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Abstract

We construct an algorithm that makes it possible to numerically obtain an investor’s

optimal portfolio under general preferences. In particular, the objective function and

risks constraints may be driven by benchmarks (reflecting state-dependent preferences).

We apply the algorithm to various classic optimal portfolio problems for which ex-

plicit solutions are available and show that our numerical solutions are compatible

with them. This observation allows us to conclude that the algorithm can be trusted as

a viable way to deal with portfolio optimization problems for which explicit solutions

are not in reach.

Key-words: optimal portfolio, algorithm, law-invariant, distortion, utility, GOP, cost-

efficiency, state-dependent preferences, discrete optimization.

1 Introduction

The quest for truly quantitative approaches to optimal portfolios was effectively initi-

ated by Markowitz (1952). It is known that his mean-variance optimization framework,

which balances return and risk (measured by mean and variance, respectively), provides

the same solutions as those obtained when maximizing the expected utility of the portfo-

lio using a quadratic utility function (Expected Utility Theory (EUT)). Although it is not

reasonable to expect investors to adhere to using quadratic utility, Levy and Markowitz

(1979), Markowitz (1952) and Markowitz et al. (2000) have all asserted that the theoretical
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gap between expected utility maximization and mean-variance analysis is not significant

in practice.

Nonetheless, studies by Allais (1953), Edwards (1955, 1962) and Machina (1987, 1995,

2004) have contributed to a growing body of evidence that individuals do not necessarily

conform to the key assumptions or predictions of expected utility models. This has led to

the development of alternative decision theories that seek to accommodate systematic de-

partures from the expected utility model while retaining as much of its analytical power as

possible. Other paradigms that have been proposed in the literature include Yaari’s Dual

Theory (Yaari 1987), Lopes’ SP/A Theory (Lopes 1987, Lopes and Oden 1999, Shefrin and

Statman 2000), Quiggin’s Rank Dependent Utility Theory (Quiggin 1993) and the Cumu-

lative Prospect Theory of Kahneman & Tversky (Tversky and Kahneman 1992). Although

these competing theories differ significantly from each other, they have a common ground

in that the wealth level is evaluated using an increasing law-invariant objective.1 Specifically,

the investor does not care about the particular states of the economy in which the outcomes

of a payoff are received; he or she cares only about the distribution of this payoff.

Dybvig (1988) introduced an alternative method for portfolio selection. Rather than

optimizing an increasing law-invariant objective for a given budget (primal problem), Dy-

bvig minimized the budget necessary to obtain a desired distribution of terminal wealth

(dual problem). He showed that in order to generate a given distribution at minimum

cost, the payoff must be decreasing in the state-price process; see also Bernard et al. (2014a)

and Carlier and Dana (2011). It is thus optimal for investors to consume more in cheaper

states, which reflect economic abundance, than in the more expensive ones, which reflect

economic recession. Clearly, solutions to the primal problem must also have this prop-

erty of monotonicity. In this paper, we exploit this monotonicity property to propose an

efficient method that makes it possible to numerically obtain optimal portfolios in law-

invariant frameworks. This result is useful, as analytic solutions2 are often not in reach

and typically come at the cost of over-simplifying assumptions.

1Bernard et al. (2015a) show that this is equivalent to having preferences that satisfy first-order stochastic
dominance (FSD). Interestingly, many economists consider a violation of this property as grounds for refut-
ing a particular theory; see e.g., Birnbaum (1997), Birnbaum and Navarrette (1998), Levy (2008) for further
discussions and empirical evidence of FSD violations. To illustrate the importance of FSD consistency in the
literature, note for instance that Kahneman and Tversky (1979) have developed the cumulative prospect the-
ory (Tversky and Kahneman (1992)) in order to address the FSD violation of their original prospect theory.

2In the literature, a significant number of papers solve portfolio problems in a rather ad-hoc fashion and
aim at obtaining explicit formulae. In this regard, we refer to Merton’s expected utility problem (Merton 1969,
1971), Merton’s problem with the Basak-Shapiro Value-at-Risk constraint (Basak and Shapiro 2001), Browne’s
target probability optimization problem (Browne 1999), the optimal portfolio problem for a loss-averse in-
vestor as in Berkelaar et al. (2004) and optimal choice under Yaari’s dual theory (Yaari 1987, He and Zhou
2011).
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One problem, however, with these optimal portfolios is that they provide their best

outcomes in states of economic abundance, whereas many investors would prefer to re-

ceive optimal payouts when the need is greatest, i.e., in states of economic recession. The

reality of such considerations on the part of investors can be demonstrated based on the

existence of the insurance business. Specifically, most people are more inclined to receive

money from an insurer in the case of an event such as a fire destroying their property than

to receive the same amount as the result of a favorable lottery drawing (Bernard and Van-

duffel 2014). Many fund managers also choose their portfolio composition conditionally

on knowing the value of some other portfolios or market indices (benchmarks). For ex-

ample, changes in portfolio weights can be driven by a volatility index such as the VIX,

changes in interest rates or a more general market index (Roll 1992). Moreover, the perfor-

mance of fund managers is often assessed relative to that of the sector in which they invest

(Daniel et al. 1997), leading to a tendency to benchmark accordingly. In all these cases, op-

timal investment decisions are driven not by the pursuit of a law invariant objective, but by

state-dependent preferences. A possible model that encompasses all the above examples is

presented in Bernard et al. (2015b), who also derive a characterization of optimal portfolios

for state-dependent preferences. Specifically, they extend Dybvig’s work by showing that

when investors aim at optimizing an objective that depends on a benchmark, the optimal

portfolio is decreasing in the state-price process, conditionally on this benchmark. In this

paper, we exploit this property to outline a numerical framework that makes it possible

to obtain the optimal portfolio for any state-dependent objective. We apply the algorithm

to several classic portfolio problems for which explicit solutions exist and show that our

numerically obtained solutions match them closely.

The algorithm that we propose makes it possible to deal efficiently with a wide range

of optimal portfolio selection problems for which no explicit solutions are readily avail-

able. In particular, the algorithm allows us to incorporate in optimal portfolio selection

problems all types of risk constraints needed to build a realistic model. Doing so typi-

cally implies that an explicit solution will no longer be available, but has the advantage

of providing an approximate solution to a problem that otherwise would be difficult to

solve explicitly. For example, we find the optimal portfolio for an investor facing a CoVaR

constraint (Adrian and Brunnermeier 2011). The CoVaR recently appeared as a risk mea-

sure to assess risk of systemically important financial institutions (SIFIs). The key insight

is that an important component of the risk that a SIFI represents for the global economy

(systemic risk) arises from its dependence with the global financial system; higher sys-

temic risk should be compensated by higher capital requirements. Similarly, it appears
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reasonable to develop strategies that aim at generating a sufficient level of income when

the financial system as a whole is under stress. Technically, we extend the optimization of

expected utility with a VaR constraint (probability constraint) of Basak and Shapiro (2001)

to a CoVaR constraint, i.e., a conditional probability constraint, in which the conditioning

event is a crisis.

The paper is organized as follows. In Section 2 we describe the financial market and the

general form of the optimal portfolio selection problems that we consider. In Section 3 we

specifically study law-invariant portfolio problems and provide an algorithm that makes it

possible to numerically obtain the respective optimal portfolios in these cases. We apply it

to some classical (non-)expected utility problems for which explicit solutions are available

and show that the numerical solutions are compatible with these. In Section 4 we add

state-dependent constraints to the setting and extend the algorithm to this case. We study

some examples in which the explicit solution is available and show that the algorithm

is able to reproduce them. We use the algorithm to solve relevant investment problems

(e.g., optimal portfolio choice under a CoVaR constraint) for which no explicit solution is

known. Final remarks are presented in Section 5.

2 Setting

Here we present the market model and describe the general form of portfolio problems

that we study in this paper.

2.1 Market Model

We consider an investor with a fixed horizon T without intermediate consumption. We

assume an arbitrage-free market in which a payoff XT received at time T can be valued

at present time as the expectation of XT times the state-price density3 ξT, i.e., its price

c(XT) is given as c(XT) = E [ξTXT], where the expectation is taken under the real-world

probability P. (We refer to Björk (2004) for extensive theory on arbitrage-free pricing.)

In other words, ξT is the discount factor that is used to compute the initial cost of XT.

Platen and Heath (2006) show that, under some general assumptions, discounting can be

done using the Growth Optimal Portfolio (GOP) as numéraire (deflator). Specifically, the

GOP is a portfolio with the property that it will almost surely accumulate more wealth

than any other strategy at an infinite horizon. It can also be seen as the portfolio that has
3The state-price ξt(ω) is the price per unit of probability P of the “atomic” time and state-contingent claim

(Arrow-Debreu security) that delivers one unit of a specific consumption good if a specific uncertain state ω
realizes at a specific future date t. For more information we refer to Eeckhoudt et al. (2011).
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maximum expected log-utility of terminal wealth at any horizon. Similarly to Platen and

Heath (2006), we use S?
T as numéraire and obtain that c(XT) = E

[
XT
S?

T

]
, in which S?

T is the

value at maturity T of one unit invested at time t = 0 in the GOP, i.e., ξT = 1/S?
T. Note that

in the Black-Scholes market set-up the use of the GOP as numéraire for pricing payoffs is

the unique approach that is consistent with non-arbitrage.

2.2 Optimal Portfolio Choice

The optimal portfolio choice problem that we consider throughout the paper can be gener-

ically formulated as

max
XT∈A

V(XT), (1a)

in which V(·) is the objective and the admissible set A is of the form

A =

XT

∣∣∣∣∣∣ c(XT) 6 W0 (budget constraint)

risk constraints on XT

 . (1b)

A risk constraint can typically be expressed as ρ(XT) 6 ρ0, in which ρ(·) is a risk measure.

Note that the objective V(·) may depend solely on the distribution of the final wealth XT

(i.e., V is law-invariant), but it may also be state-dependent in that the states in which cash

flows are received matter. The same feature holds true for the admissible set A: the risk

constraints may be law-invariant or state-dependent. When both the objective function

and the risk constraints are law-invariant, we say that the preferences are law-invariant

(Section 3); otherwise, they are state-dependent (Section 4).

3 Optimal Portfolio for Law-Invariant Preferences

In this section, we assume law-invariant preferences. Dybvig (1988), Carlier and Dana

(2011) and Bernard et al. (2014a) show that in this case solutions to optimal portfolio prob-

lems must be decreasing in the state-price density and thus increasing in S?
T.4 This property

plays a key role in designing a new discrete algorithm that makes it possible to find the

optimal portfolio efficiently.

We first lay out the algorithm and next apply it to several classic optimization prob-

lems for which an explicit solution has been reported in the literature, such as the Merton

problem of maximizing expected utility (Merton 1969, 1971), the Merton problem of max-

4Here, increasing refers to “non-decreasing”. Specifically, it does not mean that the portfolio is strictly
increasing in S?

T .
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imizing expected utility in the presence of a Value-at-Risk (VaR) constraint (Basak and

Shapiro 2001), the optimal portfolio problem for the loss-averse investor (Berkelaar et al.

2004), and the optimal portfolio problem under Yaari’s dual theory (Yaari 1987, He and

Zhou 2011). These examples show that the algorithm performs admirably in reproducing

the explicit solution and provides evidence that the algorithm can be used to solve any

other law-invariant optimal portfolio selection problem. In the second part of the paper

we extend our algorithm to accommodate state-dependent preferences.

3.1 Optimal Portfolio Choice Algorithm

Set-up: The algorithm that we propose first requires a discretization of the problem. Let

s?1 , s?2 , . . . , s?n be n equiprobable (with respect to the real-world probability P) ordered re-

alizations (states) of the GOP, s?1 < s?2 < · · · < s?n. These realizations can be obtained by

Monte Carlo simulations. In this paper, they are computed by inverting the distribution of

the GOP as follows:

s?k := F−1
S?

T

(
k− 0.5

n

)
, for k = 1, 2, . . . , n. (2)

The discrete counterpart5 to Problem (1a) can be formulated as

max
(x1,x2,...,xn)∈Ad

f (x1, x2, . . . , xn), (3a)

in which the admissible set Ad (counterpart to (1b)) is given as

Ad :=

(x1, x2, . . . , xn) ∈ Rn

∣∣∣∣∣∣
1
n ∑n

i=1
xi
s?i
6 W0

risk constraints on (x1, x2, . . . , xn)

 . (3b)

For the ease of presentation we omit the additional risk constraints6 when describing

the algorithm. Using the monotonicity property, the admissible set (3b) can be restricted

to the set (x1, x2, . . . , xn) ∈ Rn

∣∣∣∣∣∣ x1 6 x2 6 · · · 6 xn

1
n ∑n

i=1
xi
s?i
6 W0

 .

Using the auxiliary variables yi = xi − xi−1 (with the convention x0 = 0), i = 1, 2, . . . , n,

5A standard example of a law-invariant objective function is the expected utility functional, in which
V(X) = E [u(X)] . For the discretized version we would then obtain that f (x1, x2, . . . , xn) =

1
n ∑n

i=1 u(xi).
6An example of risk constraint is a Value-at-Risk constraint, i.e. P(XT > W) > 1− α, so that assuming

x1 6 x2 6 · · · 6 xn, and k
n = α, it amounts to constraining (x1, x2, . . . , xn) in that W 6 xk must hold.
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we can then rewrite the optimization problem as

max
(y1,y2,...,yn)∈B

f (y1, y1 + y2, . . . , y1 + y2 + · · ·+ yn), (4a)

in which the admissible set is now given as

B :=

{
(y1, y2, . . . , yn) ∈ (R+)

n

∣∣∣∣∣ n

∑
j=1

ζ jyj 6 W0

}
, ζ j :=

1
n

j

∑
k=1

1
s?k

. (4b)

It is clear that this discretization yields an optimization problem with a set of linear con-

straints. Most importantly, by rewriting the side constraint (3b) as the side constraint (4b),

we greatly reduce the dimensionality of the problem, as we only need to look for solutions

in the first orthant.

As the objective in (4a) is generally non-concave, multiple optima can exist. However,

the global optimum is known to be increasing in the GOP and our formulation (4) enforces

this feature, hence avoiding the pitfall that the routine will produce a solution that cannot

be a global optimum. For an overview of the theory and numerical techniques for opti-

mization models involving one or more constraints on distribution functions we refer to

Dentcheva (2006). For an in-depth review of shape constrained optimization we refer to

d’Aspremont (2004). In this paper, we will rely on a built-in feature of a software pack-

age to find a minimum of a constrained nonlinear multi-variable function. Specifically, the

numerical solution of (4) is constructed in MATLAB R© (2013) with the help of the built-in

function7 fmincon. Our routine starts with an initial guess regarding the optimum: We

know that the solution must be increasing in the GOP and that its cost must be below the

budget W0. Specifically, we take as initial solution X(0)
0,T := δ log(1 + S?

T), where δ is cho-

sen to satisfy the budget constraint and its realizations are computed in a straightforward

way from those of S?
T (see (2)). We also tested other choices for the initial guess and found

that the algorithm is robust in that a carefully designed procedure, which consists of in-

creasing the number of discretization points incrementally with each iteration step, makes

it possible to find the true solution whenever the initial discretization level n0 (used for

discretizing the initial guess X(0)
0,T) is small enough (say, n0 6 20); see also the numerical

examples in Sections 3 and 4 for additional evidence.

Indeed, the number nk of discretization points in each iteration (k = 0, 1, .., K) plays an

7The function implements an active-set algorithm that solves the Karush-Kuhn-Tucker (KKT) equations;
see Nocedal and Wright (2006) and Floudas and Pardalos (2009). When the objective and constraints are
twice differentiable and have Lipschitz continuous second derivatives in a neighbourhood of the optimum,
the algorithm converges to the optimum when one starts close enough to it; see Chapter 18 of Nocedal and
Wright (2006) and Hanson (1981, 1999).
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important role and has to be considered carefully. On the one hand, the larger nk, the more

unknown variables there are and the more difficult it is a priori for MATLAB R© to find the

optimal solution. On the other hand, the larger nk, the better the discretization and thus

the accuracy of the approximation of continuous distributions by discrete distributions.

Taking into account these observations and trade-offs, we propose the following approach

that refines the discretization at each step by doubling the number of discretization points

whilst making making it possible to improve upon the initial guess.

Description of the algorithm: First, from the initial guess X(0)
0,T, obtained with very

few discretization points (say, n0 = 20) we obtain, through optimization, a rough estimate

X∗0,T := X(N0)
0,T of the optimal solution X?

T; the procedure finds iterates X(1)
0,T, X(2)

0,T, X(3)
0,T, . . .

and will halt when internal tolerances are met, say at N0. The obtained estimate X∗0,T :=

X(N0)
0,T suffers from a too coarse discretization, but it already has the right “shape” and

has, typically, already improved the objective function significantly. Next, we double the

discretization points to n1 = 40 and use standard linear interpolation and extrapolation

(implemented in MATLAB R© ) to extend the estimate X∗0,T (20 outcomes that are increasing

in a coarsely discretized GOP) to X(0)
1,T (40 outcomes related to a more finely discretized

GOP), which will then serve as the new starting point of the routine. The iterations will

halt, say at N1, and a new estimate X∗1,T := X(N1)
1,T of the optimal solution X?

T is obtained.

After repeating these steps K times we have obtained K + 1 approximations X∗k,T (k =

0, . . . , K) of X?
T, each related to a more finely discretized GOP of nk = 2kn0 equiprobable

outcomes. Algorithm PA-SIP outlines our routine in pseudo-code, which is also visualized

in Figure 1.

· · · X(0)
k,T X(Nk)

k,T X(0)
k+1,T X(Nk+1)

k+1,T · · ·

X∗k,T X∗k+1,T

Interpolate

nk−1 to nk

Optimize

X(1)
k,T

X(2)
k,T ···

Interpolate

nk to nk+1

Optimize

X(1)
k+1,T

X(2)
k+1,T ···

Interpolate

nk+1 to nk+2

Figure 1: Diagram of Algorithm PA-SIP.

Conceiving the routing in this way makes it possible for the algorithm to find the opti-

mal solution; by doubling the number of points five times and by using 20 points (n0 = 20)

for the first run, we found in our examples that we can accurately solve optimization prob-

lems with n5 = 640 discretization points, i.e., 640 unknowns to determine. In summary,

the algorithm builds crucially on the monotonicity property that the optimal solution must

have with the GOP (to reduce the dimensionality of the problem) and on a careful design

8



of the initial guess by choosing the number of discretization points dynamically. Other-

wise, it would be merely a matter of luck to find a solution that is close to the true optimal

one. Indeed, although the algorithm in MATLAB R© is very powerful for solving multidi-

mensional optimization problems, it will typically fail to find the global optimum if we

run the algorithm directly with a very large number of discretization points.

Algorithm PA-SIP: Portfolio Algorithm for State-Independent Preferences
input : n0, K, tolerances, GOP S?

T , budget W0, objective obj, risk constraints constr

output : K + 1 discrete random variables approximating X?
T

call : (x∗0 , x∗1 , . . . , x∗K)← PA-SIP(obj,constr;n0, K, W0, S?
T)

// Choose n0 discretization points.

1 n0 ← 20;

// Compute ordered equiprobable sample of size n0 of S?
T .

2 s?0 = (s?0,1, . . . , s?0,n0
)← SampleGOP(n0, S?

T);

// Take X(0)
0,T := δ log(1 + S?

T) with δ such that c
(

X(0)
0,T

)
= W0.

3 x(0)0 = (x(0)0,1 , . . . , x(0)0,n0
)← StartingPoint(s?0 , W0); // x(0)0,j = δ log(1 + s?0,j)

// Obtain by optimization n0 realizations of X?
T .

4 N0 ← 0;

5 while tolerances are not met do

6 x(N0+1)
0 = (x(N0+1)

0,1 , . . . , x(N0+1)
0,n0

)← Optimize(obj,constr;s?0 , x(N0)
0 , W0);

7 N0 ← N0 + 1;

// Define X∗0,T the n0-discrete random variable approximating X?
T by using n0 discretization points.

8 x∗0 ← x(N0)
0 ;

9 for k← 1 to K do

// Double the number of discretization points.

10 nk ← 2nk−1;

// Compute ordered equiprobable sample of size nk of S?
T .

11 s?k = (s?k,1, . . . , s?k,nk
)← SampleGOP(nk, S?

T); // by (2): s?k−1,`−1 < s?k,` < s?k,`+1 < s?k−1,`

// Use the discrete random variable X∗k−1,T , that is {s?k−1, x∗k−1}, to construct a starting point X(0)
k,T

by linear interpolation at s?k .

12 x(0)k = (x(0)k,1 , . . . , x(0)k,nk
)← Interpolate(s?k , {s?k−1, x∗k−1});

// Obtain by optimization nk realizations of X?
T .

13 Nk ← 0;

14 while tolerances are not met do

15 x(Nk+1)
k = (x(Nk+1)

k,1 , . . . , x(Nk+1)
k,nk

)← Optimize(obj,constr;s?k , x(Nk)
k , W0);

16 Nk ← Nk + 1;

// Define X∗k,T the nk-discrete random variable approximating X?
T by using nk discretization points.

17 x∗k ← x(Nk)
k ;

In the following subsections, we apply our method to some standard optimal portfolio
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choice problems.

3.2 Application of the Portfolio Algorithm to State-Independent Preferences

We illustrate Algorithm PA-SIP with four examples in a two-dimensional Black-Scholes

market, in which individual volatility coefficients for the two assets are σ1 and σ2 and their

correlation coefficient is ρ12. Unless otherwise stated, the parameters are set as follows. The

drift and volatility of each asset are given by µ1 = 0.03, σ1 = 0.20 and µ2 = 0.04, σ2 = 0.30.

The risk free-rate r is equal to 0.01; thus, the market price of risk is such that λ• := µ1−r
σ1

=
µ2−r

σ2
(see e.g. Bernard et al. (2011) or Bernard et al. (2015b) for a detailed description of the

multidimensional Black-Scholes model). Finally, the correlation ρ12 is taken to be equal to

0.25, the investment horizon is T = 6 months and the initial budget W0 is equal to 100.

These parameters are summarized in Table 1. The GOP can then be expressed (see also

Table 1: Values of the parameters for the numerical examples.

r µ1 µ2 σ1 σ2 ρ12 T W0 S?
0

0.01 0.03 0.04 0.2 0.3 0.25 0.5 100 1

Bernard et al. (2014b)) as S?
T = S?

0 exp
[(

r + λ2

2

)
T + λWP

T

]
where λ =

√
2

1+ρ12
λ• and WP

T

is a standard Brownian motion under the measure P at time T. This enables us to compute

an increasingly ordered equiprobable sample of size n of the GOP as

s?i := exp
[

λ
√

TΦ−1
(

i− 0.5
n

)
+

(
r +

λ2

2

)
T
]

, i = 1, 2, . . . , n,

where Φ is the distribution function of a standard normal random variable; see also (2).

3.2.1 Merton’s expected utility problem (Merton 1971)

A dominant decision theory in economics is the expected utility theory (EUT) of von Neu-

mann and Morgenstern (1947). The optimal portfolio in an EUT framework was first de-

rived by Merton (1969, 1971), and the problem in this case is often referred to as Merton’s

problem. Merton performed his analysis under Inada’s conditions (Inada 1963) on u(x);

see also Bernard et al. (2015a). We recall here the analytical solution.

Proposition 3.1. Assuming that the utility function is concave, increasing and differentiable, the

optimal payoff of the Merton expected utility problem maxc(XT)6W0,XT>0 E [u(XT)] is given by

X?
T = [u′]−1

(
θ

S?
T

)
, where θ is determined by the budget constraint c(X?

T) = W0.
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Note that X?
T in Proposition 3.1 is indeed increasing in the GOP. We illustrate our nu-

merical method using the following utility function (CRRA utility function):

uη(w) =

log(w) η = 1

1
1−η w1−η η 6= 1,

(5)

in which η > 0 is the so-called coefficient of relative risk aversion. First, we discretize the

optimal portfolio choice problem according to Section 3.1, and hence consider the follow-

ing discretized problem:

max
y∈B

1
n

n

∑
i=1

uη(y1 + y2 + · · ·+ yi)

with the admissible set as in (4b):

B :=

{
(y1, y2, . . . , yn) ∈ (R+)

n

∣∣∣∣∣ n

∑
j=1

ζ jyj 6 W0

}
, ζ j :=

1
n

j

∑
k=1

1
s?k

. (6)

Application of Algorithm PA-SIP leads to the results displayed in Figure 2 for K = 5,

so nK = 20 · 25 = 640. In both panels of Figure 2, we also show the initial guess X(0)
0,T that

serves as input for the algorithm, the optimal one that is obtained as its output (that is,

X∗5,T) and the analytical solution (see Proposition 3.1). The graph presented in Panel 2(a)

shows very good agreement between the theoretical and numerical results. The algorithm

constructs a payoff with expected utility of 31.0256, which is exactly (as an approxima-

tion with 4 digits) the utility of the theoretical optimum. Note also that the initial guess

deviates from the optimal solution, indicating that the optimization procedure is able to

accommodate a suboptimal initial choice. These results are confirmed in Panel 2(b). The

numerical and theoretical solutions match closely. Moreover, our algorithm constructs a

payoff with expected utility of 4.6142, which is again very close to the exact number that

is equal to 4.6141.

3.2.2 Merton’s expected utility problem with VaR constraint (Basak and Shapiro 2001)

The analysis of Merton’s problem confirms that in a law-invariant setting the optimal pay-

off goes along with the GOP and thus offers little income in declining markets. Investors

may feel uncomfortable with this feature. Moreover, in practice, portfolio managers often

face constraints stemming from regulations and/or internal policies. Basak and Shapiro

(2001) incorporate these concerns into Merton’s problem using a Value-at-Risk (VaR) risk

measure that ensures that the minimum value of terminal wealth remains above a mini-
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Figure 2: Optimal portfolios for Merton’s problem.

mum level with desired probability.

Specifically, Basak and Shapiro (2001) consider as a risk constraint ρ(XT) := P(XT 6

W), with W ∈ R+ and ρ0 := α ∈ [0, 1]; or, equivalently, they consider the risk constraint

12



P(XT > W) > 1− α. Let us refer to

max
XT∈A

E [u(XT)] , A =

XT

∣∣∣∣∣∣ c(XT) 6 W0

P(XT > W) > 1− α
, XT > 0

 (7)

as the Basak-Shapiro VaR constrained problem. The constraint P(XT > W) > 1− α re-

quires an agent to have terminal wealth higher than W with probability 1− α at least, i.e.,

VaRα(XT) := F−1
XT

(α) > W. Basak and Shapiro (2001) show that this problem can be solved

explicitly and we recall their analytical solution hereafter. In this regard, note that in order

to ensure that the set A is not empty, the budget needs to be sufficiently high, leading to

the assumption VaRα(XT) := F−1
XT

(α) > W. Finally, the Basak-Shapiro VaR constrained

problem with α = 0 reduces to portfolio insurance, as the terminal wealth is constrained

to be above W in all states.

Proposition 3.2. Let 0 6 We−rT 6 W0 and assume that the utility function u is strictly in-

creasing and that its derivative u′ exists and is strictly decreasing. The optimal payoff X?
T of the

Basak-Shapiro VaR constrained problem is given by

X?
T =

W S?
T ∈

[
S?, S?

)
[u′]−1

(
θ

S?
T

)
otherwise

, (8)

where θ is determined by the budget constraint c(X?
T) = W0, S?

= θ/u′(W) and S? is such that

P(S?
T < S?) = α.

We apply Algorithm PA-SIP to the Basak-Shapiro VaR constrained problem using the

CRRA utility function uη as given in (5). We first discretize the risk constraint that appears

in the admissible set: Put k := dnαe ∈N. Then we have

P(XT > W) > 1− α ⇐⇒ FXT (W) 6 α 6
k
n
= FXT (xk) =⇒ W 6 xk

because FXT (xi) = FS?
T
(s?i ) = i/n (due to the monotonicity property of the optimal so-

lution). Hence, we obtain the following discretized problem maxy∈B
1
n ∑n

i=1 uη(y1 + y2 +

· · ·+ yi) with the admissible set given as

B =

(y1, y2, . . . , yn) ∈ (R+)
n

∣∣∣∣∣∣ ∑n
j=1 ζ jyj 6 W0

y1 + y2 + · · ·+ ydnαe > W

 , ζ j :=
1
n

j

∑
i=1

1
s?i

.

We present the results in Figure 3 for K = 5, so nK = 20 · 25 = 640. In both panels of

13



0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
40

60

80

100

120

140

160

180

S
∗

T
r=0.01, µ

1
=0.03, µ

2
=0.04, σ

1
=0.2, σ

2
=0.3, ρ

12
=0.25, T=0.5, W

0
=100

η=0.35, n=640, P(X
T
>92.5)>0.915

p
a

y
o

ff
 X

∗ T

 

 
initial guess, V(X

T
)=30.9

numerical solution (Basak−Shapiro), V(X
T
)=31

exact solution (Basak−Shapiro), V(X
T

∗
)=31

exact solution (Merton), V(X
T

∗
)=31.03

0.85 0.9 0.95 1 1.05

60

70

80

90

100

110

(a) η = 0.35

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
75

80

85

90

95

100

105

110

115

120

125

S
∗

T
r=0.01, µ

1
=0.03, µ

2
=0.04, σ

1
=0.2, σ

2
=0.3, ρ

12
=0.25, T=0.5, W

0
=100

η=1, n=640, P(X
T
>92.5)>0.915

p
a

y
o

ff
 X

∗ T

 

 
initial guess, V(X

T
)=4.614

numerical solution (Basak−Shapiro), V(X
T
)=4.614

exact solution (Basak−Shapiro), V(X
T

∗
)=4.614

exact solution (Merton), V(X
T

∗
)=4.614

0.85 0.9 0.95

86

88

90

92

94

96

(b) η = 1

Figure 3: Optimal portfolios for Merton’s problem with Basak-Shapiro VaR constraint.

Figure 3, we display the initial choice X(0)
0,T of the algorithm, the optimal one that is obtained

as output of the algorithm (that is, X∗5,T) and the analytical solution (Proposition 3.2).

Both panels show that there is again good agreement between the numerical and the-

oretical results. In particular, the algorithm is able to accurately produce the discontinuity

(jump) in the analytic solution of Basak and Shapiro (2001). Furthermore, the expected

utilities of the numerical solutions closely match those of the analytical solutions.

14



3.2.3 Loss-averse investor (Berkelaar et al. 2004)

In a seminal work, Kahneman and Tversky (1979) provided evidence that losses loom

larger than gains in the perception of investors, for which reason they proposed a different

utility function that is not always concave over terminal wealth. This is further developed

in Berkelaar et al. (2004), who state that investors care about changes in their wealth level

(with respect to a benchmark) rather than about their absolute wealth levels. In addition,

the objective function is S-shaped with a convex part below the reference point and a con-

cave part above. This setting is appealing as there is evidence that it is a realistic way in

which to model preferences. Berkelaar et al. (2004) studied the optimal portfolio choice

in this setting, and we refer to this problem as the optimal portfolio problem for the loss-

averse investor. Specifically, one chooses the following utility function, defined over losses

and gains relative to a reference level p:

uB(x) =

−C1(p− x)γ1 x 6 p

C2(x− p)γ2 p < x
. (9)

For loss aversion and increasing preferences one needs C1 > C2 > 0. Requiring γi < 1

(i = 1, 2) ensures risk-seeking for losses (convex) and risk-aversion for gains (concave).

Berkelaar et al. (2004) derive the optimal portfolio in this setting, and we recall their result

first.

Proposition 3.3. The optimal payoff X?
T of a loss-averse investor solving maxc(XT)6W0

E [uB(XT)]

is given by

X?
T =

(
p +

(
C2γ2

θ
S?

T

)1/(1−γ2)
)
· 1{S?<S?

T}, (10)

where S? > 0 is the zero of the function

Z(S) =
1− γ2

γ2

(
S
θ

) γ2
1−γ2

(C2γ2)
1

1−γ2 − pθ

S
+ C1 pγ1

and θ > 0 is determined by the budget constraint c(X?
T) = W0.

Note that X?
T in (10) is indeed increasing in the GOP. Moreover, as long as the GOP

stays below a threshold S?, X?
T takes the value zero. When the GOP is above a threshold

S?, the payoff X?
T jumps to the reference level p and stays above.

We illustrate the solution of the optimal portfolio problem for a maturity of T = 5

years (so S? is clearly visible) and a reference level p = 95. The other parameter values are
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C1 = 2.25, C2 = 1 and we also take γ1 = γ2; see also Kahneman and Tversky (1979) and

Berkelaar et al. (2004).
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Figure 4: Optimal portfolios for the loss-averse investor.

The numerical results that we obtain by applying Algorithm PA-SIP are displayed in

Figure 4 and contrasted with the analytical solutions. In Panel 4(a) we take γ1 = 0.88 = γ2.

Once more the numerical solution conforms well with the analytical solution. The initial

guess has utility equal to 8.191 but our algorithm constructs a payoff with utility value
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equal to 11.005, which is again very close to the optimal value of 11.048. In Panel 4(b) we

use γ1 = 0.82 (other parameters remain unchanged). The initial guess has utility equal to

8.808. Our algorithm constructs a payoff with utility equal to 13.563, whereas the optimal

value is 13.616.

3.2.4 Optimal portfolio choice under Yaari’s dual theory (Yaari 1987)

Following Machina (1987, 1995, 2004), beginning with the work of Allais (1953) and Ed-

wards (1955, 1962) in the early 1950s, some of the key axioms of expected utility theory

have become increasingly challenged. This trend has led to the development of non-

expected utility models of risk/preferences, which seek to better reflect preferences, while

retaining as much as possible of the analytical power of the expected utility models. The

dual theory of choice of Yaari (1987) builds on a new set of axioms. In this latter frame-

work, agents evaluate terminal wealth using the distorted expectation

V(XT) =
∫ +∞

0
x d(1− w(1− FX(x))) =

∫ +∞

0
w (P [XT > x])dx, (11)

where w : [0, 1] → [0, 1] is a distortion function with w(0) = 0, w(1) = 1. Risk aversion is

obtained if w is convex (Yaari 1987, Theorem 2).

Let us define the Yaari non-expected utility problem as the optimization problem (1) in

which the objective function is the Yaari functional V(XT) given in (11) and the admissible

set A is the set of payoffs that satisfy the budget constraint. This problem was recently

solved by He and Zhou (2011) under some assumptions regarding the auxiliary function

M(z) := w′(1− z)F−1
S?

T
(1− z). We recall their solution.

Proposition 3.4. Assume that M(z), given above, is continuous and uni-modal on (0, 1): there

exists z̃ ∈ (0, 1) such that M is strictly increasing on (0, z̃) and strictly decreasing on (z̃, 1). The

optimal payoff X?
T solving

max
c(XT)6W0,XT>0

∫ +∞

0
w [P {XT > y}]dy

is given as

X?
T =

W0

c
(

1{S?<S?
T}
) · 1{S?<S?

T}, (12)
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where S? > 0 is the zero of the function8

Z(S) =
1
S

w(FS?
T
(S)) + w′(FS?

T
(S))

∫ +∞

S

1
t

dFS?
T
(t), S 6 F−1

S?
T
(1− z̃).
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Figure 5: Optimal portfolios under Yaari’s dual theory.

The results of our numerical procedure are displayed in Figure 5. Here we use the mar-

8Given a distribution function FX(x) we denote its survival function by FX(x) = 1− FX(x).
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ket parameters of Table 1 and similarly to those in the example of He and Zhou (2011), we

take the distortion w(x) = xγ with γ > 1 (proportional hazard model). In Panel 5(a) we

take the proportional hazard parameter γ = 1.1. We observe again a very good correspon-

dence between the numerical solution and the exact one (it can be verified that the condi-

tion of Proposition 12 is satisfied). The initial guess yields a value for the Yaari objective

function (distorted expectation) that is equal to 100.3765. Our algorithm constructs a pay-

off with objective value 101.4449, which is very close to the optimal value of 101.4454. In

Panel 5(b) we increase the proportional hazard parameter to γ = 1.2 (all other parameters

remain unchanged). The initial wealth distribution (dotted) has a distorted expectation of

99.9026. Our algorithm constructs a payoff with objective value equal to 100.4674, whereas

the optimal value 100.4663.

3.3 Additional evidence of the performance of the algorithm

The examples in Section 3.2 illustrate, numerically and graphically, that Algorithm PA-SIP

appears suitable for solving optimal portfolio problems under law-invariant preferences.

In this section we further analyze the performance of the algorithm. Specifically, we

analyze the distance between the intermediate solutions and the analytical solutions and

assess the extent to which they show subsequent improvements. In order to obtain a mean-

ingful comparison, we first extend the subsequent approximations X∗k,T (k = 0, . . . , K) to

a common base, which corresponds to the finest discretization of GOP; i.e., we consider

nK equiprobable values in s?K and interpolate and extrapolate the intermediate solutions

X∗k,T (k = 1, 2, . . . , K) using these nK discretization points. For ease of presentation we do

not introduce a new notation for these extended versions of the solutions. The payoff-wise

resp. objective-wise distance between a numerically obtained intermediate solution and

the true analytical solution X?
T is defined, for k = 0, 1, . . . , K, as

δK
k (X) :=

√
E

[(
X∗k,T − X?

T

)2
]

√
E
[
(X?

T)
2
] resp. δK

k (V) :=

∣∣∣V (X∗k,T

)
−V(X?

T)
∣∣∣

|V (X?
T)|

. (13)

In Figure 6, we plot for all discussed applications the distances (on log-scale) as a func-

tion of the number k = 1, 2, . . . , K.

We observe that in all cases the algorithm yields intermediate solutions that gradually

improve. We stress that this feature is not an obvious point and is achieved thanks to the

subsequent refinement of the initial point X(0)
k,T , as described in Section 3.1. If one naively
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Figure 6: Performance metrics of the algorithm.

uses the same starting point and runs the algorithm with a larger number of discretiza-

tion points, then, according to our observations, the performance ultimately deteriorates

because the number of unknown variables in the algorithm increases and the optimiza-

tion problem fed into the solver fmincon is of larger dimensions. In our case, the error

decreases in all of the examples studied above.

Through extensive performance tests of our proposed algorithm, we also confirmed
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that the property that the solution must be monotonic is key for the algorithm to converge

to the optimal portfolio. If the monotonicity property is not imposed upfront by reformu-

lating the problem with the unknown non-negative variables (y1, y2, . . . , yn) instead of the

unknown variables (x1, x2, . . . , xn), the optimizer fmincon often misses the optimal solu-

tion and may even converge to a candidate solution that does not satisfy the monotonicity

property or does not satisfy the constraints of the problem.

We have run the algorithm with an extensive range of parameters, and we find that the

algorithm performs consistently well across various parameter ranges. The algorithm thus

proves to be very useful, as it makes it possible to deal with any law-invariant problem,

specifically those for which we do not know the analytical solution up front. Furthermore,

this algorithm enables to potentially guess the analytical solution and to prove its optimal-

ity. Finally, the algorithm plays a key role in the following solutions to state-dependent

optimal portfolio problems. As we will see in the next section, these problems are chal-

lenging, but very natural to consider, as individuals’ preferences tend to be impacted by

economic states (i.e., investors may not have the same risk aversion when the market is un-

der stress as when the market is in normal conditions). Nevertheless, very few such opti-

mization problems are solved explicitly in the literature; our algorithm provides a method

for doing so.

4 Optimal Portfolios for State-Dependent Preferences

Optimal portfolios for investors with law-invariant preferences have the property that the

worst outcomes are obtained when the market declines. This feature does not correspond

to the intuition that investors may value a dollar that is received during economic recession

more than when one received during economic expansion. The intuition that investors care

about the states in which they receive money is confirmed by the widespread practice ac-

cording to which fund managers aim at tracking or beating a certain benchmark portfolio.

Investment decisions can also be driven by market signals, such as changes in volatility

and interest rates, or influenced by the performance of competitors.

To model state-dependent preferences, we use benchmarks. Specifically, we denote by

A the benchmark, i.e., a vector of random variables, that influences the investor’s invest-

ment decision (e.g., stock or volatility indices, interest rates, asset prices or competitors’

portfolios). The state-dependent investment problem can be formulated as follows:

max{
XT

∣∣∣ c(XT)6W0
risk constraints

}VA(XT), (14)
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where the objective VA and the risk constraints may all depend on the random vector A.

Theorem 4.1 hereafter characterizes solutions to the state-dependent problem (14). In

particular, it is shown that the solutions can be considered as increasing in the GOP, condi-

tionally on the benchmark. This characterization significantly reduces the dimensionality

of problem (14) and makes it possible to extend Algorithm PA-SIP to accommodate state-

dependent constraints and to solve complex state-dependent investment problems.

Theorem 4.1 (Optimal strategies). Let A be a d-dimensional random vector and assume that

FS?
T |A is continuously distributed. Assume that the objective function VA and risk constraints are

non-decreasing9 and law-invariant, conditionally on A.10 If there exists a solution XT to prob-

lem (14), then there exists X?
T, which is increasing in S∗T conditionally on A and also solves prob-

lem (14).

Proof. Let XT be a solution. It follows from Lemma (A.2) in Bernard et al. (2015b) that

U = FS?
T |A(S

?
T) is uniformly distributed on (0, 1), stochastically independent of A and

increasing in S?
T conditionally on A. Consider the payoff YT = F−1

XT |A(U). Invoking Lemma

(A.2) in Bernard et al. (2015b) again, (XT, A) ∼ (YT, A) and

c(XT) = E [XTξT] = E[E[XTξT| A]]

> E
[
E
[

F−1
XT |A(U)ξT

∣∣∣ A
]]

= E
[

F−1
XT |A(U)ξT

]
= c(YT),

where the inequality follows from the Frechet-Hoeffding bounds and from the fact that

F−1
XT |A(U) and S?

T are comonotonic, conditionally on A. Since (XT, A) ∼ (YT, A), it fol-

lows that YT satisfies the risk constraints, and that VA(YT) = VA(XT) (conditional law-

invariance). Furthermore, there exists a non-negative constant a such that X?
T := YT + a

has cost W0. The payoff X?
T also satisfies the risk constraints, and VA(X?

T) > VA(YT) (in-

creasing preferences). Hence, X?
T is at least as good as XT; note also that it is increasing in

S∗T conditionally on A and also solves problem (14).

From the proof, every admissible solution XT to Problem (14) can be improved by a

payoff X?
T that is increasing in the GOP, i.e., S?

T, conditionally on A. Furthermore, denote

9When X 6 Y, almost surely, then i) VA(X) 6 VA(Y) and ii) if X meets the risk constraints, then Y also
meets the risk constraints.

10If FX|A = FY|A, then i) VA(X) = VA(Y) and ii) if X meets the risk constraints, then Y also meets the risk
constraints.
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by G the joint distribution of (X?
T, A). One has that X?

T solves the problem

min
XT |(XT ,A)∼G

c(XT),

i.e., X?
T is the cheapest possible payoff having joint distribution G with the benchmark A.

The solution to this cost-efficiency problem was first provided in Theorem 3.4 of Bernard

et al. (2015b); see also Theorem 4.4 in Bernard and Tang (2016).

4.1 Optimal Portfolio Choice Algorithm (State-Dependent Preferences)

In this section, we outline the algorithm for solving the state-dependent problem (14). For

ease of exposition, we ignore the potential presence of state-dependent risk constraints.

Set-up: Similarly as in the case with law invariant preferences (Section 3.1), we dis-

cretize the problem. The benchmark A may have a discrete distribution with P[A = aj] =

pj for j = 1, . . . , m (so pj > 0 and ∑m
j=1 pj = 1), and when A is continuously distributed,

we discretize it using an equiprobable sample of m realizations, i.e., aj := F−1
A

(
j−0.5

m

)
, j =

1, 2, . . . , m meaning that in this instance pj ≡ 1/m.

We consider nm states with corresponding realizations of the random couple (A, S?
T),

which are obtained as follows. Consider the m outcomes from the benchmark A, i.e., a1 <

. . .< am. For each value aj of the benchmark, we simulate n equiprobable values of the

GOP S?
T, i.e., s?ij := F−1

S?
T |A=aj

( i−0.5
n

)
, i = 1, 2, . . . , n; j = 1, 2, . . . , m. In this way, we obtain

the following matrix:


(a1, s?11) (a2, s?12) · · · (am, s?1m)

(a1, s?21) (a2, s?22) · · · (am, s?2m)
...

...
. . .

...

(a1, s?n1) (a2, s?n2) · · · (am, s?nm)

 .

All of the elements in a given column j are equiprobable with probability pj
n . Without loss of

generality, we assume that for each j = 1, . . . , m, the n realizations of the GOP are ordered

as s?1j < s?2j < · · · < s?nj. Let x∗ij be the corresponding optimal wealth value in each of the

nm states. The discrete formulation of the optimization problem reads as

max
(xij)i,j∈Ad

Va(xij) (15a)
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with a := (a1, a2, . . . , am) and the admissible set Ad given as

Ad :=

{
(xij) ∈ Rnm

∣∣∣∣∣ 1
n

n

∑
i=1

m

∑
j=1

xij

s?ij
pj 6 W0

}
. (15b)

In a similar way as in the case of state-independent problems, the optimization prob-

lem (15) suffers from the very large number of unknown variables (here, nm unknown

variables xij). However, from Theorem 4.1 the optimal portfolio must be conditionally in-

creasing in the GOP (Theorem 4.1), and this makes it possible to reduce the dimensionality

of the optimization problem (15a). Specifically, we formulate the following proposition.

Proposition 4.2. For each j = 1, . . . , m, the optimal wealth levels x∗1j, x∗2j,. . . , x∗nj of the optimiza-

tion problem (15) above are such that x∗1j 6 x∗2j 6 · · · 6 x∗nj.

To make use of the result in Proposition 4.2, we introduce auxiliary variables yij =

xij − x(i−1)j with the convention that x0j = 0 and i = 1, 2, . . . , n. The admissible set then

writes as

B :=

{
(yij) ∈ Rnm

+

∣∣∣∣∣ n

∑
i=1

m

∑
j=1

ζijyij 6 W0

}
, ζij =

pj

n

i

∑
k=1

1
s?kj

. (15b’)

By considering the admissible set (15b’) instead of (15b), we look for a solution in a

space that is bounded from below. The optimization routine is more stable and converges

better. Given the considerable number of variables, it is of the utmost importance to con-

struct the initial guess for the algorithm as closely as possible to the optimum in order to

have a chance that the optimization procedure over nm unknown variables will converge

to the global optimal solution when n increases.11

Description of the algorithm:

Step 1: We construct the best solution for an initial level of discretization n0, say n0 =

20. We split the optimization problem (15a) into solving m problems for law-invariant

preferences. Specifically, for each j = 1, 2, . . . , m we solve on a coarse grid of size n0 = 20

and with (conditional) budget W?
−1,j = W0 the optimization problem (15a), conditionally

on A = aj. To do so we use m times Algorithm PA-SIP (each involving an optimiza-

tion over n0 unknowns) and obtain the m (conditional) optima X?
0,j, j = 1, 2, . . . , m. Note

that the choice of taking all conditional budgets W−1,j equal to each other is arbitrary, but

natural in that there is no reason to justify differences among the conditional budgets ac-

cording to the different values taken by the benchmark A. The m (conditional) optima X?
0,j,

j = 1, 2, . . . , m are next combined to obtain an initial (unconditional) guess regarding the

11A natural extension is to also increase m.
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optimal terminal wealth, which we feed into the global optimization of (15a) with n0m un-

known variables. We rerun the optimization until the objective value no longer improves

(with a given tolerance level at machine precision), and we thus obtain our best solution

X?
0,T for this level of discretization. From the resulting optimum X?

0,T, we can determine

the conditional budgets W?
0,j using the following decomposition formula:

c(X?
T) = E

[
X?

T
S?

T

]
= E

[
E

[
X?

T
S?

T

∣∣∣∣ A
]]

=
m

∑
j=1

E

[
X?

T
S?

T

∣∣∣∣ A = aj

]
︸ ︷︷ ︸

W?
0,j

P(A = aj). (16)

We find that conditional budgets are updated from W?
−1,j = W0 to W?

0,j =
1
n0

∑n0
i=1

x?ij
s?ij

, j =

1, 2, . . . , m.

Step 2: We refine the procedure sequentially by doubling the number of discretization

points. Hence, we take n1 = 2n0 and solve, on a refined grid, m law-invariant problems,

conditionally on A = aj with updated conditional budgets W?
0,j (j = 1, 2, . . . , m) and using

the optimum X?
0,T that we obtained after the first step (appropriately extended to the finer

grid) to yield the (conditional) starting points. The optima that next result from application

of Algorithm PA-SIP (with n1 unknown variables) are again combined into a starting point

of the global optimization of (15a) with n1m unknown variables. The resulting optimum

X?
1,T will exhibit new conditional budgets W?

1,j. This doubling procedure is repeated K

times, resulting in a numerical optimum X?
K,T on nK = 2Kn0 discretization points over m

states of the benchmark A with conditional budgets W?
K,j among them. A more complete

layout of our routine in pseudo-code is provided in Algorithm PA-SDP.

4.2 Application of the Portfolio Algorithm for State-Dependent Preferences

We provide a series of examples of portfolio choice problems with state-dependent fea-

tures. Here, state-dependence may arise from a utility function that itself is state-dependent

(Section 4.2.1) or from constraints imposed on the resulting optimal portfolio (Section 4.2.2).

4.2.1 Merton type problems with state-dependent utility

We examine two Merton-type problems with state-dependent utility functions that are of

economic interest. In both cases analytical solutions are available and we are thus able to

assess the performance of Algorithm PA-SDP in finding the solution. As for the bench-

mark, we consider the (discretized) GOP at some time t < T, i.e., we take A = W0S?
t . Note

that by varying the parameter t, we have the flexibility to let the benchmark A take various
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Algorithm PA-SDP: Portfolio Algorithm for State-Dependent Preferences
input : n0, K, tolerances, GOP S?

T , benchmark A, budget W0, objective obj, risk constraints
constr

output : nK-discrete random variable approximating X?
T | A, optimal budget split

call : (X?
K, W?

K)← PA-SDP(obj,constr;n0, K, W0, S?
T , A)

// Choose n0 discretization points.
1 n0 ← 20;

// Start with conditional budgets that are all equal.
2 W?

−1 = (W?
−1,1, . . . , W?

−1,m)← (W0, . . . , W0);
3 for j← 1 to m do

// Compute ordered equiprobable sample of size n0 of S?
T | A.

4 s?0,j = (s?0;1,j, . . . , s?0;n0,j)← SampleGOP(n0, S?
T | A = aj);

// Solve state-independent case with given budget.
5 x?0,j ← PA-SIP(obj,constr;n0, 0, W?

0,j, S?
T | A = aj)(1);

6 S?0 ← (s?0,1, . . . , s?0,m); X
(0)
0 ← (x?0,1, . . . , x?0,m);

// Obtain by optimization n0 realizations of X?
T | A.

7 N0 ← 0;
8 while tolerances are not met do
9 X

(N0+1)
0 ← Optimize(obj,constr;S?0 ,X(N0)

0 , W0); N0 ← N0 + 1;

// Define X?
0,T | A the n0-discrete random variable approximating X?

T | A by using n0 discretization
points.

10 X?
0 ← X

(N0)
0 ;

// Compute the conditional budgets.
11 W?

0 ← BudgetSplit(S?0 ,X?
0);

12 for k← 1 to K do
// Double the number of discretization points.

13 nk ← 2nk−1;
// Start with the conditional budgets from the previous step.

14 W?
k ← W?

k−1;
15 for j← 1 to m do

// Compute ordered equiprobable sample of size nk of S?
T | A.

16 s?k,j = (s?k;1,j, . . . , s?k;nk ,j)← SampleGOP(nk, S?
T | A = aj);

// Solve state-independent case with given budget.
17 x?k,j ← PA-SIP(obj,constr;n0, k, W?

k,j, S?
T | A = aj)(k + 1);

18 S?k ← (s?k,1, . . . , s?k,m); X
(0)
k ← (x?k,1, . . . , x?k,m);

// Obtain by optimization nk realizations of X?
T | A.

19 Nk ← 0;
20 while tolerances are not met do
21 X

(Nk+1)
k ← Optimize(obj,constr;S?k ,X(Nk)

k , W0); Nk ← Nk + 1;

// Define X?
k,T | A the nk-discrete random variable approximating X?

T | A by using nk discretization
points.

22 X?
k ← X

(Nk)
k ;

// Compute the conditional budgets.
23 W?

k ← BudgetSplit(S?k ,X?
k);

forms. Moreover, joint sampling from A and S?
T is straightforward.

Example A. We consider the following expected utility maximization problem with a
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state-dependent utility function:

max
c(XT)=W0

E [u(A, XT)] , u(a, x) = 2
√

ax.

The value of a payoff is thus essentially measured as the expectation of its (geometric)

average with the benchmark A. The benchmark might be another portfolio of the investor,

which she cannot adjust (e.g., a pension fund managed by her employer), but which clearly

affects her future welfare. By taking the geometric average we consider the presence of this

benchmark portfolio in a meaningful way.
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numerical solution, A = 96.3

numerical solution, A = 105

exact solution, A = 96.3
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Figure 7: Merton example with u(a, x) = 2
√

ax.

Using pathwise optimization, it can be readily shown that the optimal solution to the

stated optimization problem is given as X?
T = 1

θ2 AS?
T

2, where θ follows from the budget

constraint. Furthermore, since the conditions of Theorem 4.1 are fulfilled the use of Al-

gorithm PA-SDP is justified, and a numerical solution can be obtained. In Figure 7, we

present the numerical solution (for the level of discretization m = 2) provided by the

algorithm and contrast it with the exact solution. We observe that there is a close corre-

spondence, which demonstrates the potential of the algorithm in solving state-dependent

optimal portfolio selection problems.

Example B. We consider an expected utility maximization problem in which the state-

dependence arises from making the (Arrow-Pratt) risk aversion coefficient a function of a

benchmark. It appears indeed intuitive that investors are more risk averse in bear markets
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numerical solution, A = 81.3694, η(A) = 4.8772

numerical solution, A = 118.6491, η(A) = 3.1329

numerical solution, A = 173.0085, η(A) = 2.2911

exact solution, A = 81.3694, η(A) = 4.8772
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Figure 8: Merton example with power utility u(a, x) = x1−η(a)

1−η(a) and state-dependent risk
aversion η(a) = 2 + 22 exp(−0.025a).

than in bull markets; see e.g., Dong and Sircar (2014), who let the risk aversion coefficient

depend on the value of the portfolio itself. As for the choice of utility function, we use the

CRRA utility, and the optimization problem then reads as

max
c(XT)=W0

E [u(A, XT)] , u(a, x) =
x1−η(a)

1− η(a)
, η(a) = 2 + 22 exp(−0.025a).

Observe that the risk aversion coefficient η(a) is decreasing in a, i.e., when the benchmark

(which can be seen as an indicator of the strength of the economy) is high, the risk aver-

sion coefficient is small. It decreases from 24 (when the benchmark value is close to 0) to

2 (when it goes to infinity). Using pathwise optimization we find that the theoretical solu-

tion to the stated optimization problem is given as X?
T = (θS?

T)
1

η(A) , in which θ follows from

the budget constraint. Figure 8 displays, for the case m = 3, the analytical and numeri-

cal solutions and contrasts them with state-independent solutions (SIP) that are obtained

using a constant level of risk aversion η(a).

We observe that when the benchmark A is high, the optimal investment X?
T yields high

income, and that when A is low, less income is received. We make two additional obser-

vations. First, we note that for small values of A, the optimal payoff is flatter than for

higher values of A. In other words, the higher the risk aversion, the flatter the payoff of

the optimal portfolio. This is intuitive, as with infinite risk aversion the optimal portfolio
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of a CRRA investor consists in allocating the investor’s entire budget to the risk-free asset.

Second, we observe that as compared to the state-independent case, the use of the state-

dependent utility function yields an optimal investment in which terminal wealth is very

low when the benchmark is at the lowest. This feature is at odds with the intuition (belief)

that a more risk averse individual would be willing to purchase more protection and there-

fore to use a larger part of his budget for obtaining protection against the worst states of

the market. In fact, this intuition is the reason why we model η(a) as a decreasing function

in a; yet although this link between risk aversion coefficient and the state of the market

appears natural, the resulting optimal behaviour of the investor is counter-intuitive and

surprising.

Table 2: Standard deviation of the optimal portfolio when the utility function to optimize
is the CRRA utility with a fixed risk aversion coefficient equal to η (SIP) or with a state-
dependent risk aversion coefficient (SDP).

SIP η = 2.2911 SIP η = 3.1329 SIP η = 4.8772 SDP η(·)
20.1421 14.4206 9.0833 166.5896

The counter-intuitive behavior is also confirmed by analyzing the variances of the

payoffs. In Table 2, we show that when the state-dependent utility function is used,

the variance of the optimal payoff is larger than that of the payoff obtained in the state-

independent case.12 One should use a fixed risk aversion coefficient of η = 0.4445 in the

state-independent case, to obtain the same standard deviation (namely 166.5896) as when

using a the state-dependent risk aversion.

Note that the procedure described in this section can handle very general state-dependent

objectives. For instance, it can deal with the optimization of a loss averse utility function

in which the reference level is linked to a stochastic benchmark A:

max
c(XT)=W0

E [u(A, XT)] , u(a, x) =

−C1(a− x)η1 x 6 a

C2(x− a)η2 x > a
.

12In the case of state-independent preferences, there is a constant risk aversion η, and the results in Table 2
are obtained explicitly. Indeed, recall that for the CRRA utility, the optimal wealth obtained with an initial
budget W0 is given by

X?
T = W0e(1−

1
η )MT e−

1
2 (1−

1
η )

2VT (S?
T)

1
η ,

from which it follows that Var(X?
T) = W2

0 e2MT−(1− 2
η )VT (e

1
η2 VT − 1). In the case of state-dependent preferences

– that is, a varying risk aversion η(·) – the results in Table 2 are obtained numerically.
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Comparing with Section 3.2.3, we thus obtain an optimal choice problem for a loss-averse

investor with a state-dependent reference level A. The investor thus considers positive

deviations of his terminal wealth vis-à-vis the benchmark as gains and negative deviations

as losses.

4.2.2 Merton example with a CoVaR constraint

In this final section, we propose to solve an optimal portfolio problem with a state-dependent

risk constraint in order to illustrate our algorithm and to demonstrate how it can deal easily

with additional state-dependent constraints. To do so, we consider the optimal investment

for a company subject to a constraint on its CoVaR (systemic risk measure proposed by

Adrian and Brunnermeier (2011)). This example extends the optimization of expected util-

ity with a VaR constraint (i.e., the probability constraint of Basak and Shapiro (2001)) that

we considered in Section 3.2.2. Now the VaR constraint is replaced by a CoVaR constraint,

i.e., the VaR conditional on some events, such as a financial crisis (that we could model, for

instance, as the GOP being lower than its VaR at 95%, as in Bernard et al. (2015b)).

We thus consider a state-independent objective V(XT) where XT is the wealth at ma-

turity T (typically V(X) = E [u(X)]), with an additional state-dependent risk constraint

(CoVaR, for instance). The problem can be formulated as

max{
XT

∣∣∣∣ P(XT>W(A)|A)>1−α(A)
c(XT)=W0

}V(XT) (17)

where A is the benchmark.

As a specific example of a CoVaR constraint as it has been discussed in the literature,

take sq := F−1
S?

T
(q) the q-quantile of S?

T (0 < q < 1) and let the event Γq = {S?
T < sq}

represent a stressed situation. As benchmark we take A = 1Γq , i.e., A is the indicator

of being in stress, that is, it takes m = 2 values, namely a1 = 0 (no stress) and a2 = 1

(stress). The corresponding probabilities are then p1 = P[A = a1] = 1 − q and p2 =

P[A = a2] = P[S?
T < sq] = q. Let us denote W j = W(aj) and αj = α(aj). For floor values

of the benchmark we consider (W1, W2) = (0, W), and for the probabilities we consider

(α1, α2) = (1, α) so that there is effectively only one constraint (which will be active in a

stress situation), i.e., P(XT > W2 | A = a2) = P(XT > W | Γq) > 1− α1 = 1− α. As for

the objective in (17), we take V(X) = E
[
uη(X)

]
with CRRA utility function uη , as given
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in (5). We obtain the following constrained optimal portfolio problem

max{
XT

∣∣∣∣ P(XT>W|Γq)>1−α

c(XT)=W0

}E
[
uη(XT)

]
.

We apply Algorithm PA-SDP to solve this optimization problem numerically. First, we

consider a risk aversion coefficient equal to η = 0.5, a floor value W = 95 and a probability

level 1− α = 0.9 corresponding to the stress situation defined by Γ0.125 = {S?
T < 0.91007}.

The stress level is taken as its 12.5% quantile (which is typically much higher than the

level recommended by regulators). This level facilitates the visualization of the constraint,

as can be seen from the results shown in Figure 9(a). Next, we change the risk aversion

level to η = 2 and present the results in Figure 9(b).

We observe two parts in the optimal portfolio decisions, depending on whether we

are in a stressed scenario (corresponding to the GOP being above or below s = 0.91007,

which is its 12.5% quantile). The state-independent (Merton) solution violates the CoVaR

constraint. This can be seen from Figure 9, but is also numerically computed in Table 3.

Recall that the CoVaR constraint is only active during stress, in which case the payoff

should be above W = 95, with probability equal to 0.9. However, for a risk aversion

coefficient η = 0.5, resp. η = 2 the Merton solution (SIP) has a probability equal to 0

resp. 0.2562 to remain above 95 in the stressed scenario. Our routine constructs a solution

(SDP) that has a probability 0.9016 resp. 0.9109 to be above 95, which is compliant with the

required level 1− α = 0.9.

Table 3: CoVaR value P (XT > W(A) | A).

SDP η = 0.5 SIP η = 0.5 SDP η = 2 SIP η = 2

no stress (A = 0) 0.6453 0.7125 0.9094 1
stress (A = 1) 0.9016 0 0.9109 0.2562

To remedy the CoVaR violation of the Merton solution, we observe that in the stressed

situation more insurance (consiumption) will be purchased so that the desired protection

is obtained. The more risk averse, the less extra insurance is needed to shift to the stressed

situation. This result, in turn, is then compensated by a larger deviation of the payoff with

respect to the Merton solution; see Figure 9.
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Figure 9: CRRA utility with CoVaR constraint.

5 Conclusions

Since the 1980s, it has been known that the payoff that generates a given distribution of

terminal wealth at lowest possible cost must be increasing in the market asset (see Dybvig

(1988), Bernard et al. (2014a) and Carlier and Dana (2011)). However, this characterization

of optimal payoffs has received little attention in the analysis and construction of solu-
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tions to optimal portfolio problems. In this paper, we exploit this monotonicity property

to construct an efficient numerical method that makes it possible to first obtain optimal

portfolios for a wide range of problems with law-invariant objectives, and then to extend

these problems to include the case of state-dependent preferences and of additional risk

constraints.

We apply our method to various classic (non-)expected utility problems for which ex-

plicit solutions are available, and we show that the numerical solutions are compatible

with them. This observation allows us to conclude that we can use the algorithm to deal

with portfolio optimization problems for which explicit solutions are not available. Nu-

merical examples were implemented in a Black-Scholes setting but more general market

models can also be considered, such as Lévy markets with agents using Esscher pricing to

value payoffs (Von Hammerstein et al. (2014), Rüschendorf and Wolf (2015)).

We foresee a large number of additional applications of the algorithm developed in

this paper, and we sketch a few of these. For instance, Tepla (2001) and Basak et al. (2006)

explicitly derive optimal investment policies under minimum performance constraints in

a Black-Scholes market setup. The algorithm that we propose makes it possible to extend

these results to more general markets and to additional risk constraints. We may also ex-

tend the work of Cvitanić et al. (2003) to non-expected utility settings. There are, moreover,

additional applications to insurance and pension fund allocation (see e.g., Cairns et al.

(2006) or Deelstra et al. (2003)). Finally, in the literature, equilibrium problems have been

studied in a law invariant setting (Lioui and Poncet (2001), Basak and Shapiro (2001)), but

there are almost no studies dealing with equilibrium when agents have state-dependent

preferences. We believe that our results are useful in studying such problems.
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L. Rüschendorf and V. Wolf. Cost-efficiency in multivariate Lévy models. Dependence Modeling, 3
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