our findings, Boussetta et al. (2016) report an average opening volume of 1.3%
to 2.6% for the 120 SBF stocks in the Paris market and for the years 2012 and 2013.
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total trading activity at the opening involves HFT or MIXED flags.

Overall, the results reported in Tables 1 and 2 suggest that only a small HFT

and MIXED fraction (≈ 22%) of total order book volume, attributed to orders

with small size, is responsible for, approximately, 70% of total traded volume

at the opening. We infer, therefore, that as the opening time approaches HFTs

become more aggressive compared to nHFTs, contributing significantly to the

determination of the clearing price.

Table 1: Preopening order flow for the CAC 40 sample.

Time 7:15–7:30 7:30–7:45 7:45–8:00 8:00–8:15 8:15–8:30 8:30–8:45 8:45–Open

Submissions
HFT 0.0 0.0 1.8 0.4 0.3 228.1 158.3

MIXED 0.0 0.0 0.6 29.1 3.7 12.6 190.6
nHFT 61.9 54.0 22.8 16.7 8.8 108.5 51.4

Modifications
HFT 0.0 0.0 0.0 0.0 0.6 0.1 40.1

MIXED 0.0 0.0 0.0 0.0 0.2 0.7 59.0
nHFT 0.0 0.0 0.0 0.0 0.0 0.3 18.3

Cancellations
HFT 0.0 0.0 0.0 0.0 0.1 0.4 33.3

MIXED 0.0 0.0 0.0 0.0 1.6 1.1 34.2
nHFT 6.2 9.5 9.6 2.3 2.1 2.1 5.8

Total volume (%)
HFT 0.1 0.1 1.0 1.0 1.0 5.6 4.0

MIXED 14.8 14.6 14.6 20.1 20.1 19.9 18.8
nHFT 85.1 85.2 84.4 78.9 78.8 74.5 77.3

This Table reports the average, across days and stocks, number of submissions,
revisions and cancellations during the preopening and in 15 minute frequency,
along with the corresponding volume percentage relative to total order book
volume, for each type of trader; HFT, MIXED and nHFT. Zero values (0.0)
represent very small averages.
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Table 2: Opening statistics for the CAC 40 sample.

Company Volume Number Value of Trades value HFT (%) MIXED (%) nHFT (%) HFT &
of trades transactions (%) MIXED (%)

Credit Agricole 126,450.4 190.0 961,768.0 1.5 11.5 32.5 55.9 44.1
Airbus Group 13,825.0 124.3 1,345,870.8 2.2 8.5 51.9 39.7 60.3
Air Liquide 30,873.8 89.4 711,201.7 1.3 9.4 62.3 28.3 71.7
Carrefour 82,812.9 189.7 3,338,181.9 2.0 6.8 55.8 37.3 62.7
Sanofi 9,838.0 80.6 1,209,136.6 1.7 9.6 63.8 26.6 73.4
Total 8,684.8 67.9 365,504.3 1.3 12.5 53.6 33.9 66.1
LOreal 8,979.2 47.0 263,187.7 1.0 7.9 71.8 20.3 79.7
Vallourec 8,681.8 84.8 433,528.2 1.1 11.8 50.2 37.9 62.1
Accor 52,697.2 147.2 4,042,631.4 2.1 7.1 63.7 29.2 70.8
Lafarge 96,080.6 145.3 1,533,643.2 1.5 8.2 55.6 36.2 63.8
Axa 27,964.4 92.5 1,530,292.3 1.7 5.5 75.3 19.3 80.7
Danone 7,230.0 61.9 653,103.8 1.4 11.1 67.7 21.2 78.8
Pernod Ricard 13,625.6 106.8 1,838,979.8 1.8 8.6 62.2 29.2 70.8
Lvmh 10,728.2 104.0 776,669.9 1.6 9.6 58.7 31.8 68.2
Michelin 2,999.2 47.8 496,045.7 1.1 9.5 65.3 25.2 74.8
Vivendi 8,587.2 75.8 690,507.0 1.6 8.2 65.5 26.4 73.6
Kering 19,881.3 78.9 1,177,242.7 1.5 8.3 70.5 21.2 78.8
Schneider Electric 34,432.6 79.4 375,577.1 1.1 11.2 50.4 38.3 61.7
Veolia Environn. 22,453.5 79.3 748,770.5 1.3 10.1 64.2 25.8 74.2
Unibail-Rodamco 8,941.0 58.6 357,072.3 1.1 12.5 59.1 28.4 71.6
Saint Gobain 25,555.6 115.9 1,017,887.4 1.7 7.5 55.8 36.7 63.3
Cap Gemini 73,411.7 120.8 1,211,221.9 1.7 9.3 59.5 31.2 68.8
Vinci 6,762.4 44.1 390,563.3 1.0 10.9 71.9 17.2 82.8
Publicis Groupe 63,557.5 170.5 2,067,061.8 1.3 7.4 49.9 42.7 57.3
Societe Generale 57,987.2 179.4 2,730,520.4 1.5 6.9 55.8 37.3 62.7
BNP Paribas 8,402.9 82.5 665,356.5 1.6 10.9 61.3 27.7 72.3
Technip 15,950.1 78.0 890,811.0 1.5 9.7 62.7 27.6 72.4
Renault 128,075.6 168.1 1,071,560.2 1.3 7.4 49.0 43.6 56.4
Orange 71,155.7 169.9 1,164,808.0 1.6 7.0 55.5 37.5 62.5
GDF Suez 21,409.4 103.1 600,561.3 1.4 10.5 50.2 39.3 60.7
EDF 24,168.1 117.5 466,494.5 1.4 6.2 49.4 44.4 55.6
Alstom 41,076.0 194.6 1,777,128.8 1.7 4.8 50.1 45.1 54.9
Mean 35,415.0 109.2 1,153,215.3 1.5 8.9 58.5 32.6 67.4

Average values at the opening: volume, number of trades, value of transactions,
percentage of value of transactions relative to total daily value of transactions
and percentages of HFT, nHFT and MIXED trading activity, for the 32 CAC
40 sample stocks.
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4.4. Price discovery

Before we examine price efficiency in the preopening, we measure the contri-

bution of each 15 minute preopening interval to total price discovery. To do so,

we use the Weighted Price Contribution (WPC) statistic of Barclay and Warner

(1993), which is defined as follows:19

WPCk =

S
∑

i=1

(

|∆P i|
∑S

i=1 |∆P i|

)

×

(

∆P k,i

∆P i

)

, (60)

where ∆P i is the total logarithmic price change in preopening for stock i and

∆P k,i is the logarithmic price change for interval k, k = 1, ..., 8. The first

parenthesis in equation (60) is the weighting factor for each stock to control for

potential heteroscedasticity in preopening returns, whereas the second parenthe-

sis is the contribution of interval k to total preopen price adjustment (Barclay

and Hendershott, 2003). Note that the WPC statistic, as defined above, is the

weighted average price contribution across stocks. Subsequently, this quantity

is averaged across days to obtain the overall WPC estimate. Similar results can

be acquired by averaging first across days, within equation (60), and then across

stocks. In this case, however, it is likely that the common market component in

stock returns will add bias to the average estimate of the WPC statistic. There-

fore, following Barclay and Hendershott (2003), we select to calculate the WPC

statistic day by day and then to average across days. Lastly, Table 3 summa-

rizes the stock–day sample distribution for each 15 minute intraday preopening

return used in the WPC analysis.

19The WPC statistic has also been applied by Cao et al. (2000), Ciccotello and Hatheway
(2000) and Barclay and Hendershott (2003) for the NASDAQ market, Ellul et al. (2005) for
the London Stock Exchange, Moshirian et al. (2012) for the Australian Stock Exchange and
Anagnostidis et al. (2015) for the Athens Exchange.

33



Table 3: Distribution of stock returns.

Mean Median Std Min Max

Overnight returns over all orders

close to 7:15 0.005 0.004 0.005 -0.061 0.047

close to 7:30 0.000 0.000 0.006 -0.059 0.086

close to 7:45 -0.001 0.000 0.008 -0.074 0.047

close to 8:00 -0.001 0.000 0.008 -0.074 0.047

close to 8:15 -0.001 0.000 0.009 -0.074 0.063

close to 8:30 -0.001 0.000 0.009 -0.078 0.055

close to 8:45 -0.001 0.000 0.010 -0.127 0.049

close to open 0.000 0.000 0.008 -0.094 0.086

close to close 0.001 0.001 0.016 -0.126 0.116

Overnight returns over nHFT orders

close to 7:15 0.005 0.004 0.005 -0.061 0.047

close to 7:30 0.000 0.000 0.006 -0.059 0.086

close to 7:45 -0.001 0.000 0.008 -0.074 0.047

close to 8:00 -0.001 0.000 0.008 -0.079 0.047

close to 8:15 -0.001 0.000 0.009 -0.078 0.055

close to 8:30 -0.001 0.000 0.009 -0.081 0.060

close to 8:45 -0.002 0.000 0.009 -0.076 0.057

close to open 0.000 0.000 0.009 -0.094 0.060

Intraday returns

close to 7:15 0.005 0.004 0.005 -0.061 0.047

7:15-7:30 -0.005 -0.004 0.007 -0.048 0.077

7:30-7:45 -0.001 0.000 0.006 -0.077 0.053

7:45-8:00 0.000 0.000 0.004 -0.064 0.040

8:00-8:15 0.000 0.000 0.005 -0.049 0.058

8:15-8:30 0.000 0.000 0.005 -0.076 0.073

8:30-8:45 0.000 0.000 0.007 -0.102 0.067

8:45 to open 0.001 0.001 0.009 -0.092 0.115

This Table reports summary statistics for the distribution of return variables
utilized in the present study; mean, median, standard deviation, minimum and
maximum.
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Figure 5: Cumulative Weighted Price Contribution statistic during the preopen-
ing period.

Figure 5 illustrates the evolution of the cumulative Weighted Price Contri-

bution statistic within the preopening period. It is interesting to observe that in

the first minutes of the preopening, price discovery is very low (20%), reflecting

the lower rate of price adjustment. By contrast, in the last 15 minutes WPC

is rapidly accelerated; the corresponding WPC statistic is approximately 38%.

We, therefore, infer that bidding is more aggressive prior to open, indicating

that traders submit orders with the intention of being filled. This result, in

conjunction with the preliminary analysis presented above, suggests that the

price formation process in the preopening is closely related to the amount of

HFT.

4.5. Price efficiency

To test the hypothesis that accurately informed HFTs contribute to price ef-

ficiency in call auction trading, we employ the unbiasedness regression technique
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of Biais et al. (1999).20 To do so, we use the current day closing price as a repre-

sentation of the fair value of the stock, V . This proxy is based on the assumption

that at the end of the trading day prices reflect all market information.21 Now,

consider the information set I0 at the start of the preopening period (i.e., the

start of the trading day). Then, the previous day closing price represents the

expected value of the stock at time zero (t = 0) conditional on I0; denote this

expectation by E(V |I0). If traders consider the disclosed information on the

indicative prices and the order book dynamics, then as time progresses equi-

librium prices Pt should become more informative; that is, Pt = E(V |It) with

It being the information set at time t > 0. On the other hand, if equilibrium

prices incorporate noise, then they should reflect the information set I0 plus a

noise term et. Thus, Pt = E(V |I0) + et with et⊥V .

To conduct the econometric test, we initially compute equilibrium prices

over a 15 min frequency in the preopening period. Subsequently, we utilize

the following overnight logarithmic returns: 1) previous day close to current

day preopening time t, Rct and 2) previous day close to current day close,

Rcc. The first type proxies the difference between the preopening price Pt

and the equilibrium value at the start of the day E(V |I0), [Pt − E(V |I0)],

whereas the second type proxies the change of the equilibrium price of the

stock, [V − E(V |I0)], after the end of the trading day. The idea is to examine

the correlation between the two types of returns over the sample trading days,

at each preopening time stamp, to infer on price efficiency. Summary statistics

on the distribution of overnight returns are reported in Table 2.

We estimate the following linear regression at each preopening time:

Rcc = a+ bRct + ǫ. (61)

20The unbiasedness regression methodology has been used in several empirical studies in
the past; see, for example, Ciccotello and Hatheway (2000), Barclay and Hendershott (2003),
Madhavan and Panchapagesan (2000) Comerton-Forde and Rydge (2006), Moshirian et al.
(2012) and Anagnostidis et al. (2015).

21Note that other prices during the day can also be employed as fair value proxies; mid–day
prices for example (Madhavan and Panchapagesan, 2000).
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Figure 6: Average, across stocks, b coefficients obtained by estimating equation
(61) (solid line) along with average 95% confidence intervals (upper/lower),
using actual indicative and opening prices. Together are plotted the average
estimated b coefficients obtained by using nHFT equilibrium prices (squared
line).

If the slope coefficient b is equal to unity, then stock preopening equilibrium

prices are efficient as they reflect all market information at time t (It). By

contrast, if b is different from unity, then indicative prices reflect information

plus some noise.22 Notice that the variance of the residual term in equation

(61) is comparable to the residual variance obtained in equation (18), after

conditioning on the linear rule p = αs+ βQ.

22Note that stock price efficiency at the opening can also be examined using variance ra-
tio statistics over daily data (e.g., opening and closing prices). The unbiasedness regression
technique, however, is advantageous, as it enables us to examine the dynamics of stock prices
within the trading day. Further, by running a separate regression for each consecutive time
interval within the preopening, we avoid nonstationarity issues that arise due to price adjust-
ments as the price discovery evolves.
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4.5.1. Individual regression results

Here we present the results acquired from the unbiasedness regressionmethod-

ology by running a separate OLS regression for each stock, in line with most

empirical studies in the relative literature (Biais et al., 1999; Comerton-Forde

and Rydge, 2006; Moshirian et al., 2012). Figure 6 plots the estimated average,

across stocks, b coefficient during the preopening period for 15 minute frequency,

along with the estimated average 95% confidence intervals.23 The first thing to

notice is that early preopening indicative prices are rather noisy. This result re-

flects the fact that, at that time of the day, investors’ bids are still not adjusted

to incorporate early news announcements and/or overnight information. On the

other hand, there is evidence that as the opening time approaches, prices reflect

more information, whereas they become efficient at the open; the average b is

equal to 0.9640 and statistically equal to unity at the 5% probability level. This

‘learning’ pattern is similar to that reported by Biais et al. (1999).24 Evidently,

traders adjust their quotes according to the publicly available market informa-

tion and, therefore, prices become more informative as the preopening process

evolves.

To examine the effect of HFTs on opening prices, we evaluate the unbi-

asedness regressions using indicative equilibrium prices calculated exclusively

on nHFT orders. According to the model described earlier, we expect that

prices incorporate less information when generated solely by slow nHFT in-

vestors. Figure 6 juxtaposes the average, across stocks, b coefficients obtained

from equation (61) using the actual indicative prices against the mean b coeffi-

cients obtained using nHFT indicative prices. The two patterns of b estimates

are similar, suggesting that investors learn about true values by observing the

available information. At the opening, however, nHFT prices are still noisy; the

23To infer on the statistical significance of b estimates, we use NeweyWest (N-W) SEs that
control for potential heteroscedasticity and serial correlation in the residual time series.

24Learning patterns in the preopening are also reported in Ciccotello and Hatheway (2000)
and Barclay and Hendershott (2003) for the NASDAQ, Comerton-Forde and Rydge (2006)
and Moshirian et al. (2012) for the Australian Exchange and Anagnostidis et al. (2015) for
the Athens Exchange.
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average b coefficient is equal to 0.6731 while the corresponding 95 % confidence

interval, not illustrated in Figure 6, is (0.6471, 0.7130). Thus, b is statistically

different from unity at the 5 % probability level. This finding suggests that HFT

activity contributes significantly to the price discovery process by enhancing the

information content of clearing prices.

4.5.2. Panel data regression results

The average b coefficient results described above are obtained under the pre-

sumption that the residual innovations obtained by the unbiasedness regressions

are cross–sectionally independent. Financial panel data, however, exhibit often

cross–sectional dependence. Thus, for purposes of robustness, we evaluate the

unbiasedness regressions by conducting panel data analysis with the use of two–

way clustered errors; that is, standard errors that are robust with respect to

time (within-group) and firm (between-group) correlations (Thompson, 2011).

To investigate for cross–correlation in the data, we conduct the statistical

test proposed by Pesaran (2004) over the residuals from the panel regressions. In

particular, under the null hypothesis of cross–correlation, the following statistic

is asymptotically standard normal distributed:

CD =

√

2m

N(N − 1)





N−1
∑

i=1

N
∑

j=i+1

ρ̂i,j



 ∼ N(0, 1), (62)

where N is the total number of stocks, m the number of time observations and

ρ̂i,j the estimated pairwise correlation for securities i and j. Note that the

particular statistic improves on the well–known Breusch and Pagan (1980) test

that is accurate only for m >> N . In particular, Pesaran (2004) shows that the

CD statistic performs equally well for small samples with respect to m and/or

N . Moreover, it is robust against non–stationarity and/or structural breaks in

the time series at hand. The estimated CD statistic for the preopening interval

panel regressions ranges from 6.165 to 6.272 (> 1.96). Hence, the null hypothesis

of cross–sectional independence is rejected in all cases, confirming the choice to

conduct corroborating panel data analysis.
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Figure 7: Unbiasedness panel regression b coefficients (solid line) along with the
corresponding 95% confidence intervals (upper/lower), obtained by using actual
indicative and opening prices in equation (61). Together are plotted panel b
coefficient estimates obtained by using nHFT equilibrium prices (squared line).

Figure 7 plots the results from the estimated panel regressions. The first

thing to notice is that, due to the use of two–way clustered errors, the confi-

dence intervals are narrower compared to those presented in Figure 6. Thus, we

are able to accurately detect deviations from unity for the b coefficient. Consis-

tent with the findings from the individual analysis, the pattern of b coefficients

suggests that investors ‘learn’ from the available information and, in turn, ad-

just their orders accordingly; the b coefficient at the opening is equal to 0.9539

and is statistically equal to unity at the 5% level. Notice, also, that for the

nHFT related regressions the estimated b coefficient is 0.6749 and statistically

different from unity at the 5% level; the corresponding confidence interval is

(0.572, 0.784). Overall, the panel data analysis results are in line with the in-

dividual equation analysis in that HFTs improve price efficiency in the Paris
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market opening auction.

5. Conclusions

We examine the effect of HFTs on stock prices in transparent order–driven

call auction markets. To do so, we develop an analytical framework based on

the notion of noisy rational expectations equilibria, where HFTs coexist with

nHFTs in the call market. The key assumption in our model is that machines

have access to a semi–strong form efficient signal, the precision of which improves

as the order batching procedure evolves. Based on this assumption we deduce

that the informativeness of preopening indicative prices is positively correlated

with HFT activity; that is, the number of HFTs in the market as well as the

information content of the signal of HFTs.

To test empirically the prediction of our theoretical framework, we use a

unique set of intraday data from the Paris Euronext stock market for the CAC

40 stocks in year 2013. In particular, we construct equilibrium prices on the

basis of both HFT and nHFT data. Subsequently, we employ the Weighted

Price Contribution (WPC) statistic of Barclay and Warner (1993) together with

the unbiasedness regression methodology of Biais et al. (1999), to investigate

the price formation process in the preopening. Our findings hint that HFTs

accelerate price discovery and price efficiency, especially during the last minutes

of the order batching period. Thus, we infer that the presence of HFTs in

order–driven call auctions enhances the quality of clearing prices.
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