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1 Introduction

One of the first structural models for corporate debt pricing dates back to Merton (1974).

Black and Cox (1976) extend this model by allowing default to occur prior to debt maturity.

Then, Longstaff and Schwartz (1995) extend the Black and Cox model by introducing inter-

est rate risk. Leland (1994a), Leland (1994b) and Leland and Toft (1996) characterize the

optimal capital structure of a firm as a trade-off between bankruptcy costs and tax shield.

These models all use geometric Brownian motion to represent the dynamics of the firm asset

value. Introducing jumps into asset dynamics solves the problem of credit spreads becoming

zero when the bond maturity decreases to zero: Hilberink and Rogers (2002) incorporate

negative jumps into the dynamics of the firm asset value, while Chen and Kou (2009) pro-

pose a structural model with two-sided jumps based on the double exponential jump diffusion

process. Because economic environments substantially change over long periods, it is useful

to incorporate a regime switching behavior into structural models. Hainaut, Shen, and Zeng

(2016) use a regime switching Brownion motion to model the dynamics of EBIT in a capital

structure model.

In this paper, we introduce a structural model that combines the jump and regime switch-

ing features, concentrates on the dynamics of assets rather than on those of EBIT, and pos-

tulates an exponentially decreasing profile of debt with respect to maturity. We apply this

model to a bank and price CoCos and deposit insurance. The capital structure of this bank

is assumed to include bonds, contingent convertible bonds, equity, deposits and deposits in-

surance. The bankruptcy is assumed to happen after the conversion of CoCos and both the

conversion time of CoCos and the bankruptcy time are assumed to occurr when the ratio of

debt face value to asset value crosses an exogenous level.

The pricing of CoCos and deposit insurance should be conducted under the risk neu-

tral measure. Le Courtois and Quittard-Pinon (2006) show that the double exponential

jump diffusion process keeps the same structure when using the Esscher transform mea-

sure. Elliott, Chan, and Siu (2005) construct the Esscher transform for the regime switching

geometric Brownian motion and Hainaut, Shen, and Zeng (2016) illustrate this latter result.

Elliott, Siu, Chan, and Lau (2007) construct the Esscher transform for the generalized regime

switching jump diffusion model where the interest rate, drift rate and volatility are regime

switching.

This paper defines in section 2 a general Esscher transform that preserves the structure of

the regime switching double exponential jump diffusion process where the interest rate, drift

rate, volatility, but also jump intensity and jump distribution are regime switching. Section 3

shows how it is possible, using results of Jiang and Pistorius (2008), to express and compute
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the matrix Wiener-Hopf factors for a process that switches between two jump diffusions with

double exponential jump distributions. Building on the general Esscher transform and on

the matrix Wiener-Hopf factorization, we provide in section 4 closed-form formulas for the

value of the bank’s equity, debt, deposits, CoCos and deposit insurance. Finally, we provide

in section 5 a numerical experiment where we study the influence of the regime switching

behavior and of jump risk on the conversion and default probabilities and on the pricing of

CoCos and deposit insurance.

2 The Regime Switching Jump Diffusion Structural Model

We define a continuous time Markov chain process J = {Jt; t ≥ 0} on (Ω,F , P ) with a

finite state space E0 = {e1, e2, ..., en}, where ei = (0, ..., 1, ..., 0) ∈ R
n. These states represent

the states of the economy. The value of the bank assets is assumed to follow an exponential

regime switching jump diffusion process under the real-world probability measure P :

Vt = V0e
Xt ,

where V0 is the initial bank asset value and X is a regime switching jump diffusion process:

Xt =
t∫

0

µsds+
t∫

0

σsdWs +
t∫

0

dNs,

where W is a standard Brownian motion, µt = 〈µ̂, Jt〉, σt = 〈σ̂, Jt〉, Nt = 〈N̂ , Jt〉, and

where 〈., .〉 denotes the inner product, µ̂ = (µ̂1, µ̂2, ..., µ̂n), σ̂ = (σ̂1, σ̂2, ..., σ̂n) and N̂ =

(N̂1, N̂2, ..., N̂n). For each state ei ∈ E, µ̂i ∈ R, σ̂i ≥ 0, N̂i = {N̂i(t); t ≥ 0} is a compound

Poisson process with rate λ̂i and the jumps size is modeled with an asymmetric double

exponential distribution of density function:

fi(y) = piη̂1ie
−η̂1iyI{y≥0} + qiη̂2ie

η̂2iyI{y<0},

where η̂1i > 1, η̂2i > 0, pi ≥ 0, qi ≥ 0, pi + qi = 1. The stochastic processes {Wt; t ≥ 0}

and {N̂i(t); t ≥ 0} are independent. Denote X at state ej as X
j and the filtration generated

by J as G. G is augmented as F = G ∨ H where H is the filtration generated by the

{Xj ; j = 1, 2, ..., n}.

Suppose that the generator matrix of J is

Q = {qij}1≤i,j≤n,

where qii = −
∑

i 6=j

qij . The (i, j)th element qij represents the transition rate at which the

process J jumps from state ei to state ej . Then, the transition probabilities matrix is

P (s, t) = eQ(t−s) ∀s ≤ t
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and the (i, j)th element pi,j(s, t) of this matrix is the probability of switching from state ei

at time s to state ej at time t. Denote the moment generating function of Xt as Mt(u), an

N ×N matrix with (i, j)th element equal to E(euXt ; Jt = ej |J0 = ei). Then, Mt(u) = etZ(u),

where

Z(u) = Q+ diag{ϕj(u)},

and ϕj(u) is the Laplace exponent of Xj under state ej defined as follows:

ϕj(u) = µ̂ju+
1

2
σ̂2ju

2 + λ̂j

(
pj η̂1j

η̂1j − u
+

qj η̂2j

η̂2j + u
− 1

)

.

Now, we define a non-negative F−adapted stochastic process θ as {θt = 〈Jt, θ̂〉; t ≥ 0}

where θ̂ = (θ̂1, θ̂2, ..., θ̂n). Then, the regime switching Esscher measure P̃ is defined as follows:

dP̃

dP
|Ft

=
e

t
∫

0

θsdXs

EP



e

t
∫

0

θsdXs

|Gt





= e

t
∫

0

θsσsdWs−
1

2

t∫

0

θs
2σs

2ds
e

t
∫

0

θsdNs

EP



e

t
∫

0

θsdNs

|Gt





.

As in Elliott and Osakwe (2006), Jit =
∫ t

0 〈Js, ei〉 is the occupation time of state ei up to

time t and ψj(u) is the Laplace exponent of N̂ j
1 :

ψj(u) = lnEP

(

euN̂
j
1

)

= λ̂j

(
pj η̂1j

η̂1j − u
+

qj η̂2j

η̂2j + u
− 1

)

.

Then, we have:

EP



e

t
∫

0

θsdNs

|Gt



 = e

n
∑

i=1
Jitψi(θ̂i)

,

which yields

dP̃

dP
|Ft

= e

t
∫

0

θsσsdWs−
1

2

t∫

0

θs
2σs

2ds+

t∫

0

θsdNs −
n∑

i=1

Jitψi(θ̂i)

.

Denote St =
dP̃

dP
|Ft
. We have:

Lemma 1 S is an (F , P )-martingale and the equivalent measure P̃ is well-defined.

Proof. For any 0 ≤ u ≤ v,

EP

(
Sv

Su
|Fu

)

= EP










e

v
∫

u

θsσsdWs−
1

2

v∫

u

θs
2σs

2ds

|Fu










EP



e

v
∫

u

θsdNs−
n
∑

i=1
(Jiv−Jiu)ψi(θ̂i)

|Fu





= 1.
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The vector (θ̂1, θ̂2, ..., θ̂n) should be chosen to make the discounted asset price process a

martingale. Because the risk-free rate changes with the macroeconomic environment, we let

the risk-free rate r satisfy rt = 〈r̂, Jt〉 where r̂ = (r̂1, r̂2, ..., r̂n) denotes the vector of risk-free

rates in all the regimes. Before presenting the martingale condition, we introduce the Laplace

transform of the occupation times from Elliott and Osakwe (2006).

Proposition 1 For the n−state Markov switching model, the Laplace transform of the

occupation times Z = {J1t, J2t, ..., Jnt} is given by

ϕ(d) = EP

(

e〈d,Z〉
)

= J0
′e

(

Q+diag(d)

)

t
1, (1)

where d = (d1, d2, ..., dn), 1 ∈ R
n is a vector of ones, J0 is initial state of the Markov chain J

and Q is the corresponding generator matrix.

Then, we have:

Proposition 2 The martingale condition is satisfied if and only if

µ̂i − r̂i +
1

2
σ̂2i + θ̂iσ̂

2
i + ψi(1 + θ̂i)− ψi(θ̂i) = 0 ∀i = 1, 2, ..., N. (2)

Proof.

V0 = EP̃



e
−

t
∫

0

rudu
Vt





= EP

(

V0e

t
∫

0

(µs−rs)ds+
t
∫

0

(1+θs)σsdWs−
1

2

t∫

0

θs
2σs

2ds+

t∫

0

(1 + θs)dNs

e
−

n
∑

i=1
Jitψi(θ̂i)

)

= EP

(

V0e

n
∑

i=1
Jit

(

µ̂i−r̂i+
1

2
σ̂2i + θ̂iσ̂

2
i + ψi(1 + θ̂i)− ψi(θ̂i)

))

= V0J
′
0e

(

Q+diag

(

µ̂i−r̂i+
1

2
σ̂2i + θ̂iσ̂

2
i + ψi(1 + θ̂i)− ψi(θ̂i)

)
)

t

1.

Let d be a null vector. Inserting it into Eq. (1), we readily have:

J ′
0e
Qt1 = 1. (3)

The sufficient condition of the martingale condition is then obvious. Denote

f(t) = J ′
0e

(

Q+diag

(

µ̂i−r̂i+
1

2
σ̂2i + θ̂iσ̂

2
i + ψi(1 + θ̂i)− ψi(θ̂i)

)
)

t

1.

Assume that the martingale condition is satisfied:

f(t) = 1 ∀t.
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Then,

f ′(0) = J ′
0

(

Q+ diag
(

µ̂i − r̂i +
1

2
σ̂2i + θ̂iσ̂

2
i + ψi(1 + θ̂i)− ψi(θ̂i)

)
)

1 = 0.

Similarly, Eq. (3) implies

J ′
0Q1 = 0.

Therefore,

J ′
0

(

diag
(

µ̂i − r̂i +
1

2
σ̂2i + θ̂iσ̂

2
i + ψi(1 + θ̂i)− ψi(θ̂i)

)
)

1 = 0.

Since this equation is satisfied for any initial vector of states J0,

µ̂i − r̂i +
1

2
σ̂2i + θ̂iσ̂

2
i + ψi(1 + θ̂i)− ψi(θ̂i) = 0 ∀i = 1, 2, ..., N.

The positive solutions {θ̂i, i = 1, 2, ..., n} can be solved from the n equations.

Proposition 3 The process {Xt; t ≥ 0} keeps a regime switching double exponential

jump diffusion structure under P̃ . Let X be defined under P̃ as follows:

Xt =

t∫

0

µ∗sds+

t∫

0

σ∗sdW
∗
s +

t∫

0

dN∗
s .

Then, W ∗ defined by W ∗
t =Wt−

t∫

0

θsσsds is a standard Brownian motion, µ̂∗i = r̂i−
1

2
σ̂∗

2

i −

λ̂∗i

( p∗i η̂
∗
1i

η̂∗1i − 1
+

(1− p∗i )η̂
∗
2i

η̂∗2i + 1
− 1
)

, σ̂∗i = σ̂i, λ̂
∗
i = λ̂iωi, p

∗
i =

1

ωi

(
piη̂1i

η̂1i − θ̂i

)

, η̂∗1i = η̂1i − θ̂i and

η̂∗2i = η̂2i + θ̂i, where ωi = EP (e
θ̂iYi) =

piη̂1i

η̂1i − θ̂i
+

(1− pi)η̂2i

η̂2i + θ̂i
.

Proof. Because

EP̃ (e
uXt) = EP

(

V0e

u
t
∫

0

µsds+
t
∫

0

(u+θs)σsdWs−
1

2

t∫

0

θs
2σs

2ds+

t∫

0

(u+ θs)dNs

e
−

n
∑

i=1
Jitψi(θ̂i)

)

= EP

(

V0e

n
∑

i=1
Jit

(

uµ̂i+
1

2
u2σ̂2i + uθ̂iσ̂

2
i + ψi(u+ θ̂i)− ψi(θ̂i)

))

= J0
′e

(

Q+diag

(

uµ̂i+
1

2
u2σ̂2i + uθ̂iσ̂

2
i + ψi(u+ θ̂i)− ψi(θ̂i)

)
)

t

1,

the Laplace exponent ψ∗
i (u) of X

i under P̃ is

ψ∗
i (u) = uµ̂i +

1

2
u2σ̂2i + uθ̂iσ̂

2
i + ψi(u+ θ̂i)− ψi(θ̂i).
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The term
1

2
u2σ̂2i + uθ̂iσ̂

2
i corresponds to σ̂iW1 ∼ N(θ̂iσ̂

2
i , σ̂

2
i ). Then, we have that W ∗

defined by W ∗
t =Wt −

t∫

0

θsσsds is a standard Brownian motion under P̃ with respect to F .

Denote

ωi =
piη̂1i

η̂1i − θ̂i
+

(1− pi)η̂2i

η̂2i + θ̂i
.

After simple computations, we obtain:

ψ∗
i (u) =

(

µ̂i + θ̂iσ̂
2
i

)

u+
1

2
σ̂2i u

2+λ̂iωi

(

1

ωi

(
piη̂1i

η̂1i − θ̂i

)
η̂1i − θ̂i

η̂1i − θ̂i − u
+

1

ωi

(
(1− pi)η̂2i

η̂2i + θ̂i

)
η̂2i + θ̂i

η̂2i + θ̂i + u

)

.

This expression shows that Xi remains a double exponential jump diffusion process under P̃

where 





µ̂∗i = µ̂i + θ̂iσ̂
2
i

σ̂∗i = σ̂i

λ̂∗i = λ̂iωi

p∗i =
1

ωi
(
piη̂1i

η̂1i − θ̂i
)

η̂∗1i = η̂1i − θ̂i

η̂∗2i = η̂2i + θ̂i.

From EP̃ (e
Xt) = ert, we see that µ̂∗i satisfies

µ̂∗i = r̂i −
1

2
σ̂∗

2

i − λ̂∗i

( p∗i η̂
∗
1i

η̂∗1i − 1
+

(1− p∗i )η̂
∗
2i

η̂∗2i + 1
− 1
)

.

Therefore, the structure of the regime switching double exponential jump diffusion process is

unchanged under the new measure P̃ .

3 The First Passage Time of The Regime Switching Jump

Diffusion Process

The first passage time problem across a constant level is related to the up-crossing and

down-crossing ladder processes of the fluid embedding of X. Denote as A = {At; t ≥ 0} the

fluid embedding of X. Contrary to X, A is a continuous process. Its paths are constructed

from the paths of X by replacing positive jumps by linear segments with slope +1 and

negative jumps by linear segments with slope -1. We define an irreducible continuous time

Markov chain process Y = {Yt; t ≥ 0} with a finite state space E = E+ ∪ E0 ∪ E−. The

spaces E0, E+ and E− correspond to the states where X moves as a pure diffusion, makes a

positive jump and makes a negative jump, respectively. Conditional on this enlarged Markov

chain, A is a Brownian motion with a drift that includes linear segments of slope +1 and -1.
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Specifically, A is represented as follows:

At = A0 +

∫ t

0
u(Ys)ds+

∫ t

0
v(Ys)dWs

where

u(j) =







1 if j ∈ E+

µ̂j if j ∈ E0

−1 if j ∈ E−

and v(j) =

{
σ̂j if j ∈ E0

0 otherwise.

The up-crossing and down-crossing ladder processes Ỹ +, Ỹ − of (A, Y ) are defined as follows:

Ỹ +
z = Y (τ+z ) and Ỹ −

z = Y (τ−z )

where

τ+z = inf{s ≥ 0 : As > z} and τ−z = inf{s ≥ 0 : As < z}.

They are Markov processes with state spaces E0 ∪E+ and E0 ∪E−, respectively. Denote as

Q+ and Q− the generator matrices of Ỹ + and Ỹ −. The corresponding initial distributions

are n× 2n matrices ζ+ and ζ− defined as follows:

ζ+(i, j) = P0,i(Ỹ
+
0 = j) ∀i ∈ E−, j ∈ E+ ∪ E0 (4)

and

ζ−(i, j) = P0,i(Ỹ
−
0 = j) ∀i ∈ E+, j ∈ E− ∪ E0. (5)

where P0,i(·) = P (·|X0 = 0, J0 = ei). The generator matrices Q+ and Q− of Ỹ + and Ỹ − are

related to the Wiener-Hopf factorization of (A, Y ). In our case, the Wiener-Hopf factorization

of (A, Y ) is as follows:

Definition 1 The pair of irreducible 2n ∗ 2n matrices (Q(â,−), Q(â,+)) with non-negative

off-diagonal elements and non-positive row sums is called the Wiener-Hopf factorization of

(A, Y ) if

Ξ(−Q(â,+),W+) = Ξ(Q(â,−),W−) = O,

where

Ξ(S,W ) =
1

2
Σ2WS2 + VWS +QâW,

with the 3n× 3n diagonal matrices:

Σ =










On 




σ̂1
. . .

σ̂n






On










, V =










In 




µ̂1
. . .

µ̂n






−In










,
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and the 3n× 3n matrix:

Qâ =





T 1 t1 On
B+ Q−Dâ B−

On t2 T 2



 .

In this representation, the n × n matrix Q is the generator of J , â = (â1, â2, ..., ân) > 0,

Dâ = diag(λi + âi), On is a zero matrix of size n × n and In is an identity matrix of size

n× n. We also have:

B+ =






λ̂1p1
. . .

λ̂npn




 , B− =






λ̂1(1− p1)
. . .

λ̂n(1− pn)






and

T i =






−η̂i1
. . .

−η̂in




 , ti =






η̂i1
. . .

η̂in




 .

Finally, we need the 3n× 2n matrices:

W+ =

(
I2n
ζ+

)

W− =

(
ζ−

I2n

)

where I2n is an identity matrix of size 2n× 2n and ζ+ and ζ− are defined in Eqs (4) and (5).

Jiang and Pistorius (2008) have established the direct relationship between the first pas-

sage time of X and the matrix Wiener-Hopf factorization of (A, Y ) and the following propo-

sition is a consequence of their Theorem 3.

Proposition 4 Denote as τ the first passage time of X below a constant level b as

τ = inf{t > 0 : Xt ≤ b}

and the contingent payoff h(τ) = 〈Jτ , ĥ〉 where ĥ = (ĥ1, ..., ĥn). Denote at = 〈â, Jt〉, then

E



e
−

τ
∫

0

asds+wXτ

h(τ)



 = Y ′
0W

−eQ
(â,−)(x−b)+wbh̃

where w is a constant, x is the initial point of X, Y0 is the initial state of Y ,

h̃ =

((

ĥ1, ..., ĥn

)

,

(
η21

w + η21
ĥ1, ...,

η2n

w + η2n
ĥn

))′

,

and Q(â,−) is the Wiener-Hopf factor defined above.

We now present a numerical method allowing us to compute W− and Q(â,−). Let ϑ be an

eigenvector of Q(â,−) and let β be its associated eigenvalue. Right-multiply by ϑ the following

equation:

Ξ(Q(â,−),W−) =
1

2
Σ2W−Q(â,−)2 + VW−Q(â,−) +QâW

− = 0,
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and obtain:
1

2
Σ2W−β2ϑ+ VW−βϑ+QâW

−ϑ = 0,

or equivalently: (
1

2
Σ2β2 + V β +Qâ

)

W−ϑ = 0.

Denote K(β) =
1

2
Σ2β2+V β+Qâ. The matrix K(β) is singular and f(β) = det(K(β)) =

0. From Barlow, Rogers, and Williams (1980) and Rogers and Shi (1994), we have the fol-

lowing lemma:

Lemma 2 Suppose that â > 0. The equation f(β) = 0 has 4n different roots {βi, i =

1, 2, ..., 4n} and the roots are ranked as follows:

Re(β1) ≤ Re(β2) ≤ ... ≤ Re(β2n) < 0 < Re(β2n+1) ≤ Re(β2n+2) ≤ ... ≤ Re(β4n).

Then, Q(â,−) has 2n distinct eigenvalues {βi, i = 1, 2, ..., 2n}.

Denote as ϑi the eigenvector of Q(â,−) corresponding to the eigenvalue βi and

γi =W−ϑi = (γi,1, ..., γi,3n)
′.

We can compute γi by solving a system of linear equations K(βi)γi = 0. Then, the

structure of W− gives

ϑi = (γi,n+1, ..., γi,3n)
′ i = 1, 2, .., 2n

and

ζ−ϑi = (γi,1, ..., γi,n)
′ i = 1, 2, ..., 2n.

Denote as ζ−k the kth row of ζ−. The latter linear equations give ζ− by rearranging the

problem into a system of linear equations as follows:

Z ′ζ−k = (γ1,k, ..., γ2n,k)
′ k = 1, 2, ..., n,

where Z = [ϑ1, ϑ2, ..., ϑ2n].

Using standard algebra, we have:

Q(â,−) = Z diag{β1, β2, ..., β2n} Z
−1.

The matrix exponential is then computed as

eQ
(â,−)x = Z diag{eβ1x, eβ2x, ..., eβ2nx} Z−1.
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4 The Payoff Structure of Different Instruments in Capital

Structure

The capital structure of the bank is assumed to include equity, CoCo bonds, straight

bonds, deposits and deposit insurance. The straight bonds have a face value of D1, pay a

continuous coupon rate of c1, and have a maturity profile of ψ1(t) = me−mt. The face value

and the continuous coupon rate of deposits are D2 and c2, respectively. The face value of

CoCo bonds is D3 and continuous coupon rate paid before conversion is c3. The maturity

profiles of deposit and CoCo bonds are ψ2(t) = ke−kt and ψ3(t) = le−lt, respectively. The

bank pays the deposit insurance premium DI to guarantee that the deposit will be fully paid

if it is liquidated. The conversion of CoCos is triggered when the asset value falls below the

proportion α of the full debt value. The conversion time τ1 is defined as follows:

τ1 = inf{t ≥ 0 : Vt < α(D1 +D2 +D3)}.

We assume that default can only occur after conversion. The default time τ2 is defined as

follows

τ2 = inf{t ≥ 0 : Vt < α(D1 +D2)}.

The bank is assumed to generate between any two times t and t + dt a stream δVtdt of

cash flows proportional to the bank asset value, with δ ∈ (0, 1). These cash flows are used to

service the bank debt and to pay dividends to shareholders. The tax rate is γ and the dividend

(1−γ)(δVt−c1D1−c2D2−c3D3) is paid to shareholders before the conversion of CoCo bonds.

However, after conversion, the dividend (1 − γ)(δVt − c1D1 − c2D2) is paid to the original

shareholders and the new shareholders. The proportion of original shareholders is assumed

to be ρ after conversion. The dividend allocated to the original shareholders and the new

shareholders is ρ(1−γ)(δVt−c1D1−c2D2) and (1−ρ)(1−γ)(δVt−c1D1−c2D2), respectively.

After conversion, the pricing of these financial instruments is conducted under the risk-neutral

measure P̃ . The price of these financial instruments is obtained using propositions 1 and 4

and the decomposition:

E





τ∫

0

e
−

s
∫

0

rudu
ds



 = E





∞∫

0

e
−

s
∫

0

rudu
ds



− E



e
−

τ
∫

0

rudu
E
(

∞∫

τ

e
−

s
∫

τ

rudu
ds|Fτ

)



 .

We also compute integrals of matrix exponentials as follows:

∫ T

0
eAtdt = A−1(eAT − I),

where A is a nonsingular matrix and I is the identity matrix.
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For the sake of subsequent computations, we define the following 2n×n matrix H̃, 2n×3n

matrix K̃ and 2n vector Ĩ:

H̃(w) =











In








η̂21

w + η̂21
. . .

η̂2n

w + η̂2n



















and

K̃(w) =











On In (O)

(O)









η̂21

w + η̂21
. . .

η̂2n

w + η̂2n



















and

Ĩ =











In








η̂21

1 + η̂21
...
η̂2n

1 + η̂2n



















.

4.1 Bank Equity and Deposit Insurance

Before conversion, the market value of the shareholders’ equity is denoted by S and

satisfies:

S = E





τ1∫

0

e
−

s
∫

0

rudu
(

1− γ

)(

δVs − c1D1 − c2D2 − c3D3

)

ds+ ρe
−

τ1
∫

0

rudu
Sτ1



 ,

where

Sτ1 = E





τ2∫

τ1

e
−

s
∫

τ1

rudu
(

1− γ

)(

δVs − c1D1 − c2D2

)

ds+ e
−

τ2
∫

τ1

rudu

π1Vτ2 |Fτ1



 ,

and where π1 is the constant recovery rate of asset value for the distribution to shareholders

after liquidation.
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Then,

S = E




∞∫

0

e
−

s
∫

0

rudu
(

1− γ

)(

δVs − c1D1 − c2D2 − c3D3

)

ds





−E



e
−

τ1
∫

0

rudu
E

(
∞∫

τ1

e
−

s
∫

τ1

rudu(

1− γ
)(

δVs − c1D1 − c2D2 − c3D3

)

ds|Fτ1

)




+E



ρe
−

τ1
∫

0

rudu
E

(
∞∫

τ1

e
−

s
∫

τ1

rudu(

1− γ
)(

δVs − c1D1 − c2D2

)

ds+ e
−

τ2
∫

τ1

rudu

π1Vτ2 |Fτ1

)




−E



ρe
−

τ2
∫

0

rudu
E

(
∞∫

τ2

e
−

s
∫

τ2

rudu(

1− γ
)(

δVs − c1D1 − c2D2

)

ds|Fτ2

)




= S1 − S2 + S3 − S4,

where S1, S2, S3, S4 represent the first, second, third and fourth term, respectively. We first

compute:

S1 =
∞∫

0

δ
(

1− γ
)

V0J0
′e

(

Q+diag
(
ϕ(1)−r̂

))

s
1ds

−
∞∫

0

(

1− γ
)(

c1D1 + c2D2 + c3D3

)

J0
′e

(

Q−diag
(
r̂
))

s
1ds,

so that

S1 =
(

1− γ
)(

c1D1 + c2D2 + c3D3

)

J0
′
(

Q− diag
(
r̂
))−1

1

−
(

1− γ
)

δV0J0
′
(

Q+ diag
(
ϕ(1)− r̂

))−1
1.

Then, we have:

S2 = E



e
−

τ1
∫

0

rudu ∞∫

τ1

(

1− γ
)

δVτ1J
′
τ1
e

(

Q+diag
(
ϕ(1)−r̂

))(

s−τ1

)

1ds





−E



e
−

τ1
∫

0

rudu ∞∫

τ1

(

1− γ
)(

c1D1 + c2D2 + c3D3

)

J ′
τ1
e

(

Q−diag
(
r̂
))(

s−τ1

)

1ds





and

S2 = E



e
−

τ1
∫

0

rudu(

1− γ
)(

c1D1 + c2D2 + c3D3

)

J ′
τ1

(

Q− diag(r̂)
)−1

1





−E



e
−

τ1
∫

0

rudu(

1− γ
)

δVτ1J
′
τ1

(

Q+ diag
(
ϕ(1)− r̂

))−1
1





and also

S2 =
(

1− γ
)(

c1D1 + c2D2 + c3D3

)

Y ′
0W

−e

Q(r̂,−)



x−ln
α(D1 +D2 +D3)

V0





H̃(0)
(

Q− diag
(
r̂
))−1

1

−
(

1− γ
)

δV0Y
′
0W

−e

Q(r̂,−)



x−ln
α(D1 +D2 +D3)

V0





H̃(1)
(

Q+ diag
(
ϕ(1)− r̂

))−1
1.
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Further, we obtain:

S3 = E



ρe
−

τ1
∫

0

rudu ∞∫

τ1

(

1− γ
)

δVτ1J
′
τ1
e

(
Q+diag(ϕ(1)−r̂)

)(
s−τ1

)

1ds





−E



ρe
−

τ1
∫

0

rudu ∞∫

τ1

(

1− γ
)(

c1D1 + c2D2

)

J ′
τ1
e

(

Q−diag(r̂)

)(

s−τ1

)

1ds



+ E



ρe
−

τ2
∫

0

rudu
π1Vτ2





and

S3 = E



ρe
−

τ1
∫

0

rudu(

1− γ
)(

c1D1 + c2D2

)

J ′
τ1

(

Q− diag(r̂)
)−1

1





−E



ρe
−

τ1
∫

0

rudu(

1− γ
)

δVτ1J
′
τ1

(

Q+ diag
(
ϕ(1)− r̂

))−1
1





+ρπ1V0Y
′
0W

−e

Q(r̂,−)



x−ln
α(D1 +D2)

V0





Ĩ

and then

S3 = ρ
(

1− γ
)(

c1D1 + c2D2

)

Y ′
0W

−e

Q(r̂,−)



x−ln
α(D1 +D2 +D3)

V0





H̃(0)
(

Q− diag(r̂)
)−1

1

−ρ
(

1− γ
)

δV0Y
′
0W

−e

Q(r̂,−)



x−ln
α(D1 +D2 +D3)

V0





H̃(1)
(

Q+ diag
(
ϕ(1)− r̂

))−1
1

+ρπ1V0Y
′
0W

−e

Q(r̂,−)



x−ln
α(D1 +D2)

V0





Ĩ .

Finally,

S4 = E



ρe
−

τ2
∫

0

rudu
E

(
∞∫

τ2

e
−

s
∫

τ2

rudu(

1− γ
)(

δVs − c1D1 − c2D2

)

ds|Fτ2

)




gives

S4 = E



ρe
−

τ2
∫

0

rudu(

1− γ
)(

c1D1 + c2D2

)

J ′
τ2

(

Q− diag(r̂)
)−1

1





−E



ρe
−

τ2
∫

0

rudu(

1− γ
)

δVτ2J
′
τ2

(

Q+ diag
(
ϕ(1)− r̂

))−1
1



 ,

so that

S4 = ρ
(

1− γ
)(

c1D1 + c2D2

)

Y ′
0W

−e

Q(r̂,−)



x−ln
α(D1 +D2)

V0





H̃(0)
(
Q− diag(r̂)

)−1
1

−ρ
(

1− γ
)

δV0Y0
′W−e

Q(r̂,−)



x−ln
α(D1 +D2)

V0





H̃(1)
(

Q+ diag(ϕ(1)− r̂)
)−1

1.
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4.2 Straight Bonds and Deposits

The market values of straight bonds and deposits with face value 1 maturing at t are

expressed as follows

B(t) = E





min(t,τ2)∫

0

e
−

s
∫

0

rudu
c1ds+ 1{t≥τ2}e

−
τ2
∫

0

rudu π2Vτ2
D1 +D2

+ 1{t<τ2}e
−

t
∫

0

rudu





and

D(t) = E





min(t,τ2)∫

0

e
−

s
∫

0

rudu
c2ds+ 1{t≥τ2}e

−
τ2
∫

0

rudu π2Vτ2
D1 +D2

+ 1{t<τ2}e
−

t
∫

0

rudu



 ,

where π2 is the constant recovery rate of asset value for the distribution to debt holders after

liquidation. Then, the total value of straight bonds is

B = D1

∞∫

0

me−mtB(t)dt

= D1

∞∫

0

me−mtE





min(t,τ2)∫

0

e
−

s
∫

0

rudu
c1ds+ 1{t≥τ2}e

−
τ2
∫

0

rudu π2Vτ2
D1 +D2

+ 1{t<τ2}e
−

t
∫

0

rudu



 dt

= D1E




∞∫

0

me−mt
min(t,τ2)∫

0

e
−

s
∫

0

rudu
c1dsdt



+D1E




∞∫

0

me−mt1{t≥τ2}e
−

τ2
∫

0

rudu π2Vτ2
D1 +D2

dt





+D1E




∞∫

0

me−mt1{t<τ2}e
−

t
∫

0

rudu
dt





= D1E




τ2∫

0

mc1e
−

s
∫

0

rudu ∞∫

s

e−mtdtds



+
π2D1

D1 +D2
E
(

e−
∫ τ2
0 (ru+m)duVτ2

)

+mD1E

(
τ2∫

0

e−
∫ t

0 (ru+m)dudt

)

= (c1 +m)D1E





τ2∫

0

e
−

s
∫

0

(ru+m)du
ds





︸ ︷︷ ︸

B1

+
π2D1

D1 +D2
E
(

e−
∫ τ2
0 (ru+m)duVτ2

)

︸ ︷︷ ︸

B2

.

We exchange the order of integration for t and s and obtain

D1E






∞∫

0

me−mt

min(t,τ2)∫

0

e
−

s
∫

0

rudu
c1dsdt




 = D1E





τ2∫

0

mc1e
−

s
∫

0

rudu
∞∫

s

e−mtdtds



 .
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We can now compute:

B1 = (c1 +m)D1E




τ2∫

0

e
−

s
∫

0

(ru+m)du
ds





= (c1 +m)D1

(

E

(
∞∫

0

e
−

s
∫

0

(ru+m)du
ds

)

− E

(

e
−

τ2
∫

0

(ru+m)du
E
( ∞∫

τ2

e
−

s
∫

τ2

(ru+m)du

ds|Fτ2

))
)

= (c1 +m)D1

((

− J ′
0

(

Q− diag(r̂ +m)
)−1

1

)

+ E

(

e
−

τ2
∫

0

(ru+m)du
J ′
τ2

(

Q− diag(r̂ +m)
)−1

1

))

= (c1 +m)D1

(

Y ′
0W

−e

Q(r̂+m,−)



x−ln
α(D1 +D2)

V0





H̃(0)
(

Q− diag(r̂ +m)
)−1

1

−J ′
0

(

Q− diag(r̂ +m)
)−1

1

)

,

and

B2 =
π2D1

D1 +D2
E

(

e
−

∫ τ2
0

(

ru+m

)

du
Vτ2

)

=
π2D1

D1 +D2
V0Y

′
0W

−e

Q

(
r̂+m,−

)

x−ln
α(D1 +D2)

V0





Ĩ .

The total value of deposits is computed in the same way:

D = D2

∞∫

0

ke−ktD(t)dt

= (c2 + k)D2

(

Y ′
0W

−e

Q(r̂+k,−)



x−ln
α (D1 +D2)

V0





H̃(0)
(

Q− diag(r̂ + k)
)−1

1

−J ′
0

(

Q− diag(r̂ + k)
)−1

1

)

+
π2D2

D1 +D2
V0Y

′
0W

−e

Q

(
r̂+k,−

)

x−ln
α(D1 +D2)

V0





Ĩ .

4.3 Deposit Insurance

The market value of deposit insurance is

DI = E











e

−

τ2
∫

0

rudu











E











∞
∫

0

ke
−kt











τ2+t
∫

τ2

e

−

s
∫

τ2

rudu

c2D2ds + e

−

τ2+t
∫

τ2

rudu

D2











dt − π2

D2

D1 + D2

Vτ2
|Fτ2





















+










.

We first compute:

E




∞∫

0

ke−kt
τ2+t∫

τ2

e
−

s
∫

τ2

rudu

c2D2dsdt|Fτ2



 = E



kc2D2

∞∫

τ2

∞∫

s−τ2

e−kte
−

s
∫

τ2

rudu

dtds|Fτ2





= c2D2E




∞∫

τ2

e
−

s
∫

τ2

(

k+ru

)

du

ds|Fτ2





= −c2D2J
′
τ2

(

Q− diag(k + r̂)
)−1

1
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and

E






∞∫

0

ke−kte
−

τ2+t
∫

τ2

rudu

D2dt|Fτ2




 =

∞∫

0

kD2Jτ2e

(

Q−diag
(
k+r̂
))

t
1dt

= −kD2J
′
τ2

(

Q− diag(k + r̂)
)−1

1.

Then,

DI = E



e
−

τ2
∫

0

rudu
(

− (c2 + k)D2J
′
τ2

(

Q− diag(k + r̂)
)−1

1− π2
D2

D1 +D2
Vτ2

)+




and

DI =

(

− (c2 + k)D2Y
′
0W

−e

Q(r,−)



x−ln
α(D1 +D2)

V0





H̃(0)
(

Q− diag(k + r̂)
)−1

1

−π2
D2

D1 +D2
V0Y

′
0W

−e

Q(r,−)



x−ln
α(D1 +D2)

V0





Ĩ

)+

.

4.4 CoCos

The market value of CoCo bonds with face value 1 maturing at t is

C(t) = E





min(t,τ1)∫

0

e
−

s
∫

0

rudu
c3ds+

1− ρ

D3
1{τ1≤t}e

−
τ1
∫

0

rudu
Sτ1 + 1{τ1>t}e

−
t
∫

0

rudu



 .

Then, the value of all CoCo bonds is

C = D3

∞∫

0

le−ltC(t)dt

= D3

∞∫

0

le−ltE





min(t,τ1)∫

0

e
−

s
∫

0

rudu
c3ds+

1− ρ

D3
1{τ1≤t}e

−
τ1
∫

0

rudu
Sτ1 + 1{τ1>t}e

−
t
∫

0

rudu



dt

= D3E




∞∫

0

le−lt
min(t,τ1)∫

0

e
−

s
∫

0

rudu
c3dsdt



+D3E




∞∫

0

le−lt
1− ρ

D3
1{τ1≤t}e

−
τ1
∫

0

rudu
Sτ1dt





+D3E




∞∫

0

le−lt1{τ1>t}e
−

t
∫

0

rudu
dt





= c3D3E




τ1∫

0

e
−

s
∫

0

(l+ru)du
ds



+

(

1− ρ

)

E



e
−

τ1
∫

0

(l+ru)du
Sτ1



+ lD3E




τ1∫

0

e
−

t
∫

0

(ru+l)du
dt





= D3(c3 + l)E





τ1∫

0

e
−

s
∫

0

(l+ru)du
ds





︸ ︷︷ ︸

C1

+

(

1− ρ

)

E



e
−

τ1
∫

0

(l+ru)du
Sτ1





︸ ︷︷ ︸

C2

.
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As with the proof for B1,

C1 = D3(c3 + l)

(

Y ′
0W

−e

Q(r̂+l,−)



x−ln
α(D1 +D2 +D3)

V0





H̃(0)
(

Q− diag(r̂ + l)
)−1

1

−J ′
0

(

Q− diag(r̂ + l)
)−1

1

)

.

Then, similar to the proof for S3, S4,

C2 = (1− ρ)
(

1− γ
)(

c1D1 + c2D2

)

Y ′
0W

−e

Q(r̂+l,−)



x−ln
α(D1 +D2 +D3)

V0





H̃(0)
(

Q− diag(r̂)
)−1

1

−(1− ρ)δα
(

D1 +D2 +D3

)

Y ′
0W

−e

Q(r̂+l,−)



x−ln
α(D1 +D2 +D3)

V0





H̃(1)
(

Q+ diag
(
ϕ(1)− r̂

))−1
1

+(1− ρ)π1V0Y
′
0W

−e

Q(r̂+l,−)



x−ln
α(D1 +D2 +D3)

V0





K̃(1)W−e

Q(r,−)



x−ln
α(D1 +D2)

V0





Ĩ

+(1− ρ)
(

1− γ
)(

c1D1 + c2D2

)

Y ′
0W

−e

Q(r̂+l,−)



x−ln
α(D1 +D2 +D3)

V0





K̃(0)

W−e

Q(r,−)



x−ln
α(D1 +D2)

V0





H̃(0)
(
Q− diag(r̂)

)−1
1

−(1− ρ)δV0Y0
′W−e

Q(r̂+l,−)



x−ln
α(D1 +D2 +D3)

V0





K̃(1)

W−e

Q(r,−)



x−ln
α(D1 +D2)

V0





H̃(1)
(

Q+ diag(ϕ(1)− r̂)
)−1

1.

4.5 Bank Value

The total bank value is

v = V0 + γE

(
τ1∫

0

e
−

s
∫

0

rudu
c3D3ds+

τ2∫

0

e
−

s
∫

0

rudu
(

c1D1 + c2D2

)

ds

)

−DI

−E

(

e
−

τ2
∫

0

rudu
(

1− π1 − π2

)

Vτ2

) .

so that

v = V0 + γc3D3

(

Y ′
0W

−e

Q(r,−)



x−ln
α(D1 +D2 +D3)

V0





H̃(0)
(

Q− diag(r̂)
)−1

1− J ′
0

(

Q− diag(r̂)
)−1

1

)

+γ(c1D1 + c2D2)

(

Y ′
0W

−e

Q(r,−)



x−ln
α(D1 +D2)

V0





H̃(0)
(

Q− diag(r̂)
)−1

1− J ′
0

(

Q− diag(r̂)
)−1

1

)

−DI − (1− π1 − π2)V0Y
′
0W

−e

Q(r,−)



x−ln
α(D1 +D2)

V0





Ĩ .
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4.6 Conversion and Default Probabilities

From proposition 4, we obtain:

E
(
e−κ1τ1

)
= Y ′

0W
−e

Q(κ̂1,−)



x−ln
α(D1 +D2 +D3)

V0





1

and

E
(
e−κ2τ2

)
= Y ′

0W
−e

Q(κ̂2,−)



x−ln
α(D1 +D2)

V0





1

where 1 ∈ R
2n is a vector of ones, κ̂1 = (κ1, ..., κ1)

′ and κ̂2 = (κ2, ..., κ2)
′. Denote f1(t) =

P (τ1 ≤ t) and f2(t) = P (τ2 ≤ t). Their Laplace transforms satisfy:

f̂1(κ1) =

∫ ∞

0
e−κ1tP (τ1 ≤ t)dt =

1

κ1

∫ ∞

0
e−κ1tdP (τ1 ≤ t) =

1

κ1
E
(
e−κ1τ1

)

and

f̂2(κ2) =

∫ ∞

0
e−κ2tP (τ2 ≤ t)dt =

1

κ2

∫ ∞

0
e−κ2tdP (τ2 ≤ t) =

1

κ2
E
(
e−κ2τ2

)
.

We can compute the conversion and default probabilities P (τ1 ≤ t) and P (τ2 ≤ t) by numer-

ically inverting the above Laplace transforms.

5 Numerical Illustration

We compare the conversion and default probabilities for the regime switching Brownian

motion model (RSBM) and the regime switching jump diffusion model (RSJD). We choose

the parameters to make the first and second order moments equal in the two models. We

use Proposition 4 to obtain the Laplace transform of τ and we use the Gaver-Stephest algo-

rithm to perform the numerical Laplace inversion for computing the conversion and default

probabilities.

Table 1: The parameters for the two states RSBM
Parameter Low-volatility High-volatility

µ 0.07 0.05
σ 0.2230 0.4500

For this illustration, we assume the following transition matrix:

Q =

(
−0.1 0.1
0.1 −0.1

)

and we set the various parameters as in Tables 1, 2, and 3.

The left panel of Figure 1 shows the term structure of the conversion probability when

the bank asset returns switch between diffusions or between jump-diffusions. It appears that

the conversion probability is higher in the presence of jumps.
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Table 2: The parameters for the two states RSJD
Parameter Low-volatility High-volatility

µ 0.07 0.05
σ 0.2 0.4
λ 15 25
η1 1/0.02 1/0.03
η2 1/0.03 1/0.05
p 0.5 0.5

Table 3: Other parameters
r 0.025
D1 25
D2 25
D3 25
V0 100
α 0.1
J0 (0,1)’
Y0 (0,1,0,0,0,0)’

The right panel of Figure 1 shows the term structure of the default probability when the

bank asset returns switch between diffusions or between jump-diffusions. It appears that the

default probability is higher in the presence of jumps.
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Figure 1: (a) Conversion Probability (b) Default Probability
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