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The Components of Illiquidity Premium: An Unobserved Components 
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Abstract: The objective of this paper is to provide a new methodology that helps to 

estimate the conditional liquidity-adjusted capital asset pricing model (L-CAPM) of Acharya and 
Pedersen (2005). Our key novelty is that we model illiquidity via Unobserved Components (UC) 
models to test a conditional version of the L-CAPM Model. This methodology allows to take into 
account the main stylised facts of liquidity time series and eliminates the look-ahead bias 
present in previous literature (Acharya and Pedersen, 2005, Saad and Samet, 2014, Korajczyk 
and Sadka, 2008, Hagstromer et al., 2013). Based on a sample containing all common firms 
listed on the NASDAQ from 01/012006 to 12/31/2014 we obtain the following main results. In 
line with previous empirical studies we founding a marginal effect of liquidity risk on returns 
compare to the effect of the liquidity level premium. The most important liquidity risk is related 
to the covariance between portfolio illiquidity and market return. But, in contraction with 
previous founding, liquidity risk and illiquidity level are not found to be always positively 
correlated (i.e. we find a negative correlation between portfolio return and market illiquidity). 
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1 Introduction 

 
The objective of this paper is to provide a new methodology that helps to estimate the 

conditional liquidity-adjusted capital asset pricing model (L-CAPM) of Acharya and Pedersen 
(2005). Our key novelty is that we model illiquidity via Unobserved Components (UC) models to 
test a conditional version of the L-CAPM Model. In this model, uncertainty in the illiquidity cost 
is what generates liquidity risk. Henceforth, estimation of this uncertainty (illiquidity 
innovations) appears pivotal. The current empirical literature extract these innovations via 
simple autoregressive models (Acharya and Pedersen, 2005, Saad and Samet, 2014, Korajczyk 
and Sadka, 2008, Hagstromer et al., 2013). This methodology entails several issues. Firstly and 
as far as we read, all the literature estimates these ARIMA type innovations via the Maximum 
Likelihood Estimation(MLE) method without adopting a one-step-ahead forecasting framework. 
This introduces a look-ahead bias since liquidity innovations obtained at the beginning of the 
sample use the whole sample information (the MLE is maximized with respect to the entire 
sample period). This undoubtedly weaken the significance of the results. 

Secondly, the ARIMA methodology is based on the ideas that non-stationary series can 
be made stationary through the use of a specific operation. Several liquidity metrics are known 
to be non-stationary (for example volume-based liquidity metrics) but knowing whether the 
series is trend stationary or whether it is a unit root process is rarely obvious. This leads to the 
use of poorly theoretical-backed methods to render the data stationary, as an illustration, 
Acharya and Pedersen (2005) adopts a rather arbitrary method1 to make the Amihud liquidity 
measurement stationary. 

Thirdly, current ARIMA models applied to liquidity pricing do not take into account a 
number of salient features of liquidity series. For instance, seasonality known to be present in 
liquidity series is not seriously considered in the liquidity empirical asset pricing literature. 

We propose to overcome all these limitations by modelling liquidity via Unobserved 
Components models (UC). UC models use a decomposition approach by explicitly modelling the 
components of a series where each component can be easily interpreted. This has the 
advantage of describing the various components of interest, making interpretation and model 
selection easier. Besides the Kalman Filter 2, employed to fit UC models removes the 
aforementioned look-ahead bias since only past data is employed to obtain state estimates. UC 
models have also the advantage of dealing with practical issues such as missing observations 
which are often observed in liquidity proxies. More importantly, our UC model specification can 
distinguish between permanent shocks and temporary shocks (impossible in ARIMA modelling). 

The original conditional L-CAPM model assumes that betas are time-varying. However, 
most of the empirical literature has been focused on the unconditional version proposed by 
Acharya and Pedersen (2005). Few papers tested the L-CAPM in which betas are time varying 
(Minovic and Zivkovic, 2010; Hagstromer et al., 2013). We contribute to this literature by 
applying our innovative way of modelling illiquidity on a model with multiple time-varying betas. 

The paper is organised as follows: the theoretical L-CAPM model is presented in section 

                                                      
1 See equation 18 of [Acharya and Pedersen, 2005]. 
2 Applied as a forward-looking algorithm. 
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2. The materiel and methodology are presented in section 3. Section 4 reports the empirical 
results and section 5 concludes.  

 
2 The L-CAPM Model 

 
The L-CAPM model introduced by Acharya and Pedersen (2005) is an extension of the 

classic CAPM (Sharpe; 1964; Lintner, 1965; Mossin, 1966) to a model including both liquidity 
level and liquidity risk. This model assumes a simple overlapping generation economy in which 
agents maximised their expected utility function in a one-period framework and introduce 
illiquidity costs by adding a per-share relative cost i

tc . In this framework the standard CAPM 

translated into a CAPM in net (liquidity-cost adjusted: jj
Net
j crr −= ) returns for the imagined 

economy with illiquidity costs. By rewriting the standard one-beta CAPM in terms of gross 
returns Acharya and Pedersen (2005) obtain the L-CAPM: 
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In addition to the traditional market beta, the L-CAPM introduces three new betas 

capturing different liquidity risks for an asset. These are: 2
,tiβ  the commonality in illiquidity 

investors ask for a premium for holding a security that becomes illiquid when the market 
becomes illiquid, 3

,tiβ  the security return sensitivity to market illiquidity, the risk to obtain low 

return when the market is illiquid and 4
,tiβ  the sensitivity of the security’s illiquidity to market 

returns, the risk to hold an illiquid asset in bad states of the market. 
The risk price is given by )(= 11

f
t

M
t

M
ttt rcrE −−−−λ  and f

tr  is the risk free-rate. 
Superscripts i  and M  represent the security i  and aggregate markets respectively. Thus 

i
t

M
t

i
t rcc ,,  and M

tr  are, respectively, the portfolio illiquidity, market illiquidity, portfolio (gross) 
return and market (gross) returns. We depart from this model by restricting the risk premium (

tλ ) to be constant ( λ ). This simplification is made to avoid identification problems and has 
also been adopted by Hagstromer et al., (2013). The scaling factor k refers to the holding 
period and is required to adjust the liquidity level premium to the number of times illiquidity 
costs are incurred. 

 



4 
 

3. Econometric specification of Conditional LCAPM 
 
Our methodology can be summarised in five steps. Firstly, for each individual security i 

and at a daily frequency we estimate the bid-ask spread. Secondly, we form an 
equally-weighted market portfolio and sets of 25 test portfolios sorted in the basis of illiquidity. 
Thirdly, for each portfolio, we estimate the Local Linear Trend model with seasonal (LLT) and the 
Local Linear Trend model with common Stochastic Volatility and seasonal (LLTSV) model to 
extract, respectively, illiquidity innovations and stochastic volatility. Fourthly, using these 
innovations and stochastic volatility, we estimate at the daily frequency the time-varying betas 
through Dynamic Conditional Correlation (DCC) modelling. Fifthly, different DCC models 
specifications are considered based on the univariate conditional variance modelling 
framework. This results in several sets of time-varying betas that are ranked accordingly their 
power to explain cross-sections in portfolio returns. Finally we run cross-sectional regressions at 
the monthly frequency to test the model. 

 
3.1. Modelling illiquidity via Unobserved Components Models 

 
In this section we detail the two Unobserved Components models (also called Structural 

Models) employed to model the bid-ask spread. We choose to model bid-ask spread through 
four components: level, slope, seasonal and an autoregressive component. According to the 
efficient-market hypothesis, the liquidity of a stock should follow a martingale process because 
its level should incorporate all the available information. This level should therefore be 
unpredictable. To confirm with this view we incorporate a level component in the model, this 
component is modelled as a near unit-root process that represents the hidden level of the 
bid-ask spread. This component departs from a strict unit root process by the extra slope 
component we add it to it. This slope, or drift term, is the second component of our model and 
is itself specified as a random walk process. It aims to model the long-term trend component of 
the bid-ask spread. Due to competition among stock exchanges and to innovations in 
technology, we expect this term to be negative implying a long term increase in the market 
liquidity. Additionally we also incorporate a seasonal component intended to take into account 
the well-known day-of-the-week effects (Chordia at al. 2001) in liquidity series. Finally an AR(1) 
process is also considered as the fourth component, it aims to capture temporary bid-ask spread 
shocks caused by short term imbalance in liquidity demand and supply. 

The four components are modelled as stochastic processes with their own error terms. 
Based on these four components we constructed two structural models: the Local Linear Trend 
model with seasonal (LLT) and the Local Linear Trend model with common Stochastic Volatility 
and seasonal (LLTSV)3. The LLTSV model has the additional feature of allowing for a time-varying 
conditional variance process, then volatility clustering is directly evaluated by the UC model (for 
the LLT model, it is evaluated indirectly by fitting a GARCH type of model to the residuals). 

 
LLT Model 

                                                      
3  We use the terminology "Local Linear Trend", but our model differs from the traditional LLT specification (see Harvey and Shephard 1993) 
since we add an autoregressive component and omit the irregular component. 
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The local linear trend model with seasonal and AR(1) component is formally given by:  
 tttt zy ++γµ=  (2) 

 )(0,,= 2
1 ξσξξµµ Nv ttttt :+++  (3a) 

 )(0,,= 2
1 ζσζζ Nvv tttt :++  (3b) 

 )(0,,= 2
1

1

1=
1 ωσωωγγ Nttjt

s

j
t :+− −+

−

+ ∑  (3c) 

 )(0,,= 2
1 εσεεφ Nzz ttt :+×+  (3d) 

 
The measurement equation (2) relates the observed variable ty  (the observed bid-ask spread) 

to the unobserved state variables where tµ  is the level, tv  the slope, tz  the 

autoregressive and tγ  the seasonal component, nt 1,...,= . 
The transition equations (3a to 3d) model the dynamics of the unobserved components. Level, 
slope, autoregressive and seasonal component are treated as stochastic processes. The 
disturbance terms of the level, slope , seasonal and AR(1) components are respectively given by 

tξ , tζ , tω  and tε . The condition 1|<|φ  is imposed to ensure stationarity and identification 
of the short-term component 
 
We use the Kalman filter4 to obtain an estimate of the conditional distribution of the state 
variables at 1+t  given the past data only, this removes the aforementioned look-ahead bias 
whose AR models suffer. The error in the prediction ( )1/= −− tttt YyEye  and its variance 

)|(= 1−ttt YeVarF , 1−tY  information available at time t-1, are easily computed as a by-product 
of the Kalman Filter. These two parameters are employed to compute, for a given set of 
unknown parameters Ψ  (disturbances variances and state parameters), the value of the 
log-likelihood function: 
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Finally, we estimate the unknown parameters by maximising the log-likelihood function using 
the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm. Estimation is performed with the 
Ssfpack package (Koopman et al., 1999) 56. 

 
LLT with Stochastic Volatility (LLTSV) 
 
We also consider an extension of the previous model by adding a stochastic common 

                                                      
4 Derivation of the Kalman Filter is given in the appendix. 
5 See Commandeur and Koopman (2007) and Pelagatti (2011) for a gentle introduction to this package. 
6 Comparison of forecast accuracy between the LLT model and standard autoregressive models (i.e. the framework 
commonly used in the literature) is available from the authors on request. 
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variance component to the model. This is motivated by the fact that the conditional variance of 
liquidity times series is known to be time-varying and that volatility clustering exists. We employ 
the model proposed by Koopman and Bos (2004), they present an innovative way to combine a 
linear state space model (as the LLT model) with the stochastic volatility model. 

 
The combined LLT trend model with stochastic volatility (LLTSV model) is formally given by:  

 tttt zy ++γµ=  (4) 

 tttt qv 1,11 = εµµ +++  (5a) 

 ttt qvv 2,21 = ε++  (5b) 

 tjt

s

j
t q 3,31

1

1=
1 = εγγ +− −+

−

+ ∑  (5c) 

 ttt qzz 4,41 = εφ ++  (5d) 

where the disturbance vector tε  is: )(0, 4
2IN tt σε :  

We consider the simplest stochastic volatility model given by 
 )(=2

tt hexpσ  

 ntNhdh tttt ,1,=(0,1),,)(1=1 K:ηησφφ η++−+ , 1<0 φ≤  and 0>tσ . 

The disturbances tε  and the disturbance tη  are assumed to be uncorrelated. 

The process of the stochastic variable th  is itself treated in state space form (see Koopman 
and Bos, (2004) for details about the system of matrices). Thus the LLTSV is a combination of 
two linear state space models. In terms of forecasting, Koopman and Bos (2004) show that the 
LLTSV model outperforms the LLT model because it increases the variability of the exponential 
weights that depend on the overall value of the conditional variance tσ .  

Estimation of the LLTSV model is far more complex than for the LLT model. The 
prediction error ( tv ) cannot be extracted directly since tσ  is used in the Kalman Filter 
equations but is not known. The estimation procedure proposed by Koopman and Bos (2004) 
consists in approximating the true likelihood via averages of simulations from an approximating 
model. This procedure, implemented in the SSFSV package7, is considerably CPU and time 
consuming, particularly for one-step-ahead forecasts. Consequently, we did not employ a 
one-step-ahead forecasting framework but a simplified approach by estimating the model in a 
single shot8. It worth noting that by doing so we re-introduce the look-ahead bias previously 
mentioned (only for the LLTSV model). 

 
3.2. Estimating the Time Varying Beta 

 
In this part we present the methodology employed to obtain the time-varying betas. The 

time-varying correlations are obtained via the Dynamic Conditional Correlation (DCC) model of 
                                                      
7 Available at http://personal.vu.nl/c.s.bos/publications/ssfsv.htm. 
8 The stochastic volatility part is estimated using the whole sample instead of being based on a moving-block as it should be. 
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Tse and Tsui, (2002). More precisely, we consider a four-dimensional vector:  
 TtrrccY M

t
i
t

M
t

i
tt :1=),,,,(=  

 )(0, tt HNY :  

where i
tc  ( M

tc ) and i
tr ( M

tr ) denote respectively the portfolio (market) liquidity innovations 
(obtained from unobserved models) and returns. They are zero mean processes with 

ttt HIYvar =)|( 1− , where the conditional variance matrix tH  follows the DCC specification of:  
 jjtiitijttttt hhDRDH ρ==  

 ),,(= 1/21/2
11 NNttt HHdiagD K  

 11)(1= −− Φ++−− ttt abRRbaR  
where a and b are non-negative parameters satisfying 1<ba + . R  is a symmetric NXN (

44× ) positive definite parameter matrix with 1=iiρ  and 1−Φt  is the NXN  sample 
correlation matrix derived from the standardised residuals. This model imposes GARCH type 
dynamics on the conditional correlation matrix tR . 

tD  is obtained in a pre-estimation via two univariate conditional variance models: the 
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model (Bollerslev, 1986) 
with 1 lag, and the Beta-T-Garch (Harvey and Chakravarty, 2008) a special case of the 
Generalised Autoregressive Score (GAS) model (Creal et al, 2013). Daily liquidity series exhibit 
numerous jumps probably due to noise, these jumps affect future volatility less than what 
standard volatility models would predict. To deal with this issue, GAS models are ideal 
candidates because they can lower the effect of jumps on the conditional variance process. In 
this model, the conditional variance is derived from the conditional score of the innovation 
distribution with respect to the second moment. The novelty is to link the shape of the 
conditional variance density directly to the dynamics of conditional variance. The specification 
of the GAS(1,1) equation is given by:  

2
11

2
111

2 = −−− ++ tttt uw σφσασ  
 

)(0,1,
2
1)(= 2

2

vtz
zv
zvu t
t

t
t :

+−

+  

where tu  is a a rescaled conditional score and tz  are standardised errors. In this model, the 
variance is driven by the conditional score of the last observation, and implies a fast adjustment 
of parameters following new observations. 
 
Once the correlation matrix tR  and the conditional standard deviations tD  are estimated the 
time-varying betas are easily estimated as a by-product using the following formula (applied in 
this case to the second beta): 
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where 
M
tc

t

M
tc

t hh ,  and 
M
tc

M
tr
th

−  are, respectively, the conditional variance of the portfolio 
illiquidity innovations9, market illiquidity innovations and the series defined as market returns 
minus market illiquidity innovations. The three other betas are obtained similarly. The proposed 
methodology is similar to that proposed by Bollerslev et al. (1988) except that we have multiple 
betas. 

The DCC model is estimated via the MLE method by a two step approach, parameters of 
the univariate conditional variance processes are estimated in the first step, then conditional 
correlation parameters are estimated in a second step based on standardised series. The G@rch 
package (Laurent and Peters, 2002) is employed to produce estimates. 

As the conditional variances of the returns (
M
tr
t

tr
t hh , ) are obtained via two GARCH type of 

models (GARCH or GAS) and the conditional variance of illiquidity (
M
tc

t
tc

t hh , ) is also obtained in 
two ways (LLT or LLTSV), we construct four sets of time-varying betas leading us to test four 
different L-CAPM models, labelled models I to IV and summarized in Table 1. 

 
Table 1: Four estimation models of time-varying betas. Models differ in the way the conditional 

variance of illiquidity or returns are obtained. 
Model Name UC 

ijth  Illiquidity ijth  returns 
I DCC-GARCH LLT GARCH GARCH 
II DCC-GAS LLT GAS GAS 
III DCC-STOCH GARCH LLTSV Stochastic Vol. GARC 
IV DCC-STOCH GAS LLTSV Stochastic Vol. GAS 

 
4.  Empirical study 

 
In this section, parameters of the unobserved components models and the time-varying 

betas are presented. Next, we estimate and test the L-CAPM. Finally we investigate the 
composition of the illiquidity premium. 

 
4.1. Data 
 
Daily data is extracted from the Bloomberg database and contains all common firms 

listed on the NASDAQ from 1 January 2006 to 31 December 2014 and available via the 
database10. To build a reliable sample, we apply the following screening procedure. For a stock 
to be included in the sample, it should have at least 250 days with data over the entire sample 
period. To prevent the influence of extreme stocks, we drop, for each year, all stock whose the 

                                                      
9 the subscript i  has been dropped for the ease of exposure. 
10 We select the NASDAQ because it allows comparison with previous studies based on the same index. 



9 
 

current year stock price is less than or equal to 1 dollar or greater than or equal to 1000 dollars. 
Stocks are also required to have at least 15 valid daily observation in a given month and the 
bid-ask spread is capped at 40 %. Finally, to avoid the survivor-ship bias, we retain all data for 
dead stocks in the sample and we consider a -30 % return when delisting occurs11. Table 2 
shows the number of stocks included in the analysis on a yearly basis. For each stock, the daily 
data set contains last price, closing bid, closing ask, capitalisation, price to book ratio and 
turnover ratio. We employ the (daily) relative realised bid-ask spread proxy (Goyenko et al., 
2009) because it is a per-share measure of transaction cost and it fits directly to the theoretical 
model, it is defined as:  

 
+

+−

ti

titi
ti MQ

MQP

,

,,
,

||
=preadRealised_S  (6) 

where tiP,  refers to the price of the last trade and +tiMQ ,  is the mid-quote just after this 
trade for stock i  and day t . The closing bid and ask price used to compute the mid-quote are 
necessarily quoted after the timing of the last trade but our dataset does not provide 
information about this delay. However, we can reasonably assume that it is homogeneous 
across stocks because bid and ask quotes are continuously updated after a trade is triggered. As 
far as we read, it is the first study that directly uses a per-share measure of transaction cost 12 
to test the L-CAPM. 
In line with common practice in the literature (Acharya and Pedersen, 2005; Hagstromer et al., 
2013), we perform our analysis on a portfolio basis. Thus, we split the whole sample into 25 
annual (equally weighted) rebalanced portfolio, sorted on the basis of liquidity: portfolio 1 being 
composed of the highest liquid stocks (lowest spread) and portfolio 25 the lowest liquid stocks 
(highest spread). We use equally weighted portfolio instead of value-weighted portfolios 
because value-weighted portfolio tend to overestimate the importance of large liquid stocks. 

 
Table 2: Number of stocks per year. 

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
Nb. Of 
Stocks 

2534 2760 3004 2258 2095 2510 2502 2386 2419 2422 

 
4.1. Unobserved Components Analysis 

 
The parameter estimates of the LLT model and LLTSV model are presented in Table 3 

and Table 4. Regarding the LLT model, the estimates of the standard deviation of the slope 
disturbances have nearly zero values. This indicates that the slope component treated as 
stochastic process in the current implementation could be alternatively considered as a 
deterministic processes (i.e. with a constant drift term) without problematic loss of information. 
State estimates of the slope components (not reported) are found to be negative and significant 
for some periods for all series, which shows that there is an increasing trend of liquidity during 
the whole survey period. 

                                                      
11 This procedure has been adopted by Hagstromer et al. (2013) 
12 Not a proxy such as the effective tick proxy of Holden (2009) or the Amihud proxy. 
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The estimates of the variance of the seasonal disturbances take very low values, 
indicating that seasonality in liquidity is highly predictable. Finale state estimates of the 
seasonality are presented in Table 5. We observe a clear positive seasonal effect on Friday for 
most of the portfolios (as in Chordia et al. 2001). This is probably due to the fact that agents 
anticipate the weekend effect, a period with higher risk and uncertainty. In contrast, 
Wednesday and Thursday have a negative effect on the bid-ask spread. This initial finding 
suggests the integration of a slope and seasonal component in liquidity forecasting models since 
these components are highly predictable. As far as we read, they have never been considered in 
testing the L-CAPM model. 

In order to analyse the relative importance of each variance we compute the ratio of 
each variance on the total variance of a given portfolio (given in parenthesis in tables 3 and 4). 
We observe that the the relative importance of slope (AR) disturbances increases (decreases) 
with the level of illiquidity. This important finding indicates that the bid-ask spread process of a 
liquid portfolio is more impacted by short term shocks than that of illiquid portfolios. In other 
words, liquid stocks have more risk of suffering a temporary shock than low liquid stocks. In 
contrast, the variability of the bid-ask spread of low liquid stocks is more impacted by structural 
(i.e. permanent) shocks. This relationship is also confirmed for the LLTSV model (Table 4). 

Regarding the parameter estimates of the LLTSV model, the autoregressive parameter φ  
of the common stochastic variance is estimated in the range [0.929:0.989] and is not correlated 
with illiquidity. These high values demonstrate that the variance process of bid-ask spread series 
has a strong persistence, irrespective of the liquidity level of the series studied. Periods of high 
liquidity volatility have a long-lasting effect. We also found that for both models (LLT and LLTSV), 
the AR component is the component which has the most important disturbance term ( εσ̂  in 

table 3 and 2
4q

σ  in table 4). This is strong evidence that bid-ask spread series are heavily 
impacted by temporary shocks. Undoubtedly, this finding must be considered in empirical 
researches, specifically when it is necessary to differentiate between liquidity variation that is 
due to a change in the intrinsic feature of a stock (level component) or that is due to temporary 
imbalance in liquidity supply and demand (AR component). Values of the AR(1) parameter are 
found to be in the range [0.14:0.28] for the LLT model and [0.161:0.229] for the LLTSV model. 
This implies that temporary shocks have a non-negligible impact on the mean process of the 
bid-ask spread during a period of around 4 to 6 days. Interestingly we found, for both models, 
that the market portfolio has the highest estimated AR(1) parameter, systematic (market-wide) 
shocks have a longer-lasting effect on the liquidity of the market than idiosyncratic shock. 

To make the model more meaningful, Figures 1 and 2 display the estimated unobserved 
components of the bid-ask spread of the market for, respectively, the LLT and the LLTSV model. 
The change in bid-ask spread over time is reflected by the estimated level component. We 
observe that the level component is smoother than the raw bid-ask spread series, due to the 
fact that the variance of the error term of this component is low and to extraction of the AR(1) 
component. The daily seasonal components exhibit a strong similar periodicity pattern, 
confirming our previous results. The common variance component13 (lower left panel of Figure 
1) exhibits one period of high volatility: from September to December 2008 corresponding to 

                                                      
13 scaled by the variance of the disturbance term of the AR component. 
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the Global financial crisis with the Lehman Brothers bankruptcy.  
To summarise this paragraph, we found that bid-ask spread series exhibit a strong daily 

periodicity, we observe an overall increase in the market liquidity during the period studied, we 
find that the bid-ask spread process of low liquid stocks is relatively more impacted by 
permanent shocks than the bid-ask spread process of liquids stocks, and we found a strong 
persistence in the volatility of liquidity. The main source of variation is due to temporary 
liquidity imbalances (AR(1) component). Finally we also found that (temporary) systematic 
shocks on bid-ask spreads have a longer lasting effect than specific (to portfolios) temporary 
shocks. 
 
Figure 1: LLT Unobserved Components. This figures reports the evolution of the market’s bid ask 

spread (upper right panel), level component (upper left), seasonal component (lower left) and 
AR component (lower right) for the LLT model. The seasonal component is displayed for the last 

5 weeks of the sample. 
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Figure 2: LLTSV Unobserved Components. This figures reports the evolution of level component 
(upper left pannel), Seasonal component (upper right), AR component (lower right) and 
common variance ( 2

4 tq σ ) (lower right) for the LLTSV model. The seasonal component is 
displayed for the last 4 months of the sample. 
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Table 3: LLT parameters estimates. This table reports estimates of the standard deviations of 
the level, slope, seasonal and autoregressive state disturbances. The respective v-ratio are given 

in parenthesis. 
Portfolios 

ξσ̂  (Level) ζσ̂  (Slope) wσ̂  (Seasonal) εσ̂  (AR) AR(1) φ  

Port 1 8.10e-06(0.10) 1.10e-11(0.00) 1.94e-07(0.00) 6.91e-05(0.89) 0.23 
Port 2 1.04e-05(0.12) 1.89e-11(0.00) 3.41e-07(0.00) 7.37e-05(0.87) 0.24 
Port 3 1.34e-05(0.13) 3.55e-09(0.00) 2.84e-07(0.00) 8.99e-05(0.87) 0.23 
Port 4 1.54e-05(0.13) 3.56e-09(0.00) 3.17e-07(0.00) 9.97e-05(0.86) 0.19 
Port 5 1.78e-05(0.11) 4.07e-11(0.00) 5.09e-13(0.00) 1.42e-04(0.89) 0.16 
Port 6 2.02e-05(0.15) 1.05e-11(0.00) 2.29e-07(0.00) 1.18e-04(0.85) 0.24 
Port 7 2.00e-05(0.13) 5.50e-12(0.00) 4.64e-07(0.00) 1.36e-04(0.87) 0.23 
Port 8 2.66e-05(0.15) 2.46e-11(0.00) 2.74e-07(0.00) 1.48e-04(0.85) 0.21 
Port 9 3.15e-05(0.16) 9.52e-12(0.00) 4.05e-07(0.00) 1.66e-04(0.84) 0.20 

Port 10 3.79e-05(0.15) 1.87e-11(0.00) 3.78e-07(0.00) 2.18e-04(0.85) 0.14 
Port 11 3.69e-05(0.16) 3.30e-11(0.00) 9.33e-07(0.00) 1.97e-04(0.84) 0.21 
Port 12 4.72e-05(0.17) 2.11e-11(0.00) 6.39e-07(0.00) 2.24e-04(0.82) 0.21 
Port 13 4.98e-05(0.16) 4.35e-10(0.00) 8.08e-10(0.00) 2.52e-04(0.84) 0.25 
Port 14 6.23e-05(0.18) 5.83e-15(0.00) 1.42e-09(0.00) 2.89e-04(0.82) 0.16 
Port 15 7.76e-05(0.18) 3.60e-13(0.00) 2.49e-10(0.00) 3.48e-04(0.82) 0.23 
Port 16 1.06e-04(0.23) 3.16e-14(0.00) 8.90e-10(0.00) 3.65e-04(0.77) 0.23 
Port 17 1.07e-04(0.20) 4.07e-10(0.00) 3.01e-06(0.01) 4.25e-04(0.79) 0.25 
Port 18 1.33e-04(0.20) 1.49e-09(0.00) 1.84e-06(0.00) 5.27e-04(0.80) 0.24 
Port 19 1.66e-04(0.20) 9.31e-11(0.00) 2.04e-06(0.00) 6.58e-04(0.80) 0.18 
Port 20 2.09e-04(0.22) 8.35e-11(0.00) 2.57e-06(0.00) 7.20e-04(0.77) 0.19 
Port 21 2.66e-04(0.23) 2.37e-11(0.00) 7.98e-06(0.01) 8.75e-04(0.76) 0.27 
Port 22 2.78e-04(0.21) 2.16e-21(0.00) 1.16e-09(0.00) 1.03e-03(0.79) 0.21 
Port 23 3.57e-04(0.22) 0.00e+00(0.00) 1.21e-09(0.00) 1.24e-03(0.78) 0.20 
Port 24 4.37e-04(0.21) 3.35e-10(0.00) 2.27e-10(0.00) 1.61e-03(0.79) 0.28 
Port 25 1.00e-03(0.30) 5.66e-11(0.00) 7.14e-06(0.00) 2.37e-03(0.70) 0.25 
Market 1.08e-04(0.25) 1.64e-09(0.00) 1.07e-08(0.00) 3.16e-04(0.75) 0.29 
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Table 4: LLTSV parameters estimates. This table reports estimates of the standard deviation of 
the level, slope, seasonal and irregular state disturbances. The respective v-ratio are given in 

parenthesis. 
Portfolios 2

1q
σ  (Level) 2

2q
σ  (Slope) 2

3q
σ

(Seasonal) 

2
4q

σ  (AR(1)) 2
ησ (CSV) φSV AR(1) 

Port 1 5.01e-04(.10) 2.18e-10(.00) 3.38e-05(.01) 4.34e-03(.89) 2.73e-01 0.975 0.191 
Port 2 6.87e-04(.12) 6.71e-09(.00) 2.92e-05(.01) 4.88e-03(.87) 2.15e-01 0.984 0.221 
Port 3 8.90e-04(.12) 6.55e-07(.00) 4.08e-05(.01) 6.20e-03(.87) 1.96e-01 0.985 0.189 
Port 4 1.06e-03(.12) 8.30e-07(.00) 4.86e-05(.01) 7.44e-03(.87) 1.55e-01 0.989 0.166 
Port 5 1.28e-03(.13) 2.05e-10(.00) 6.56e-05(.01) 8.75e-03(.87) 2.48e-01 0.977 0.201 
Port 6 1.32e-03(.13) 1.51e-09(.00) 4.31e-05(.00) 9.04e-03(.87) 1.46e-01 0.989 0.195 
Port 7 1.33e-03(.12) 5.36e-10(.00) 7.36e-05(.01) 9.63e-03(.87) 2.19e-01 0.980 0.214 
Port 8 1.67e-03(.14) 1.05e-10(.00) 5.47e-05(.00) 1.06e-02(.86) 2.33e-01 0.975 0.161 
Port 9 1.95e-03(.14) 5.31e-11(.00) 5.83e-05(.00) 1.22e-02(.86) 2.38e-01 0.975 0.185 

Port 10 2.38e-03(.15) 3.08e-12(.00) 1.41e-04(.01) 1.32e-020.84) 3.37e-01 0.953 0.179 
Port 11 2.34e-03(.13) 5.07e-11(.00) 1.67e-04(.01) 1.52e-02(.86) 2.29e-01 0.973 0.205 
Port 12 2.99e-03(.14) 1.54e-10(.00) 2.29e-05(.00) 1.76e-02(.85) 2.66e-01 0.960 0.186 
Port 13 3.68e-03(.15) 4.90e-11(.00) 9.05e-05(.00) 2.00e-02(.84) 2.49e-01 0.964 0.221 
Port 14 3.88e-03(.15) 2.75e-11(.00) 1.24e-04(.00) 2.21e-02(.85) 3.04e-01 0.950 0.194 
Port 15 5.61e-03(.18) 5.40e-10(.00) 8.82e-05(.00) 2.58e-02(.82) 3.50e-01 0.929 0.194 
Port 16 6.21e-03(.17) 2.93e-11(.00) 2.23e-04(.01) 3.02e-02(.82) 2.64e-01 0.952 0.190 
Port 17 6.49e-03(.16) 8.70e-13(.00) 3.40e-04(.01) 3.49e-02(.84) 2.89e-01 0.940 0.211 
Port 18 7.66e-03(.15) 2.36e-10(.00) 2.19e-04(.00) 4.27e-02(.84) 3.27e-01 0.926 0.180 
Port 19 1.07e-02(.18) 4.04e-14(.00) 6.53e-05(.00) 5.03e-02(.82) 4.15e-01 0.883 0.170 
Port 20 1.25e-02(.17) 9.30e-10(.00) 1.10e-04(.00) 6.07e-02(.83) 3.13e-01 0.926 0.225 
Port 21 1.58e-02(.18) 2.65e-10(.00) 3.63e-04(.00) 7.36e-02(.82) 2.79e-01 0.942 0.229 
Port 22 1.93e-02(.18) 1.39e-10(.00) 4.97e-11(.00) 8.56e-02(.82) 2.73e-01 0.943 0.192 
Port 23 2.74e-02(.21) 2.73e-15(.00) 3.27e-15(.00) 1.05e-01(.79) 1.57e-01 0.980 0.175 
Port 24 3.39e-02(.20) 2.45e-11(.00) 2.58e-09(.00) 1.37e-01(.80) 2.12e-01 0.960 0.219 
Port 25 5.88e-02(.22) 4.18e-10(.00) 5.05e-04(.00) 2.08e-01(.78) 1.56e-01 0.977 0.226 
Market 6.61e-03(.23) 3.03e-09(.00) 1.28e-04(.00) 2.21e-02(.77) 4.99e-01 0.885 0.314 
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Table 5: Final state estimates of the seasonal component. This table presents final state 
estimate of the seasonal component. Stars indicate rejection of the null hypothesis at *** 0.01; 

**0.05 and *0.1 confidence level. 
  

Portfolios Monday Tuesday Wednesday Thursday Friday 
Port 1 -4.78e-06 5.54e-07 -3.04e-06 -2.47e-06 9.74e-06** 
Port 2 -3.03e-06 -2.85e-06 -3.63e-07 -2.38e-06 8.62e-06 
Port 3 -3.92e-06 -1.90e-06 -4.36e-06 -4.06e-07 1.06e-05* 
Port 4 -3.50e-06 -3.05e-06 -4.26e-06 -3.55e-06 1.44e-05** 
Port 5 -6.42e-06 5.63e-06 -1.03e-05* -6.92e-06 1.80e-05*** 
Port 6 -4.05e-06 -4.41e-06 -7.74e-06 -3.50e-06 1.97e-05*** 
Port 7 -5.04e-06 -6.82e-06 -6.31e-06 -5.14e-06 2.33e-05*** 
Port 8 -3.87e-06 -5.26e-06 -8.55e-06 -7.69e-06 2.54e-05*** 
Port 9 -5.94e-06 -1.09e-05 -8.19e-06 -4.20e-06 2.92e-05*** 
Port 10 -8.33e-06 -5.82e-06 -1.62e-05 -8.00e-06 3.84e-05*** 
Port 11 -4.77e-06 -1.31e-05 -6.69e-06 -7.93e-06 3.25e-05** 
Port 12 -1.13e-05 -1.17e-05 -1.63e-05 -6.66e-06 4.60e-05*** 
Port 13 -1.11e-05 -3.12e-06 -2.42e-05** -1.50e-05 5.35e-05*** 
Port 14 -1.94e-05* -8.66e-06 -2.55e-05** -2.32e-05** 7.67e-05*** 
Port 15 -2.53e-05* -6.05e-06 -3.30e-05** -1.63e-05 8.08e-05*** 
Port 16 8.38e-06 -1.75e-05 -5.15e-05*** -3.28e-05** 9.35e-05*** 
Port 17 -5.22e-05 -3.01e-05 -1.04e-05 -3.10e-05 1.24e-04*** 
Port 18 -4.52e-06 -2.89e-05 -6.37e-05* -7.90e-05** 1.76e-04*** 
Port 19 2.66e-05 -2.32e-05 -8.49e-05** -1.10e-04*** 1.91e-04*** 
Port 20 1.52e-05 -5.66e-05 -1.16e-04** -9.46e-05** 2.52e-04*** 
Port 21 1.16e-05 -4.95e-05 -1.33e-04 -1.08e-04 2.79e-04*** 
Port 22 3.69e-05 -6.93e-05* -1.04e-04*** -5.32e-05 1.89e-04*** 
Port 23 8.35e-05* -4.62e-05 -1.46e-04*** -1.26e-04*** 2.35e-04*** 
Port 24 1.02e-04* -3.92e-05 -1.32e-04** -2.35e-04*** 3.03e-04*** 
Port 25 1.26e-04 2.79e-05 -3.02e-04** -2.67e-04* 4.15e-04*** 
Market 2.05e-05* -1.93e-07 -6.29e-05*** -5.20e-05*** 9.47e-05*** 
 

4.2 Conditional betas 
 

Following Acharya and Pedersen (2005) and Hagstromer et al. (2013), the pricing analysis 
takes place at a monthly frequency. In consequence, for each month and portfolio we average 
the daily liquidity betas to obtain monthly liquidity beta estimates. We also compute the 
unconditional betas to allow comparison (table 10), they are simply computed as the coefficient 
of unconditional covariance over unconditional variance terms. The four time-varying betas are 
computed as explained in subsection 3.2. Table 6 displays descriptive statistics obtained using 
model I. 

Contrary to previous studies, we do not observe (table 6) a clear positive relationship 
between returns (r) and illiquidity level (bid-ask), at first sight it seems to indicate that investors 
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do not require compensation for illiquidity. However this fact can be caused by a higher 
sensitivity of liquid portfolio to the market risk. The value of the standard market beta ( 1β ) is 
clearly negatively correlated with illiquidity. Illiquidity portfolios are more exposed to the 
idiosyncratic risk: portfolio 1 has an average 1β  value of 1.018 and portfolio 25 a value of 

0.4341. We also found that the portfolio return sensitivity to market illiquidity ( 3β ), and the 

portfolio illiquidity sensitivity to market returns ( 4β ) have negative average coefficients. Given 
that they enter the pricing equation with a negative sign (see equation 1), this shows that they 
effectively correspond to a discount to hold a portfolio with high return when the liquidity of 
the market is low and to get a liquid portfolio when market returns are low. As expected, illiquid 
portfolios tends to have a smaller capitalisation (SIZE) and Price to Book ratio (PBR). 

Regarding liquidity risks, we find that illiquid stocks have a high liquidity risk related to 
2β  and 4β  - they have large value of 2β  and large negative values of 4β . The positive 

correlation between the coefficient of 2β  and illiquidity demonstrates that the liquidity of 
illiquid portfolios is more impacted by changes in the market liquidity than top liquid portfolios. 

In others word, the commonality in illiquidity ( 2β ) is higher for low liquid portfolios than for top 
liquid portfolios. The risk of having a decrease in liquidity during a liquidity crisis period is higher 
for illiquid portfolios than for liquid portfolios. The observed positive relation between 

coefficient 4β  and illiquidity indicates also that the risk of experiencing a decrease in the 
liquidity level of a portfolio when the market return is low is more important for low liquidity 
portfolios. 

The previous observations are similar to that made by Acharya and Pedersen (2005) and 
Hagstromer et al. (2013) by associating a higher liquidity risk to illiquid portfolio. However the 

behaviour of 3β ,the portfolio return sensitivity to market illiquidity, is different from that 
observed by the previously mentioned studies. Interestingly, we found that the associated 

liquidity risk is lower for illiquid stocks - they have smaller negative values of 3β . It indicates 
that the returns of illiquid portfolios are less sensitive to market illiquidity. This new finding will 
be investigated later on in subsection 4.3.  

Table 7 reports the time-series average correlations of betas, we observe that betas are 
correlated and this is taken into account in the cross-section analysis part. Then the different 
liquidity risks are correlated. This multicollinearity problem has also been documented for the 
Unconditional L-CAPM in Acharya and Pedersen (2005). 

The main results of this paragraph are that liquidity risks related to 2β  and 4β  are 
positively correlated to illiquidity and that the liquidity risk attached to 3β  is negatively 
correlated to illiquidity. Thus, the liquidity risk is not always associated with a higher illiquidity 
level. 
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Table 6: Properties of illiquidity Portfolio. This table reports descriptive statistics of portfolios. 
The conditional beta are represented as time-series average for each portfolio and indicating by 

)( n
tE β  where n refers to the corresponding beta. Bid-ask and r  are the monthly average of 

illiquidity (computed via Eq. 6) and gross returns. Portfolio 1 is the highest liquid portfolio (with 
smallest spread) and portfolio 25 is the lowest liquid portfolio. Values of the four beta and the 
bid ask spread have been pre-mutliplied by 100 to ease reading. Betas correspond to those 
obtained from model I. 
Port. Bid-ask r  )(rσ  )( 1

tE β  )( 2
tE β  )( 3

tE β  )( 4
tE β  

SIZE PBR 

1 .037 0.016 0.011 101.804 0.232 -0.965 -0.264 9.581 3.694 
2 0.047 0.017 0.012 116.309 0.283 -1.082 -0.111 8.584 3.062 
3 0.055 0.016 0.013 119.385 0.282 -1.097 -0.350 8.205 2.837 
4 0.063 0.016 0.013 122.432 0.286 -1.076 -0.287 7.749 2.639 
5 0.071 0.016 0.014 128.083 0.327 -1.101 -0.261 7.345 2.371 
6 0.079 0.015 0.014 127.714 0.315 -1.142 -0.468 7.269 2.211 
7 0.088 0.015 0.014 127.576 0.331 -1.115 -0.608 7.125 2.078 
8 0.098 0.013 0.014 127.450 0.340 -1.124 -0.651 6.791 1.937 
9 0.109 0.015 0.015 135.197 0.345 -1.083 -0.555 6.658 1.895 
10 0.124 0.012 0.014 132.213 0.349 -1.016 -0.411 6.617 1.757 
11 0.140 0.015 0.014 128.257 0.371 -1.007 -0.825 6.315 1.746 
12 0.161 0.012 0.014 128.037 0.363 -1.019 -0.622 6.478 1.719 
13 0.184 0.011 0.014 121.896 0.381 -0.913 -0.796 6.231 1.728 
14 0.214 0.013 0.013 115.728 0.328 -0.890 -0.849 6.448 1.693 
15 0.252 0.012 0.012 109.423 0.349 -0.973 -0.994 6.048 1.609 
16 0.299 0.009 0.011 99.725 0.325 -0.959 -0.824 6.183 1.581 
17 0.354 0.005 0.011 90.929 0.282 -0.969 -0.795 6.509 1.612 
18 0.422 0.011 0.010 84.275 0.256 -0.832 -0.636 5.631 1.592 
19 0.505 0.011 0.009 75.346 0.517 -0.727 -1.475 5.319 1.475 
20 0.605 0.012 0.008 61.854 0.734 -0.668 -1.707 5.015 1.422 
21 0.733 0.010 0.008 56.451 0.605 -0.675 -1.844 4.602 1.347 
22 0.895 0.013 0.007 45.674 0.679 -0.663 -2.069 4.367 1.251 
23 1.121 0.012 0.007 40.497 0.520 -0.599 -1.332 4.018 1.267 
24 1.458 0.015 0.007 43.138 0.720 -0.523 -2.709 3.987 1.228 
25 2.368 0.026 0.008 43.412 1.155 -0.614 -2.182 3.569 1.369 
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Table 7: Average beta correlations for illiquidity portfolios. This table reports the time-series 
average beta correlation for the 25 portfolios. Beta are obtained via Model I. 

   1β    2β    3β    4β   

1β   1   0,206  -0,332  -0,002 
2β     1   -0,567  -0,482 

3β        1   0,471 

4β          1  
 

4.3  Price of Liquidity Risk 
 

In this paragraph, we estimate and test the L-CAPM. Seven cross-sectional regressions 
are estimated on the 25 portfolios. The seven cross-sectional regressions are designed in such a 
way that we can differentiate the various liquidity risks. We include size ( tiS, ) and price to book 

ratio ( tiP, ) as control variables because they are known to be determinant of returns. The 
regressions are formally presented bellow: 

[Eq1]: titiptistititiftti PScEkrr ,,,
1
,1,,,, =)()( εααβλα ++++−−  

[Eq2]: titiptis
Net
tiNettitiftti PScEkrrE ,,,,,,,, =)()( εααβλα ++++−−  

[Eq3]: titiptititititititiftti PScEkrrE ,,,1
4
,4

3
,3

2
,2

1
,1,,,, =)()( εααβλβλβλβλα +++++++−−  

[Eq4]: tititistitititiftti PScEkrrE ,,2,
2
,2

1
,1,,,, =)()( εααβλβλα +++++−−  

[Eq5]: titiptistitititiftti PScEkrrE ,,,
3
,3

1
,1,,,, =)()( εααβλβλα +++++−−  

[Eq6]: titiptistitititiftti PScEkrrE ,,,
4
,4

1
,1,,,, =)()( εααβλβλα +++++−−  

[Eq7]: titiptis
Liq
tiLiqtititiftti PScEkrrE ,,,,

1
,1,,,, =)()( εααβλβλα +++++−−  

Equation 1 refers to a modified version of the conditional CAPM model14. Equation 2 
corresponds to the theoretical pricing model, in which both liquidity level and liquidity risk are 
priced and it imposes the model constraint of a single risk price, then : 

4
,

3
,

2
,

1
,, = titititi

Net
ti βββββ −−+ . Equation 3 estimates an unconstrained model, allowing different 

liquidity premiums as in Acharya and Pedersen (2005). This equation is likely to suffer from the 
multicollinearity of the betas. Equations 4, 5 and 6 aim to overcome this issue by estimating the 
three liquidity risk premiums separately. Finally equation 7 isolates the effect of liquidity risk (

4
,

3
,

2
,, = tititi

Liq
ti ββββ −− ) from the effect of market risk ( 1

,tiβ ). All equations are estimated in a 
cross-sectional framework where 25:1=i  and 120:1=t . The constant α  is added to 
evaluate possible pricing errors. The risk free rate is proxy by the 2 years US treasury bond. 
Cross-sectional regressions are estimated similarly to that in the second step of the 
Fama-MacBeth procedure. That is to say that, for each month, we run 25 regressions, the 
coefficients are then averaged and standard errors are Newey-West-adjusted with two lags. 
                                                      
14 Excess returns are adjusted by the liquidity level premium ( )( ,, titi cEk− ), thus it does not correspond exactly to the CAPM model 
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Pseudo R-Squared (R2) and pseudo adjusted R-Squared (Adj-R2) are computed as, respectively, 
average of the individuals R-Squared and adjusted R-Squared.  

 
The original L-CAPM has been tested with a constant holding period (Acharya and 

Pedersen, 2005). However Hagstromer et al. (2013) point out that the holding period parameter 
(k) is time-varying and should be included as such ( tk ) to avoid over- or under-estimation of 
illiquidity costs. We follow their recommendation but improve it by allowing this parameter to 
differ across portfolios ( tik , ). Indeed, it is known that illiquid stocks tend to be held by long term 
investors and liquid stocks by short term investors (Amihud and Mendelson, 1986). Then, 
assuming that the typical holding period of investors is constant across portfolios probably leads 
to overestimation of the liquidity level premium for low liquid stocks and underestimation for 
high liquid stocks. We compute this parameter for each portfolio as the inverse of the turnover 
ratio (appropriately re-scaled to a monthly frequency). Unreported results show a clear negative 
relationship between illiquidity and parameter k. This was expected because the turnover ratio 
of low liquid stocks is lower than that of high liquid stocks. 

Cross section regressions are estimated for the four models summarised in Table 1 and 
presented in section 3.3. Table 8 displays the average adjusted R-Square per model. As a main 
result we found that all models have similar R2 with the "simplest" model specification (model 
I), is the one which best explains the cross-section of returns (average adjusted R-square: 37.24 
%). 

 
Table 8: Adjusted R2 per model. This table reports the adjusted R-square of the different cross 

sections regressions for the four models implemented. 
Models I II III IV 

Equation 1  34,827% 34,747% 33,973% 33,973% 
Equation 2  34,916% 35,011% 30,277% 30,276% 
Equation 3  41,689% 40,216% 42,656% 42,655% 
Equation 4  40,193% 37,685% 39,073% 39,073% 
Equation 5  36,412% 37,063% 35,870% 35,871% 
Equation 6  35,989% 35,604% 35,286% 35,286% 
Equation 7  36,683% 37,141% 38,388% 38,388% 
Average  37,244% 36,781% 36,503% 36,503% 

 
In consequence, and also for ease of exposure, only estimates of risk premia 

corresponding to model I are presented15. Tables 9 and 10 display cross sectionals results for, 
respectively, the conditional and unconditional version of the L-CAPM estimated via 
time-varying betas obtained using model I. 

As important result we find that liquidity risk is priced, indeed equations 2-7 (Eq2-Eq7) 
better explains the cross sections of returns than equation 1. From table 9 we can also see that 
the coefficient 203.0=Liqλ  of equation 7 which isolates the liquidity risk is found to be 
positive and significant. However given the aforementioned high degree of correlation between 
                                                      
15 Cross-sections results of models II, III and IV are available from the authors on request. 
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1β  and Liqβ , this result should be interpreted with caution. Equations Eq3 to Eq6 suffer from 
the same multicollinearity problem. Nevertheless, the liquidity risk attached to 2β ,the portfolio 
liquidity sensitivity to market illiquidity seems to be the predominant liquidity risk as it is the 
only risk with significant coefficient in Eq3 and Eq4 (table 9).  

As expected, the standard market beta ( 1β ) is also priced in nearly all equations as 
indicated by the significance of the 1λ  coefficient. Importantly, in term of goodness-of-fit, we 
observe that for all pricing equations, the constant term is not significantly different from zero, 
indicating that models have zero average pricing error and that the theoretical model fits well to 
the data. By allowing different liquidity premiums (Eq3), we observe an overall increase in the 
adjusted r-square to 41.689 %, an observation which tends to reject the model constraint of a 
single liquidity premium. The control variables SIZE and PBR are found to be significant 
determinants of returns, with, as usual, the SIZE variable having a negative impact on returns 
and the PBR a positive effect. 



21 
 

Table 9: Conditional L-CAPM - Fama-MacBeth regressions. This table reports the estimated 
coefficients from cross-sectional regressions of the liquidity-adjusted CAPM for 25 
equally-weighted portfolios using monthly data during 2006-2015. It reports the coefficient 
average together with corresponding Fama MacBeth (adjusted)t statistics. The factor loadings 
have been estimated using model I (DCC) as presented in section 3.2. sR2 ( 2ADJR ) refer to 
the (adjusted) pseudo coefficient of determination. 
 
Coeff. [Eq1] [Eq2] [Eq3] [Eq4] [Eq5] [Eq6] [Eq7] 
α   .0106 

(.0081) 
.0103 

(.0081) 
-.0061 
(.0076) 

-.0083 
(.0079) 

.0098 
(.0074) 

.0057 
(.0070) 

-.0005 
(.0064) 

1λ   .0063** 
(.0035) 

 .0038 
(.0040) 

.0079** 
(.0034) 

.0021 
(.0038) 

.0069** 
(.0037) 

.0067** 
(.0034) 

2λ     2.4006*** 
(.8661) 

2.0757*** 
(.8043) 

   

3λ     .0316 
(.3900) 

 -0.2601 
(.3882) 

  

4λ     .1893 
(.1512) 

  -.1366 
(.1223) 

 

Netλ    .0064** 
(.0035) 

     

Liqλ         .2032** 
(.1099) 

sα   -.0031*** 
(.0007) 

-.0031*** 
(.0007) 

-.0011** 
(.0006) 

-.0014** 
(.0006) 

-.0030*** 
(.0006) 

-.0026*** 
(.0006) 

-.0021*** 
(.0005) 

pα   .0066*** 
(.0016) 

.0066*** 
(.0016) 

.0056*** 
(.0014) 

.0067*** 
(.0015) 

.0065*** 
(.0015) 

.0066*** 
(.0015) 

.0066*** 
(.0014) 

2ADJR
  

.34827 .34916 .41689 .40193 .36412 .35989 .36683 

sR2   .42974 .43052 .56266 .50161 .4701 .46657 .47236 
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Table 10: Unconditional L-CAPM - Fama-MacBeth regressions. This table reports the estimation 
results for the Fama-MacBeth regressions of the Unconditional liquidity-adjusted CAPM See 

legend in Table 9 for more details. 
Coeff. 1 2 3 4 5 6 7 
α  .0091 

(.0081) 
.0091 

(.0082) 
-.0314** 
(.0140) 

-.0226** 
(.0126) 

.0100 
(.0083) 

-.0109 
(.0106) 

-.0176 
(.0116) 

1λ  .0012 
(.0038) 

 .0161*** 
(.0054) 

.0136*** 
(.0051) 

.0015 
(.0039) 

.0103** 
(.0044) 

.0124*** 
(.0046) 

2λ    6.8837** 
(3.6136) 

8.5508*** 
(3.0305) 

   

3λ    -2.2510** 
(1.1184) 

 .4114 
(1.0236) 

  

4λ    -.3898 
(0.2515) 

  -.7566*** 
(.2306) 

 

Netλ   .0013 
(.0039) 

     

Netλ   .0017 
(.0038) 

     

Liqλ        .8297*** 
(.2446) 

sα  -.0021*** 
(.0006) 

-.0021*** 
(.0006) 

-.0001 
(.0007) 

-.0002 
(.0006) 

-.0021*** 
(.0007) 

-.0007 
(.0006) 

-.0004 
(.0006) 

pα  .0066*** 
(.0017) 

.0066*** 
(.0017) 

.0071*** 
(.0018) 

.0073*** 
(.0019) 

.0068*** 

(.0018) 
.0061*** 
(.0015) 

.0061*** 
(.0016) 

2ADJR  .33125 .3311 .43423 .39642 .33578 .36148 .36808 
sR2  .41484 .41471 .57567 .49702 .44648 .4679 .4734 

 
4.4. Decomposition of premiums 
 

In the following paragraph we analyse and decompose the liquidity premium as in 
Hagstromer et al. (2013). We follow the model constraint of a single risk price and base our 
analysis on estimates with model I. 

The total liquidity premium consists of: 
- the illiquidity level compensation ( tiLLP, ) computed as [ ] 12)(= ,,, ×tititi cEkLLP , 

- the total liquidity risk premium ( tiTLRP, ): Net
NettiTLRP βλ ×=,  (from Eq 2). 

The latter premium can itself be decomposed into three different premiums referring to the 
three liquidity risks. Thus the annual total liquidity risk premium ( tiTLRP, ) is given by 

titititi LRPLRPLRPTLRP ,,,, 321= ++  where 21, LRPLRP  and 3LRP  are respectively the 

liquidity risk premium referring to 32,ββ  and 4β  ( 1β  being the sensitivity to the market). 

According to the theoretical model, and assuming a single price of risk ( netλ ), the annual total 
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liquidity risk premium is computed as: 
12**12**12**== 4

,
3
,

2
,, nettinettinettitiTLRP λβλβλβ ++  

where the factor 12 is used to annualise the monthly premiums. The netλ  coefficient is 

obtained at the previous cross section stage ( 0.0064=netλ  in Eq2, Table 9). Note that even 

though the price of risk is constant ( netλ ), risk premiums obtained are time varying due to the 
time varying behaviour of the betas. Finally, the total premium (TP) consists of the three 
liquidity risks premiums ( 321 LRPLRPLRP ++ ), the standard market risk premium ( RP ) and 
the liquidity level premium (LLP): 321= LRPLRPLRPRPLLPTP ++++ . Tables 11 and 12 
display the liquidity risk premium decomposition for each portfolio. 

The annual liquidity level premium (LLP) has a mean of 0.455% and is found to increase 
with illiquidity (from 0.136 % for portfolio 1 to 1.410 % for portfolio 25). This increasing 
relationship can be explained by the “ the clientele effect ” proposed by Amihud and Mendelson 
(1986): agents with a longer expected holding period can depreciate the trading costs over a 
longer period than short terms investors and benefit from a higher adjusted liquidity return. 
These values have the same order of magnitude as the results of Hagstromer et al. (2013), who 
found a liquidity level premium within the range 0.098 % to 1.38 % . The market risk premium is 
found to be by far the most important risk factor with an average annual value of 7.625 %. In 
addition, it is negatively correlated with illiquidity implying that liquid stocks are more subject to 
market risk than illiquid stocks. This value is much higher than the average total liquidity risk 
premium (0.175%) denoting that the main concern of investors is market risk not liquidity risk. 

We also found that the total liquidity risk premium (TLRP) is positively related to 
illiquidity, portfolio 1 has an average TLRP value of 0.112 % and portfolio 25, 0.303 % . At first 
sight, this seems to show that illiquid portfolios have a greater liquidity risk than liquid 
portfolios. However, we found the opposite regarding one particular liquidity risk: we observe a 
positive correlation between liquidity and LRP2. LRP2 has an average value of 0.074 % for 
portfolio 1 (the most liquid portfolio) and 0.047 % for portfolio 25. As far as we read, it is the 
first time that the premium of a liquidity risk is found to increase with liquidity. The price reward 
to bear the risk to obtain low returns during a liquidity crisis period is higher for liquid stocks 
than for illiquid stocks because liquid stocks are more exposed to this risk. This shows that 
agents investing in liquid portfolios are highly concerned with their return sensibility to the 
liquidity of the market ( 3β ). 

The previous analysis focused on raw premiums, in table 12 we evaluate the relative 
importance of each liquidity premium for each portfolio. Indeed, it also seems relevant to study 
the importance of each liquidity premium with respect to the total liquidity premium since a 
higher value of a premium in absolute terms does not by itself indicate agents’ preferences 16. 
We therefore compute for each liquidity risk, its proportion with respect to the total liquidity 
premium. As a general observation, we found that the portion of the total liquidity premium 
due to the illiquidity level premium is far more important than the portion due to liquidity risk, 
with values of 51.3 % for portfolio 1 and 81.21 % for portfolio 25. This portion is similar to that 
found by Hagstromer et al. (2013) which is approximately 75 %. This indicates that liquidity risk 
                                                      
16 It may only means that the exposure (beta) to a specific risk is higher. 
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plays the minor role in explaining returns and that the liquidity level plays the major role. This 
proportion increases with illiquidity, indicating that long term investors are more interested in 
having an important return compensation to hold an illiquid portfolio (LLP) than in obtaining 
compensation for the associated liquidity risk. Regarding liquidity risk, only the proportion of 
LRP2 over the total of liquidity premium displays a clear negative correlation with illiquidity. This 
confirms our previous finding that agents who favour liquid portfolios (short terms investors) 
are more concerned with the risk to get low returns when the liquidity of the market decreases (

3β ) than agents who invest in illiquid stocks. 
 

By computing the difference between premiums of portfolios 1 and 25, and by using 
Acharya and Pedersen (2005) methodology, we can obtain an approximation for the annualised 
return difference resulting from the difference in illiquidity. Thus the annualised return 

difference due to 3β , the sensitivity of the portfolio’s returns to market illiquidity, is computed 

as the time-series average : )22(=)( 1,25,
3

tt RPLRPERet −∆ β . Using the Newey-West-adjusted 

standard error of Netλ  and the betas, we also compute the 95% confidence interval. The 

results are presented in Table 13. The annualised return difference due to 32,ββ  and 4β  are 
respectively 0.071 %, -0.027 % and 0.147 %, implying an average total annualised effect on 
returns of the liquidity risk of 0.191 %. The annualized return difference due to LLP is found to 
be 1.274 % and the total return difference due to liquidity risk and illiquidity level sum up to 
1.465 %. This shows that the effect of liquidity risk on returns is marginal compared with the 
effect of the level of illiquidity. In total the impact of illiquidity on return (1.465%) is significantly 
lower than that found by Acharya and Pedersen (2005) (4.6 %) and is close to the value found by 
Hagstromer et al. (2013) ([1.74%: 2.08 %]). In line with the previously documented positive 
relation between liquidity and LRP2, we found that the risk related to the portfolio return 

sensitivity to market illiquidity (LRP2) has a (slightly) negative effect ( 0.027%=
3

−∆βr ) on 
returns. This is due to the fact that the LRP2 received by short term investors (liquid portfolios) 
is higher than that received by long term investors, which creates an overall negative effect on 
returns. 

The highest priced liquidity risk is LRP3, indicating that agents are willing to accept a high 
discount for portfolios which are liquid in periods of low returns. This was also found by 
Hagstromer et al. (2013) and may be explained by the theoretical model provided by Wagner 
(2011). He argues that during crisis period investors face an important liquidation risk and this 
creates incentives to allocate their portfolio to liquid assets. Finally, the market risk is found to 
have a stronger impact on returns than illiquidity, the annualised return stemming from it is 

4,483%=
1

−∆βr  (95% confidence interval : [-4.675 %;-4.291 %]). The negative sign is due to the 
fact that the market risk premium is higher for liquid stocks than for illiquid stocks. 

 
Table 11: Price decomposition. This table reports the average annual price of the different risks 
factors in percentage. MRP is the market risk price ( 1β ), and LLP the price of the liquidity level 
compensation.LRP1, LRP2 and LRP3 are the price of the three liquidity risk and LRPT refers to 
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the total liquidity risk premium (TLRP = LRP1 + LRP2 +LRP3). 
  !   

Port  MRP  LLP  E(TLRP) 2σ (TLRP) E(LRP1
) 

2σ
(LRP1) 

E(LRP2
) 

2σ
(LRP2) 

E(LRP3) 2σ
(LRP3) 

1 7.816 0.136 .112 .00049 .018 .00011 .074 .00029 .02 .00016 
2 8.929 0.179 .113 .000566 .022 .000126 .083 .000358 .009 .00018 
3 9.166 0.189 .133 .000684 .022 .000128 .084 .000392 .027 .00025 
4 9.399 0.193 .127 .00064 .022 .000128 .083 .000382 .022 .00025 
5 9.833 0.217 .13 .000733 .025 .000149 .084 .000435 .02 .00029 
6 9.805 0.215 .148 .000744 .024 .000144 .088 .000451 .036 .00029 
7 9.794 0.23 .158 .000747 .025 .000156 .086 .000408 .047 .00028 
8 9.785 0.235 .162 .000783 .026 .000157 .086 .000415 .05 .00033 
9 10.38 0.236 .152 .000771 .026 .000163 .083 .000411 .043 .0003 
10 10.15 0.254 .136 .000607 .027 .000163 .078 .000338 .032 .00019 
11 9.847 0.265 .169 .000689 .028 .000176 .077 .000289 .063 .00028 
12 9.83 0.259 .154 .000552 .028 .000165 .078 .000239 .048 .00020 
13 9.358 0.312 .16 .000635 .029 .000183 .07 .000247 .061 .00026 
14 8.885 0.317 .159 .000717 .025 .000163 .068 .0004 .065 .00033 
15 8.401 0.375 .178 .00092 .027 .000176 .075 .000414 .076 .0005 
16 7.656 0.387 .162 .000596 .025 .000159 .074 .000279 .063 .00032 
17 6.981 0.478 .157 .000649 .022 .00013 .074 .000338 .061 .00033 
18 6.47 0.612 .132 .000616 .02 .000121 .064 .000301 .049 .00033 
19 5.785 0.631 .209 .000876 .04 .000232 .056 .000272 .113 .00049 
20 4.749 0.697 .239 .000944 .056 .000309 .051 .000224 .131 .00054 
21 4.334 0.783 .24 .000838 .046 .000269 .052 .000214 .142 .00045 
22 3.507 0.808 .262 .00101 .052 .000259 .051 .000243 .159 .00070 
23 3.109 1.012 .188 .000763 .04 .000205 .046 .000255 .102 .00059 
24 3.312 0.95 .303 .00111 .055 .000302 .04 .00023 .208 .00067 
25 3.333 1.41 .303 .00169 .089 .000755 .047 .000466 .168 .00077 
Avera
ge 7.625 0.455 .175 .000775 .033 .000201 .07 .000331 .073 .00037 
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Table  12: Liquidity Premium decomposition. This table reports the proportion of each liquidity 
premium with respect to the total liquidity premium. LLP, LRP1, LRP2 and LRP3 refer, 

repectively, to the Liquidity Level Premium and the three Liquidity Risks premiums related to 
32,ββ  and 4β . 

  
Port LLP LRP1 LRP2 LRP3 
1 51,30% 7,78% 32,26% 8,66% 
2 58,13% 8,21% 31,11% 2,55% 
3 56,47% 7,27% 27,96% 8,29% 
4 58,48% 7,29% 27,31% 6,92% 
5 60,64% 7,95% 26,13% 5,28% 
6 57,69% 7,04% 24,98% 10,29% 
7 57,76% 6,79% 22,89% 12,56% 
8 58,07% 6,85% 22,26% 12,82% 
9 60,38% 7,02% 21,72% 10,87% 
10 63,74% 7,03% 20,73% 8,50% 
11 60,17% 6,61% 18,28% 14,94% 
12 62,37% 6,65% 19,29% 11,69% 
13 64,34% 6,20% 15,88% 13,57% 
14 66,72% 5,23% 14,33% 13,72% 
15 68,32% 4,73% 13,71% 13,24% 
16 70,27% 4,47% 13,81% 11,45% 
17 74,81% 3,48% 11,97% 9,75% 
18 81,50% 2,70% 9,09% 6,71% 
19 74,86% 4,70% 6,71% 13,73% 
20 74,20% 5,99% 5,56% 14,26% 
21 75,63% 4,60% 5,28% 14,49% 
22 74,80% 5,01% 4,90% 15,28% 
23 82,64% 3,61% 4,26% 9,49% 
24 75,30% 4,37% 3,19% 17,15% 
25 81,21% 5,18% 2,81% 10,79% 
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Table  13: Annual liquidity premiums effects on returns. Annualized estimated time-series 
averages of liquidity premiums 95% Confidence interval. MRP refers to the standard market 

risk premium. 
  Annualized 

return 
Lower 95% 

bound 
Upper 95% 

bound 
TLP  1,465% 1,456% 1,473% 
LLP  1,274%   

)(TLRPr∆   0,191% 0,183% 0,199% 

1)(
2
LRPr

β∆   0,071% 0,068% 0,074% 

2)(
3
LRPr

β∆   -0,027% -0,026% -0,028% 

3)(
4
LRPr

β∆   0,147% 0,141% 0,154% 

)(
1
MRPr

β∆   -4,483% -4,291% -4,675% 

 
5. Conclusion 

 
To conclude, we propose a new methodology to test the conditional L-CAPM model 

based on modelling illiquidity using Unobserved Components models. Our results can help 
portfolio managers to better allocate their assets by evaluating properly the liquidity premium. 
Our results confirm some of the previous empirical founding such as the marginal effect of 
liquidity risk on returns compare to the effect of the liquidity level premium. However, one 
important observation is in contraction with previous founding, liquidity risk and illiquidity level 
are not found to be always positively correlated.  

Regarding the bid-ask spread our key results are 1) bid-ask spread exhibits strong 
periodicity; 2) the relative importance of temporary shocks over permanent shocks varies 
according to the liquidity level of the portfolio; 3) bid-ask spreads are highly impacted by 
temporary shocks; 4) the bid-ask spread variance process is highly persistent; 5) there exists an 
overall increasing trend in liquidity during the sample period (2006-2015) and that volatility 
clustering exists in bid-ask spread series.  

As far as we read, the previous key result has never been jointly considered when testing 
the L-CAPM model. By taking into account all these features, by limiting the look-ahead bias 
encountered in previous studies and by appropriately considering the holding period as varying 
across portfolios, we believe that our results are reliable.  

As main empirical result, we found that 1) the effect of liquidity risk on returns is 
marginal compared with the effect of the liquidity level premium; 2) the liquidity risk related to 
the covariance between portfolio illiquidity and market return (LRP3) is the most important risk; 
3) liquidity risk is not always positively correlated with illiquidity, it is the case for LRP2 - this 
may lead to new risk hedging strategy; 4) liquidity risk is time-varying and priced, and 5) liquidity 
risks are co-moving.  

As possible future research it could be worthwhile extending the UC modelling 
framework to a multivariate framework, to characterise the documented multicollinearity of the 
betas more precisely. 
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1  Appendix: Derivation of the Kalman Filter 
 
In this appendix we derive the equations of the Kalman filter that are used to estimate 

the Unobserved Components models. We focus on a simplest state space representation in 
which we assume system matrices to be known and Gaussian Distributed, it is the case for the 
LLT model. The transition equation is given by:  

 ttttt RT ζαα ++ =1  

and the observation equation is: tttt Zy εα +=  
with:  

 ][=)(0, T
ttttt EHHN εεε →:  

 ][=)(0, T
ttttt EQQN ζζζ →:  

 ),( 111 PaN:α  
 nt ,1,= K  

Kalman Filter is used to predict the mean ( )|( 1 tt YE +α ) and variance ( )|( 1 tt YVar +α ) of the 

unobserved state vector tα . 

Let tY  denotes observations up to time t  ( },,,{ 21 tyyy K ), 1+ta  the state prediction 

and 1+tP  the variance of the estimate:  

 )|(= 11 ttt YEa ++ α  

 )|(= 11 ttt YVarP ++ α  

The prediction error ( tv ) is given by the difference between the observation ( ty ) and the 

predicted value ( )|( 1−tt YyE ):  

tttttttttttttttt aZyYZEyYEZyYyEyv −+−−− −−− =)|(=)|(=)|(= 111 εαα  

where we used the fact that 0=)|( 1−tt YE ε  to simplify the third equality. By replacing ty  

with tttt Zy εα +=  we obtain:  

 ttttttttttttt aZaZZaZyv εαεα +−−+− )(=][==  

Moreover since by definition 0=)( tt aE −α  , then 0=)( tvE . 
Thus the prediction error has a zero mean. It follows that the prediction error variance 

denoted )(= tt vVarF  is 17  

 [ ]tttttt aZVarvVarF εα +− )(=)(=  

                                                      
17 note that 1) tε  is independent of tα  and ta  then all cross products involving these terms disappear; 2) tP  is defined above and 

that the superscript T  denotes the transpose operator. Also recall that the transpose of a product of matrices equals the product of their 

transposes in reverse order: 
TTT ABAB =)(   
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 [ ])))(()((= T
t

T
t

T
tttttt ZaaZE εαεα +−+−  

 )())((= T
tt

T
t

T
ttttt EZaaEZ εεαα +−−  

 t
T
ttt HZPZ +=  

To continue, we need to use the following lemma 0.1 that is originated from the multivariate 
normal regressions theory:  

Lemma 0.1  if x; y  and z  are jointly normally distributed vectors with 0=)( zE  

and 0=yzΣ  (where Σ  is the covariance matrix). Then zyxEzyxE zzxz
1)|(=),|( −ΣΣ+  

and variance matrix: T
xzzzxzyxVarzyxVar ΣΣΣ− −1)|(=),|(  

 
By taking tx α= ; tYy=  and tvz= , the precedent lemma can be employed because all 

vectors are Gaussian distributed and because 0=, tvtY
Σ . Let’s first compute the covariance 

matrix 
tvt ,αΣ  :  

T
tt

T
t

T
tttt

T
ttttttt

T
ttttvt

ZPZaaEaZZaEvaE =]))([(=]))([(=])[(=, −−−+−−Σ ααεαααα  

 
By applying lemma 0.1:  
 

tttttttvtttttvtvtvttt

ttttt

vKaTvFYEvYE
vYEYE

+Σ+ΣΣ+ −

+−+
−

+−+

−++

=)|(=)|(=
),|(=)|(

1
,111

1
,,111

111

αα αα

αα
 

 
where we have replaced the term 1

,1
−

+
Σ ttvt

Fα  by a new term tK  that is called the Kalman 

Gain18. Equation shows that best prediction of the next state mean is given by a linear 
combination of the current estimate of the state mean ta  and a second term which depends 

of the prediction error variance tv  corrected by the Kalman Gain ( tK ). 
The Kalman gain can itself be decomposed as 19:  

1111
1

1
11

1
,1

=][=])[][(=]|)[(=

]|[==
−−−−

−

−
−+

−

+

××+×+

×Σ

t
T
tttt

T
tttt

T
ttt

T
ttttt

T
ttttt

tt
T
ttttvtt

FZPTFvETFvREvTEFYvRTE

FYvEFK

αζαζα

αα

 
Similarly by applying the lemma 0.1 to the variance of the estimate 20: 

 T
tvttvtvtvtttttt YVarvYVar

1
1

11111 )|(=),|(
+

−

+−+−+ ΣΣΣ− αααα  

                                                      
18 We remind that that 

tvtvtF ,= Σ   

19 We remind that tv  and tζ  are uncorrelated in the fourth equality.  
20 recall also that 

T
ttttvt

ZPT=,1+
Σα  as demonstrated in ??), and then its transpose is given by 

T
t

T
tt

T

tvt
TPZ=,1+

Σα   
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 T
t

T
ttt

T
tttttttt TPZFZPTYRTVar 1

1)|(= −
− −+ ζα  

 T
t

T
ttt

T
ttt

T
tt

T
tttt TPZFZPTQRRTYVarT 1

1)|(= −
− −+α  

 T
t

T
ttt

T
ttt

T
tt

T
ttt TPZFZPTQRRTPT 1= −−+  

 T
ttt

T
tt

T
ttt KFKQRRTPT −+=  

Then we develop the so called "update equations", which are defined by )|(=| tttt YEa α  and 

)|(=| tttt YVarP α . By applying lemma 0.1 :  

 tttttttvtvtvtttttttttt vFZPavYEvYEYEa 11
,,11| '=)|(=),|(=)|(= −−

−− +ΣΣ+ αααα  

And tttttttvttvtvtvtttttttt PZFZPPYVarvYVarP 1''1
11| =)|(=),|(= −−
−− −ΣΣΣ− αααα  

The Kalman Filter consists of seven filtering equations ("Kalman Equations") that we have 
derived previously:  

 tttt aZyv −=  

 ttttt HZPZF +'=  

 1'= −
ttttt FZPTK  

 ttttt vKaTa ++ =1  

 '''=1 ttttttttt KFKQRRTPTP −++  

 ttttttt vFZPaa 1
| '= −+  

 tttttttt PZFZPPP 1'
| = −−  

 for .,1,= nt K . It is an algorithm that is apply recursively, first the prediction of the state is 
given by K3 and the prediction of its variance by K4. Then at every new observation that 
becomes available we compute the error in prediction (K0), update the system using the 
equation K5 and K6. This permits to obtain a new Kalman Gain (K2) and a new prediction error 
variance (K1). Finally a new prediction for the state and its variance can be made and the 
algorithm continues up to the end of the sample. The log-likelihood is computed as a by-product 
of the Kalman Filter by using tF  and tv .  

We have demonstrated the derivation of the conditional mean vector and conditional 
variance matrix of the state vector tα  given the observations tyy ,,1 K  (filtering). Similarly, 
Kalman equations can be derived for the conditional mean vector and variance matrix given, 
respectively, 11 ,, −tyy K  (our case) and nyy ,,1 K  to obtain the prediction and smoothing 
equations(see [Harvey, 1994, Durbin and Koopman, 2012]). 
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