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Abstract

This paper suggests a unified methodology for the management of Guaran-
teed Minimum Accumulation Benefit contracts. Using a non-Gaussian setting
in line with many of the stylized features observed in the market, we address
the pricing, hedging, and risk control of these contracts from an operational
risk management perspective. Since the well-known and widely used delta-
hedging ratio is not optimal, one of the most important problems raised is the
issue of hedging. The literature suggests many theoretical solutions whose
efficiency from a computational point of view is controversial and rarely stud-
ied. From the empirical part of the paper, the authors give a simple rule for
designing a hedging policy appropriate to the actual financial environment
that proves useful both for insurers and regulators.
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Introduction

Variable Annuities, hereafter VA, are life insurance contracts linked to finan-
cial markets in such a way that policyholders or their beneficiaries can take
advantage of rising markets whilst being protected if prices plummet. Exam-
ples of such contracts are Guaranteed Minimum Maturity Benefit (GMMB)
and Guaranteed Minimum Death Benefit (GMDB) contracts. In this article,
we consider the Guaranteed Minimum Accumulation Benefit (GMAB) con-
tract with a ratchet feature, which is more general and encompasses the two
previous contracts. Since it is well recognized that financial prices present
jumps, that their return distributions have fat tails, and that option prices
exhibit smile effects, traditional geometric Brownian motion is not appro-
priate for modeling financial asset prices. We therefore model these prices
using exponential of Lévy processes. More precisely, we consider Merton- and
Kou-type jump diffusions, and Lévy processes with infinite activity such as
variance gamma and CGMY processes. The literature on the pricing of VA
and Equity Indexed Annuities (EIA) is abundant. We note, for example, the
general framework developed by Bacinello (2003) and the references therein
or the recent paper by Gerber et al. (2013). The hedging issue is considered
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less often and is rarely studied from an operational point of view. The hedg-
ing problem is difficult because of jumps. As a consequence, the market is
incomplete and no perfect duplication can be obtained. In this paper, we
use a quadratic hedging approach following the analysis in Cont and Tankov
(2004) and that in Boyarchenko and Levendorskĭi (2000). The GMAB studied
here is presented in Hardy (2003). This contract has a sophisticated protec-
tion design, which makes it difficult to price and hedge, in particular because
the guarantee can be changed at certain reset dates. The new guarantee
depends on the evolution of policyholder account value and can induce up-
wards jumps in this value. This mechanism generates a ratchet effect and
offers a dynamic fund protection. An example of a ratchet contract is given
in Tanskanen and Lukkarinen (2003). Here, we employ a Fourier analysis
in line with Boyarchenko and Levendorskĭi (2000). One of the first papers
to use Fourier analysis for option pricing was Carr and Madan (1998). It
is now common practice and many articles and books have been published
on this topic see Cherubini et al. (2010). We chose the framework proposed
by Boyarchenko and Levendorskĭi (2000) because it provides a very efficient
method for both pricing and hedging, involving the computation of an integral
easily calculated by a Fast Fourier Transform algorithm.

This paper is organized as follows. In section 1, we describe the GMAB
contract, the assumptions made, and the method of valuation chosen to obtain
fair costs. In section 2, we specify the technique used for pricing and hedging
in a Lévy market as well as the stochastic processes used. Section 3 is devoted
to our numerical illustration, while section 4 concludes the paper.

1 Product and Modeling

Let T be the expiration date of the contract, assumed issued at time 0, and let
Tx be the residual life of a policyholder aged x at the issue date. The contract
payoff is of the following type:

max(AT∧Tx , GT∧Tx),

where AT∧Tx is the policyholder account value at time T ∧ Tx and GT∧Tx is
the guarantee at that time. Because

max(AT∧Tx , GT∧Tx) = AT∧Tx + [GT∧Tx −AT∧Tx ]
+,

the contract can be considered, from the policyholder’s point of view, as a
long position in the fund and a put option with the strike price of GT∧Tx . The
insurer is at risk because of the short position in the option. This embedded
option, sometimes known as an optional rider, is paid continuously rather than
upfront. Let m denote the offset ratio necessary for financing the guarantee
liability. The fees are continuously deducted at the rate m from the reference
equity portfolio in which the policyholder’s single upfront premium has been
invested. We denote by S the reference portfolio price process, and by tpx =
Pr[Tx > t] the conditional survival probability under the physical measure
P. The probability of dying tqx is 1 − tpx. When [0, T ] is partitioned into
subperiods (years or months, for example), the fees1 are paid at the beginning

1In fact the fees are used by the insurer to pay expenses other than the guarantee liability. For
the sake of simplicity, we only consider the offset ratio.
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of each subperiod. If death occurs during a subperiod, the benefit is assumed
to be paid at the end of this subperiod. A Guaranteed Minimum Accumulation
Benefit contract offers the possibility of modifying the guarantee at certain
specified dates, thus adding a path-dependent feature. This ratchet feature
affects the dynamics of policyholder account value, A. More precisely, consider
the following sequence T of rollover dates:

T = {t1, t1 < t2, ..., tn−1 < tn = T},

enabling the guarantee to be modified at each of these times in the following
way: let A−

t and A+
t be the account values just before and just after the

guarantee is reset at time t. Note that at each time ti ∈ T , the fund value
immediately before renewal, A−

ti
, is related to the fund value brought forward

from time ti−1, A
+
ti−1

, through the relationship:

A−
ti
= A+

ti−1

Sti

Sti−1

e−m(ti−ti−1). (1)

Immediately before each reset date ti, the insurer compares the account value
A−

ti
toGti−1 . Given that the contract is still in force, two scenarios are possible:

. If A−
ti
< Gti−i , the insurer pays the difference Gti−1 −A−

ti
into the policy-

holder’s account, so immediately after ti, A
+
ti
= Gti−1 , then Gti is worth

A+
ti
. Note that A+

ti
> A−

ti
.

. If A−
ti
> Gti−1 , there is no cash-in for the insurer, but Gti is reset to A−

ti
and immediately after, A+

ti
is worth Gti . Note that A+

ti
= A−

ti
.

In an equivalent way, at each ti,

Gti = A+
ti
= max

(
Gti−1 , A

−
ti

)
= A−

ti
+ Lti ,

where,

Lti := [Gti−1 −A−
ti
]+, (2)

is the guarantee option payoff at time ti. The starting guarantee, G0, could
be part of the initial premium and the starting account value A0 is assumed
to be worth S0. Between reset dates, the account value A is linked to the
reference portfolio value S according to:

At = A+
ti−1

St

Sti−1

e−m(t−ti−1) ti−1 ≤ t < ti ∀ti−1 , ti ∈ T . (3)

Note that this mechanism affects the account value dynamics. Because A−
ti

can be different from A+
ti
at reset dates, ti, ∀ti ∈ T , the policyholder account

value has possible upward jumps at these dates. These jumps occur because
of the GMAB design and are different from those coming from the market
(possible jumps in the S process). Figure 1 illustrates the mechanism of this
contract for a sample path of the reference portfolio. In this example, we
consider three reset dates at time 5, 10, and 15. We observe that policyholder
account value jumps at the first reset date, while the guarantee jumps at the
second. In this simulation, we also note that the account value is always equal
to or greater than the reference portfolio value, which makes this guarantee
very attractive for the policyholder. The first problem to be solved is to find
the fair fees value. This is addressed in the following subsection.
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Figure 1: Policyholder account value process A, guarantee G and reference portfolio
S, for a GMAB with ratchet at reset dates 5, 10, and 15 years: m = 3%.

1.1 Fair Market Value

The contract analyzed in this article can be considered as a contingent claim
in a combined financial-insurance market. Formally, using standard nota-
tions,

(
Ω,F , (Ft)t∈[0,T ],P1

)
is a filtered probability space associated with the

financial market. The probability measure P1 can be the historical or real
measure P or a risk-neutral probability measure Q. We use underscripts to
refer to a particular measure and omit the reference if it is not necessary to
specify the measure or if it is obvious from the context. As we focus on mar-
ket risk, we assume that mortality risk can be diversified away and hence P
and Q coincide on mortality-related events. We also assume that financial
risk and mortality risk are independent under Q, see Dhaene et al. (2013) for
interesting developments on this subject. We use a superscript in expectation,
variance, or covariance operators to refer to a conditional expression given the
information available. For example Et

Q[A] is the conditional expectation of A
under the risk-neutral measure Q given Ft.
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Let r be the instantaneous interest rate in the given economy and δt, the
discount factor at time t, defined as

δt := exp

{
−
∫ t

0
rudu

}
.

We assume that the reference equity portfolio value follows a geometric Lévy
process under a risk-neutral probability measure Q. Thus,

dSt

St−
= rtdt+ dMt, (4)

where M is a martingale that will be defined precisely below. We denote by
M&E (mortality and expense) the expected discounted value of all the fees
paid until the contract is in force, i.e., until death or maturity, whichever
comes first. The M&E associated with the contract has the following market
value:

M&E(m) = A0

{
T px(1− e−mT ) +

T−1∑

t=0

tpxqx+t(1− e−m(t+1))
}
. (5)

We denote by ξS0,m,T the initial price of the optional rider in the GMAB with
expiry T. Following Milevsky and Posner (2001) and Quittard-Pinon and Randrianarivony
(2011), the equilibrium value or the fair price for the guarantee is thus the
solution in m of the equation

ξS0,m,T = M&E(m). (6)

Put differently, the fair cost is such that the value associated with the dis-
counted continuous cash flows coming from the fees is equal to the contract’s
optional rider value. It is worth noting that the solution of equation (6) de-
pends on the choice of a risk-neutral measure, and there is therefore no unique
solution for m. Hence, a risk-neutral measure must be chosen. We consider
this choice in our discussion of the Q-measure in section 2.

1.2 Valuation: General Formulae

To price the guarantee, we use the arbitrage pricing theory in continuous
time. We assume a constant interest rate r, and denote by P (S0,K, τ) the
price of a European put option, written on S, with an initial value equal to
S0, an exercise price of K, and a maturity τ . As described in section 1, the
GMAB includes a path-dependent feature at each rollover date in the sequence
T , allowing the insured to accumulate the maximum of either the current
policyholder account value or the maximum value recorded at the previous
reset dates. Although the valuation of this product is not straightforward,
general formulae can nevertheless be obtained. Let Hi(S0,m, ti) be the price
at time 0 of the ith guarantee option,

Hi(S0,m, ti) := EQ[δtiLti ].

We have the following result:
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Proposition 1. For all k > 1, the initial price of the kth guarantee option at
tk ∈ T is obtained via the following recursive formula:

Hk(S0,m, tk) =
(
S0e

−mtk−1 +
k−1∑

i=1

Hi(S0,m, ti)e
−m(tk−1−ti)

)

× P (e−m(tk−tk−1), 1, tk − tk−1), k > 1, (7)

where the starting step is

H1(S0,m, t1) = P (S0e
−mt1 , G0, t1).

We now introduce mortality. The initial value, ξS0,m,T , of the insurer’s
liability, i.e the GMAB optional rider, is

ξS0,m,T =
#T∑

i=1

ξS0,m,ti , (8)

where #T is the cardinality of T and ξS0,m,tk , is given by:

ξS0,m,tk =
(
S0e

−mtk−1 +
k−1∑

i=1

Hi(S0,m, ti)e
−m(tk−1−ti)

)

×
{

tk−1∑

t=tk−1

tpxqx+tP
(
e−m(t−tk−1+1), 1, t− tk−1 + 1

)

+ tkpxP
(
e−m(tk−tk−1), 1, tk − tk−1

)
}

, ∀ k > 1,

with

ξS0,m,t1 =
t1−1∑

t=0

tpxqx+t ×H1(S0,m, t+ 1) + t1px ×H1(S0,m, t1).

Some explanatory remarks are in order. It should be noted that ξS0,m,ti and
Hi are different objects. They are building blocks for obtaining the GMAB
optional rider price formula (8). The result in Proposition 1 does not de-
pend on any particular dynamics of the financial prices. All that is needed
is the independence of non-overlapping increments of the process X in (9),
which is, by definition, the case for the increments of a Lévy process. It
is worth noting that only the sum in brackets of (7) depends on the cur-
rent stock price. This observation is useful for assessing the hedge portfolio.
Also note that the GMAB benefit shown in (8) is reduced to a mixed GMM-
B/GMDB, provided that there is no reset date. This GMAB is therefore a
path-dependent generalization of GMMB/GMDB contracts. The price of the
optional rider of the contract analyzed in this article is given in (8) as the
sum of non-straightforward combinations of European put option prices. To
make it operational, we need to determine how to model the financial prices
and mortality. This is developped in the next section.
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2 Pricing and Hedging

In this section, we list the five Lévy models used in this paper : arithmetic
Brownian motion, Merton and Kou jump diffusions, variance gamma, and
CGMY processes. We employ the Fourier method and the Boyarchenko and Levendorskĭi
(2000) approach in particular. For pricing, we note their formula, and for
hedging we follow their suggestion and compare their hedging ratio to the one
obtained by Cont and Tankov (2004) in the jump diffusion. We prove that
these ratios coincide. We also discuss the choice of the Q measure and justify
the choice of a particular Esscher measure. We end this section by considering
hedging in practice.

As assumed in section 1.1, the price of the equity portfolio is modeled by
the exponential of a Lévy process X:

St = S0e
Xt . (9)

Let us denote by φt the characteristic function of X at time t. A Lévy process
can be completely specified by its characteristic exponent, ψ in

φt(u) = E[eiuXt ] = e−tψ(u), t ≥ 0, (10)

given by the Lévy-Khintchine formula

ψ(u) = −iuµ+
1

2
σ2u2 −

∫ +∞

−∞

(
eiux − 1− iux1|x|<1

)
ν(x)dx. (11)

The triplet (µ,σ, ν) fully specifies X and is referred to as the Lévy charac-
teristics. In the light of (10), a Lévy process can generate a wide range of
characteristic exponent behaviors through a flexible specification of the Lévy
density ν(x). The sample paths of a pure jump Lévy process exhibit finite
activity when the integral of the Lévy density is finite:

∫ +∞
−∞ ν(x)dx = λ < ∞

where λ measures the mean arrival rate of jumps. A finite2 activity jump
process generates a finite number of jumps within any finite time interval.

2.1 Examination of Lévy Processes

The only continuous Lévy process is the arithmetic Brownian motion. Geo-
metric Brownian motion is the basic model in continuous time finance, see
Black and Scholes (1973), and is obtained with ν(x) = 0 in equation (11) for
all x. The characteristic exponent is then:

ψBS(u) = −iuµ+
1

2
σ2u2.

Merton (1976) incorporates an additional compound Poisson process with
mean arrival rate λ, so the characteristic exponent is

ψM (u) = −iuµ+
1

2
σ2u2 + λ

(
eiγu−

1
2 δ

2u2 − 1
)
.

2When the integral is infinite, the sample paths exhibit infinite activity, and generate an infinite
number of jumps within any finite interval.
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The random jump size, conditional on occurrence of one jump, is normally dis-
tributed with mean γ and variance δ2. Using the compound Poisson jump-type
process, Kou (2002) suggests an asymmetric double exponential distribution
for the random jump sizes. The characteristic exponent is:

ψK(u) = −iuγ +
1

2
σ2u2 + λ

( pλ1
λ1 − iu

+
qλ2

λ2 + iu
− 1
)
, λ1,λ2 > 0,

with p ≥ 0 and q ≥ 0 constrained by p + q = 1. Also, u has to be such that
Im u is in (−λ1,λ2). Although it is appropriate to use compound Poisson
jumps to capture non-negligible probabilities of rare and large events such as
market crashes (as illustrated by Figures 2a and 2b), many authors observe
that asset prices actually display many small jumps. These types of features
are better explained by infinite-activity jumps. A popular example is the
variance gamma (VG) model introduced by Madan and Seneta (1990), which
is obtained by time changing a Brownian motion with a gamma subordinator
whose one unit-time increment variance rate is ς. The characteristic exponent
is

ψV G(u) = −iuµ+
1

ς
ln(1− iuθς + u2

σ2

2
ς), ς > 0, θ ∈ R,

with the regularity strip

−θ −

√

θ2 +
2σ2

ς
< σ2(Re u) < −θ +

√

θ2 +
2σ2

ς
.

Figure 2c shows the deformation of the sample path distribution as a function
of parameter θ of the VG. Another popular example that can generate differ-
ent jump types is the CGMY model of Carr et al. (2002), with the following
characteristic exponent:

ψCGMY (u) = −C Γ(−Y )
[
(M − iu)Y −MY + (G+ iu)Y −GY

]
,

where C > 0, G ≥ 0, M ≥ 0, and Y < 2. This kind of process is a gen-
eralization of the variance gamma Lévy density (Y = 0), with parameters
identified by Carr et al. (2002). The CGMY parameters play an important
role in capturing certain properties of the process sample paths. The param-
eter C describes the intensity of the process; it plays a part similar to that of
the variance of the Brownian motion. The parameters G and M respectively
control the rate of exponential decay on the right and on the left tails of the
Lévy density, leading to a skew when they are unequal. See Figure 2d for an
illustration of this point.

2.2 Pricing

Using a generalized Fourier approach, and following Boyarchenko and Levendorskĭi
(2000), the European put option defined in section 1.2 can be expressed as

P (St,K, τ) = K
1

2π
e−bx′

∫

R

eiux
′ e−τ(r+ψ(u+ib))

(−iu+ b)(−iu+ b+ 1)
du, (12)
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with b > 0, x′ = ln (St/K), τ = T − t. The Equivalent Martingale Measure
condition (EMM) ensures that discounted prices are Q-martingales:

r + ψ(−i) = 0.

This last relationship can be used to express µ via the other parameters of
the Lévy process:

µ = r − σ2

2
+

∫ +∞

−∞

(
1− ex + x1|x|<1ν(dx)

)
.

Note that formula (12) holds for a European call option with b < −1. Taking
into account the above EMM condition, this formula can be obtained through
a quadrature easily, quickly, and accurately using FFT. In our experience,
a practical choice for parameter b is −3 and 3, for a call and for a put-like
option, respectively.

2.3 Hedging

With the exception of the Gaussian case, Lévy processes present jumps. If
financial prices are modeled with jump processes, the market is incomplete.
The main difficulty is therefore that hedging becomes an approximation prob-
lem and the usual delta ratio does not result in a strategy that perfectly
replicates the option. In this section and in the following (2.3.1) we omit the
reference to the probability measures, Q and P, when computing expecta-
tions and variances, only precisely defining these measures when necessary.
Cont and Tankov (2004) choose the strategy that minimizes the mean square
terminal hedging error. They denote by F (S, t) the option price as a function
of its state variables S and t, and obtain the following optimal ratio Λt:

Λt =
σ2 ∂F∂S (St, t) +

1
S

∫ +∞
−∞ [F (Stex, t)− F (St, t)](ex − 1)ν(dx)

σ2 +
∫ +∞
−∞ (ex − 1)2ν(dx)

. (13)

The Lévy measure ν can differ in the historical and risk-neutral worlds. The
numerator of formula (13) exhibits a sum of two terms: the sensitivity of
the derivative price F (S, t) to infinitesimal movements of the stock price S,
and the average sensitivity to finite-sized jumps. Note that the implemen-
tation of this formula is not straightforward because of the integral term∫ +∞
−∞ F (t, Stex)ν(dx), which depends on the whole solution F (t, .). The pres-
ence of this term necessitates the use of many quadratures or the non-simple
resolution of PIDE schemes. So far, equation (13) can be quasi-explicitly
computed in the MJD economy, see section 2.3.3. We now briefly recall the
solution for hedging suggested by Boyarchenko and Levendorskĭi (2000). For
this purpose, consider an investor with a sufficient wealth Wt at time t who
takes a short position in a European option with the expiration date T , a
long position in Θt units of the underlying, and who invests the residual in
the money market account. The next step is to determine the optimal hedg-
ing ratio Θ that minimizes the variance of the portfolio during the next small
time interval. In other words, if we denote this residual by w0(t), the investor’s
wealth at time t+∆t < T will be given by:

Wt+∆t = −F (St+∆t, t+∆t) +ΘtSt+∆t + er∆tw0(t).
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Then the optimal allocation Θ is such that the conditional variance of wealth
is (locally) minimized, i.e.,

inf
Θ

Et
[(
Wt+∆t − Et[Wt+∆t]

)2]
. (14)

The solution is expressed in the following proposition:

Proposition 2. In the historical world the optimal ratio (14) is:

Θ′(St, T ) = K
1

2Stπ
e−bx′

∫

R

eiux
′ e−τ(r+ψQ(u+ib))BP(u+ ib)

(−iu+ b)(−iu+ b+ 1)
du, (15)

with b > 0, x′ = ln(St/K) and with

BP(u) =
−ψP(u− i) + ψP(u) + ψP(−i)

−ψP(−2i) + 2ψP(−i)
.

In the risk-neutral universe, it is worth

Θ(St, T ) = K
1

2Stπ
e−bx′

∫

R

eiux
′ e−τ(r+ψQ(u+ib))BQ(u+ ib)

(−iu+ b)(−iu+ b+ 1)
du, (16)

and

BQ(u) =
−ψQ(u− i) + ψQ(u) + ψQ(−i)

−ψQ(−2i) + 2ψQ(−i)
.

Proof. See Boyarchenko and Levendorskĭi (2000). A detailed proof can be
obtained from the authors upon request.

As in section 2.2, formula (16) also remains valid for a European call-like
option with b < −1. The above hedging ratio is therefore obtained in a similar
way to the pricing formula in (12) up to factors B(.) and S−1

t , thereby unifying
the pricing and the hedging methods.

2.3.1 Θ and Λ ratios

Although theΘ and Λ ratios have distinct expressions that can lead to different
types of computations, a property we exploit in the next subsection, we show
here that they are identical and justify (13) using the simple criterion (17). As
in Black and Scholes (1973),we consider a self-financing portfolio consisting
of a long position in the derivative and a short position of θt units in the
underlying asset. We choose the optimal quantity to invest in the underlying
such that the risk, measured by the variance of variation on the portfolio value
during a short period, (t, t + ∆t], is minimized. Note that in the Black and
Scholes model this risk is zero, which is not the case here, because we work in
an incomplete market. Denote:

Vt := Ft − θtSt.

With obvious notations,
∆V = ∆F − θt∆S.
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We need to solve the optimization problem

inf
θt

[
V art[∆F − θt∆S]

]
, (17)

which is exactly (14), leading to (15) in the real-world and (16) in the risk-
neutral one. Now consider another way of computing V art[∆V ]. We begin by
noting that

∆V =

∫ t+∆t

t

dV =

∫ t+∆t

t

(dF − θtdSt).

To go farther, we need to specify the dynamics of the risky asset price in (9).
To do that we introduce the Poisson jump measures JX(dy, dt) associated
with the processes X, and its compensated Poisson jump measures J̃X :

J̃X(dy, dt) = JX(dy, dt)− ν(dx)dt,

Using Itō’s lemma the dynamics of the risky asset can be written:

dS

St−
= µdt+ σdWt +

∫

R

(ex − 1)J̃X(dx, dt). (18)

Where µ is the dift term, note that µ = r in the risk-neutral world. Now,
by again applying Itō’s lemma to F and observing that the drift does not
intervene in the conditional variance, we obtain

V art[Vt+∆t − Vt] = V art[A+B],

where

A : =

∫ t+∆t

t

(
∂F

∂S
(Su−, u)− θu

)
σSudWu

B : =

∫ t+∆t

t

∫

R

(F (Su−e
x, u)− F (Su−, u)− θuSu(e

x − 1)) J̃X(dx, du).

Using the isometry formula,

V art[A+B] = C +D,

where,

C :=

∫ t+∆t

t

[
(
∂F

∂S
− θu)σSu

]2
du

D :=

∫ t+∆t

t

∫

R

[F (Su−e
x, u)− F (Su−, u)− θuSu−(e

x − 1)]2 ν(dx)du.

The first order condition for the optimal Θ gives the equation:

Θt

[∫

R

S2
t (e

x − 1)2ν(dx) + σ2S2
t

]

=

∂F

∂S
σ2S2

t+

∫

R

[F (Ste
x, t)− F (S, t)]St(e

x − 1)ν(dx),

which can be rewritten

Θt =
∂F
∂S σ

2S2
t +

∫
R
[F (Stex, t)− F (S, t)]St(ex − 1)ν(dx)∫

R
S2
t (e

x − 1)2ν(dx) + σ2S2
t

, (19)

which is simply (13). The Θ and Λ ratios therefore coincide, which is an im-
portant result.
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2.3.2 ∆ and Θ ratios

The ∆ ratio, which is the derivative of the option price with respect to the
underlying price, is often used as a hedging ratio because it measures the
sensitivity of the option to the underlying price. Using formula (12),

∆ =
∂P (S,K, τ)

∂S
= K

1

2Sπ
e−bx′

∫

R

eiux
′ e−τ(r+ψQ(u+ib))

iu− b− 1
du. (20)

However, with jumps in the price process, this ratio is only optimal in the
Black and Scholes setting. In this case, the ∆ and Θ ratios coincide. With
jumps, the difference is given by the following formula:

Θ−∆ = K
1

2Sπ
e−bx′

∫

R

eiux
′ e−τ(r+ψQ(u+ib))

(iu− b− 1)

(
BP(u+ib)

iu− b
− 1

)

du.

Figure 3 illustrates this difference, for the four jump processes considered in
this article. We let the time to expiry τ vary from 0.5 to 1 for the European
put option. We note that the differences between Θ and ∆ are almost null for
the deeply out-of-the-money options and rise more slowly to zero when the
option becomes increasingly in-the-money. When the option is at-the-money,
the difference is at its highest. In fact, immediately after the reset dates, the
insurer’s position is similar to that of an in-the-money or at-the-money put
option writer, where the difference between the optimal Θ and∆ ratios is at its
highest. As noted by Hardy (2003), the hedging portfolio swings from a long
to a short position which makes the hedge very sensitive to price movements,
thereby increasing the hedging errors.

2.3.3 Explicit solutions in the Merton Jump-Diffusion model

In this section we show that the optimal Θ ratio can be obtained explicitly in
the Merton jump-diffusion model. To do this, we use the Λ expression. In the
case of jump diffusion models we have :

Xt := at+ σWt +
Nt∑

i=1

Yi, (21)

where W is a standard Brownian motion, N is a Poisson process with intensity
λ, and the (Yi) are iid random variables having the same distribution as the
random variable Y . We assume that all random quantities are independent.
Note that in a risk-neutral world, because discounted prices areQ-martingales,
we have the EMM

a = r − 1

2
σ2 − λEQ[e

Y − 1].

In the Merton model, the iid random variables Yi are Gaussian with mean γ
and standard deviation δ. In this model the time t price, F (St, t), of a call or
a put option with strike K, with payoff [ϵ(ST −K)]+, is

F (S, t) = Et
Q

[
e−r(T−t)[ϵ(ST −K)]+

]
.
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Figure 3: Difference between the ∆ and Θ ratios in some jump models for a put option.

(a) Merton: Parameters used are λ = 1, σ = 0.16, m = −0.2, and δ = 0.05.
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(b) Kou: Parameters used are λ = 1, σ = 0.16, λ1 = 50, λ2 = 25, and p = 0.3.
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(c) VG: Parameters used are θ = −0.008, ς = 0.01, and σ = 0.17.
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(d) CGMY: Parameters used are C = 2, G = 40, M = 52, and Y = 0.7.
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Conditional on NT ,

F (S, t) = Et
Q

⎡

⎢⎣ET
Q

⎡

⎢⎣ϵ

⎛

⎝S0e
at+σWT+

NT∑

i=0
Yi

−K

⎞

⎠
+

e−r(T−t)|NT = n

⎤

⎥⎦

⎤

⎥⎦ ,

where ϵ is equal to ± 1, 1 for a call, and -1 for a put. There are many
ways to present the result, here we choose the following. Define the quantities

κ = eγ+
δ2

2 − 1 and Sn = Senγ+
nδ2

2 −λκτ , and let the function FM (τ, S,σ, ϵ)
denote the Merton (1976) formula for an expiry τ = T − t. Then

FM (τ, S,σ, ϵ) =
∑

n≥0

e−λτ (λτ)n

n!
FBS(τ, Sn,σn, ϵ),

where

FBS(τ, Sn,σn, ϵ) = ϵSnN
(
ϵ
ln Sn

K + (r + σ2
n
2 )τ

σn
√
τ

)
− ϵKe−rτN

(
ϵ
ln Sn

K + (r − σ2
n
2 )τ

σn
√
τ

)
,

is a Black and Scholes (1973) formula for the prices of European call and
put options written on an underlying asset whose price at the valuation date
t is Sn with volatility σn. The function N (.) is the cumulative probability
distribution function for a standardized normal distribution. By introducing

the notation Σ =
√
σ2 + δ2

τ , we can now state a result that gives the optimal

hedging ratio in the Merton jump-diffusion model:

Proposition 3.

Λt =

{

σ2
∑

n≥0

e−λτ (λτ)n

n!

(
ϵ
Sn

S
N
(
ϵ
ln Sn

K + (r + σ2
n
2 )τ

σn
√
τ

))

+
1

S

(
λeγ+

δ2

2 FM (τ, Seγ+
3δ2

2 ,Σ, ϵ)− λFM (τ, Seγ+
δ2

2 ,Σ, ϵ)

− λ(eγ+
δ2

2 − 1)FM (τ, S,σ, ϵ)
)}

×
{

σ2 + λ[e2γ+2δ2 − 2eγ+
δ2

2 + 1]

}−1

,

Proof. See Appendix A.

In Table 1, we provide the difference between the Θ and Λ ratios in the
MJD model. We observe that the Λ ratio leads to the same result as the Θ
ratio. Table 2 illustrates the speed of computation of the Θ ratios in the
four standard models considered in this article. The main advantage of this
formula is that it can be quickly computed on a standard PC, in any Lévy
setting with known characteristic exponent.

2.4 Discussion of the Q-measure

The main problem with the risk-neutral measure Q in an incomplete market
stems from the fact that it is not unique, which gives rise to the troubling
situation in which we can have as many prices as risk-neutral measures. This
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Call Option

(ϵ = 1)

S Θ
Absolute error:

|Θ− Λ|
120 0.91404 1.44328e-15

100 0.61819 1.22124e-15

90 0.36088 1.33226e-15

80 0.13193 5.27355e-16

Put Option

(ϵ = −1)

S Θ
Absolute error:

|Θ− Λ|
80 −0.86806 1.99840e-15

90 −0.63912 2.44249e-15

100 −0.38181 5.55111e-16

120 −0.08595 2.35922e-16

Table 1: Difference between Θ in equation (16), obtained via the FFT, and Λ in
equation (13) in the MJD model. Parameters used are K = 98, r = 0.05, σ = 0.2,
λ = 1, γ = −0.1, δ = 5%, and τ = 0.5.

Models FFT (N = 4096)

Merton

≃ 0.008 sKou

Variance Gamma

CGMY

Table 2: Fourier performance for optimal Θ ratios (in seconds).
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well-known issue has given rise to an abundant literature. A practical solu-
tion could be to assume a particular parametric model for financial prices and,
given option quotes, find the parameters that best fit the market data. An-
other solution that we consider in this article is to choose the Esscher measure
such that discounted prices (or gain processes) are Q-martingales. It is then
possible to link the real-world parameters to the risk-neutral world parame-
ters. For some stochastic processes, the temporal laws of a particular type
remain of the same type in both universes.

Another interesting point is the choice of the universe for constructing
hedging strategies. It seems more natural to consider the real world than the
risk-neutral one. The choice of the Esscher risk-neutral measure seems very
well suited to this case because of the link it allows between historical and
risk-neutral universes. This solution is used in section 3.

The Esscher measure Qk with the parameter k is defined by the Radon-
Nikodym derivative

dQk

dP |Ft=
ekXt

EP [ekXt ]
.

The parameter k∗ that satisfies the martingale restriction defines the risk-
neutral measure. The martingale condition is therefore S0 = EQk

[S0e−rteXt ].
Thus giving,

S0 = S0e
−rt

∫

Ω

e(k+1)Xt

EP [ekXt ]
dP

= S0 exp
{
−
(
r + ψP(k + 1)− ψP(k)

)
t
}
.

The chosen risk-neutral measure Qk∗ comes from the parameter k∗ such that

r + ψP(−i(k∗ + 1))− ψP(−ik∗) = 0,

which is the martingale relation. The characteristic triplet of a Lévy measure
(B,C, ν) in the historical world with the probability measure P and under the
equivalent Esscher martingale Qk∗ is, see Shiryaev (1999)

BQk∗
= BP + k∗CP +

∫

|x|≤1
x(ek

∗x − 1)νP(dx)

CQk∗
= CP

νQk∗
(dx) = ek

∗xνP(dx).

2.4.1 Hedging in Practice

We now have all the elements required to define our hedging strategy. We
note, however, that two errors may arise when implementing the strategy in
practice. The first error arises because the hedging portfolio is actually moni-
tored in discrete time. The second error arises from incomplete markets. We
also have to take mortality into account.

Using actuarial notations, we introduce ȳ|hqy, for any y ≥ x and ȳ ≥ 0,
as the probability that the policyholder survives during the next ȳ years and
dies in the subsequent period of length h. Let us denote by H(t) the hedging
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portfolio at time t just after rebalancing, and by H(t−), the portfolio just
before rebalancing. Following Hardy (2003) the actual hedging error, HE, is

HE(t) = H(t)−H(t−) + t−h|hqx[Gt −At]
+.

We analyze the pertinence of a hedging strategy through accumulated dis-
counted loss values (ADL). We denote by L the loss function defined as the
sum of three components: the hedging error, the transaction cost, and the
fees paid to the insurer

Lt = HE(t) + TCt − tpxMt.

The transaction costs due at the end of the tth period denoted by TCt are
proportional to the absolute variation in the amount needed to adjust the
hedging portfolio:

TCt = CSt

∣∣Ψt −Ψt−h

∣∣.

Where Ψ is the number of the risky asset invested in the hedging portfolio.
The amount of fees is

Mt = mAt,

where m is determined in equilibrium as a result of equation (6).

3 Numerical Illustration

In this section, we illustrate our previous developments. In the contracts
considered, the policyholder is assumed to be 40 years old at the contract’s
inception. The constant interest rate is set at r = 6%; the transaction costs
have a multiplicative coefficient C = 0.2%; and the initial guarantee is 80% of
the initial account value, which is assumed to be equal to the reference equity
portfolio value at the contract’s inception with a value of USD 100.

Mortality

We use a Gompertz-Makeham mortality law and the US mortality param-
eters obtained by Melnikov and Romaniuk (2006): The conditional survival
probability is therefore:

tpx = exp

{
−At− Bcx(ct − 1)

ln c

}
.

with

A = 9.5666× 10−4 B = 5.162× 10−5 c = 1.09369.

Financial prices processes

Using the moment matching method, we fit the Merton, CGMY, and GBM
models to the monthly total return S&P 500 index prices, in US dollars, ob-
served from 01/31/1956 to 05/30/2014. The rounded annual parameter es-
timates are shown in Table 3, together with the four first central moments.
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Models Merton CGMY GBM

Estimates

µ = 0.1227 µ = 0.2799 µ = 0.0962

σ = 0.1329 C = 0.6235 σ = 0.1473
λ = 0.1769 G = 21.0775
γ = −0.1500 M = 39.5137
δ = 0.0204 Y = 0.8
p = 0.3

Mean 0.0962 0.0962

Std 0.1473 0.1473

Skewness −0.1969 −0.1969 0

Excess
0.2110 0.2111 0

Kurtosis

Table 3: Annual parameters of the Merton, CGMY, and GBM models obtained by
fitting the models to the total return S&P 500 index prices, from 01/31/1956 to
05/30/2014.
Source of the data: BloombergR⃝.

We also need to know the processes for the referenced portfolio in the Esscher
risk-neutral universe. In accordance with section 2.4, a process that is a MJD
in the historical world remains a MJD in the Esscher risk-neutral world. The
correspondence between the historical and risk-neutral hatted parameters is
easy to obtain, leading to

λ̂ = λek
∗γ+ (k∗δ)2

2 , γ̂ = γ + k∗δ2, δ̂ = k∗δ.

Pricing

Using equation (6), we compute the fair fee rate according to three different
financial price models: the two exponential jump processes MJD and CGMY,
and the traditional GBM. We firstly note from Table 4 that the results are very
similar for the jump processes, which is not surprising, because the estimates of
the four central moments are identical and because the fair fees and the value
of the embedded option are, in the end, based on expected values. Secondly,
we note that the fair fees and embedded option values are significantly lower in
a GBM model. Thirdly, we study the influence of the rollover dates on prices.
We vary the first reset date in one year steps and let the second rollover date
remain 10 years after the first. We retain the same expiry of 22 years. In
Table (4a, 4b, 4c), we observe similar behavior for the three price dynamics:
in the MJD and CGMY jump process models, the prices and fees increase for
the first eight contracts and then decrease for the last two contracts; while in
the GBM case, the prices and fees increase for the first nine contracts, before
falling in the last contract. We also note that for the last two contracts, the
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reset dates are close to the contract expiry dates, which explains why the
prices and fees dwindle. We therefore conclude that a reset date effect exists
with respect to fees and prices.

3.1 Hedging

To analyze hedging strategy efficiency, we use the ADL and run Monte Carlo
simulations with 20,000 sample paths, and a monthly frequency for rebal-
ancing the hedging portfolio. We present the results of the MJD and GBM
processes. The other jump processes give similar results and are not reported
here. In the risk-neutral world we use the hedging ratio Λ or Θ, and in the
historical universe the ratio Θ′. In Table 5, the real-world hedging results
are shown on the left-hand side, while the results in the Esscher risk-neutral
world are presented on the right-hand side. We introduce this distinction for
comparison purpose. An argument put forward by some authors in favor of
the risk-neutral world when determining a hedging strategy is that the the
Q−measure contains more information than the historical measure which is
particularly true in empirical studies where estimates of probability laws have
to be performed, see Aı̈t-Sahalia and Lo (2000). So we examine in these two
situations VaR and Conditional Tail Expectation (CTE) risk measures for the
ADL. The results show that there are big differences between the Black and
Scholes setting and the jump model, see Table 5. In the historical world, for
example, the VaR99% = 7.4394 in the Merton model, while it is only 2.7754
in the lognormal model. The CTE is 3.8086 in the GBM model, but is 9.5562
in the MJD model. If we now consider the computation in the risk-neutral
world, we obtain the same values with the GBM but VaR99% = 7.2243 and
CTE99% = 9.3730 in the MJD, which are not very different from what is ob-
tained in the real world. So even though the hedging choice in the real-world
is more intuitive and satisfactory, the hedging choice in the risk-neutral world,
although harder to justify, produces results relatively close to those obtained
in the real world. We also note that the economic capital measured by VaR or
CTE is slightly lower than that required when hedging in the real world. Table
6 shows the result of a ∆ hedging strategy compared to the Θ′ strategy. The
differences are not very significant, contrary to what was expected. The ∆
strategy requires more economic capital than the Θ′ strategy. In the presence
of jumps, the hedging strategy in the risk-neutral world is less demanding in
terms of economic capital than that what is required using a hedging strategy
in the real-world. Aside from the fact that our methodology gives operational
results, we also obtain a clear appreciation of the choice of models for financial
prices. Our methodology provides a very simple and useful rule for insurers
and regulators: if the assumption of lognormal financial prices is supported by
market data, then a hedging strategy based on this hypothesis is better than
that obtained using models with jumps, in the sense that the economic capi-
tal required is considerably lower than that required when jumps are present.
However, as recalled in the introduction, the lognormal hypothesis is gener-
ally rejected using actual market data, so if insurers use this hypothesis for
hedging, the model will give them a false feeling of safety because it leads to in-
sufficient amounts of economic capital, which could have severe consequences
for the company in the future.
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GMAB

Maturity: 22 years

Rollover dates Merton model

(t1/t2/t3) m Value

(years) (bp)

(2/12/22) 22.43 4.5664

(3/13/22) 24.30 4.9379

(4/14/22) 25.77 5.2267

(5/15/22) 26.97 5.4633

(6/16/22) 27.99 5.6652

(7/17/22) 28.87 5.8380

(8/18/22) 29.57 5.9751

(9/19/22) 29.96 6.0505

(10/20/22) 29.69 5.9977

(11/21/22) 27.73 5.6129

(a)

GMAB

Maturity: 22 years

Rollover dates CGMY model

(t1/t2/t3) m Value

(years) (bp)

(2/12/22) 22.43 4.5637

(3/13/22) 24.29 4.9352

(4/14/22) 25.75 5.2239

(5/15/22) 26.95 5.4606

(6/16/22) 27.98 5.6626

(7/17/22) 28.87 5.8357

(8/18/22) 29.56 5.9731

(9/19/22) 29.95 6.0491

(10/20/22) 29.69 5.9971

(11/21/22) 27.73 5.6134

(b)

GMAB

Maturity: 22 years

Rollover dates GBM model

(t1/t2/t3) m Value

(years) (bp)

(2/12/22) 18.64 3.8109

(3/13/22) 20.32 4.1463

(4/14/22) 21.67 4.4153

(5/15/22) 22.82 4.6435

(6/16/22) 23.84 4.8467

(7/17/22) 24.77 5.0305

(8/18/22) 25.58 5.1893

(9/19/22) 26.14 5.3007

(10/20/22) 26.16 5.3045

(11/21/22) 24.69 5.0154

(c)

Table 4: Fair values of the GMAB in the Merton jump-diffusion model (4a), and in the CGMY model (4b), obtained using formula
(6), compared with those of the GBM model (4c).
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GMAB

Rollover dates: (2/12/22) years

α
Merton model GBM model

VaRα CTEα VaRα CTEα

50% −3.5716 0.5272 −4.3349 −1.5308

90% 2.5365 4.5793 0.0340 1.1964

95% 3.8859 6.0512 0.8962 2.0090

97.5% 5.3802 7.5373 1.6091 2.7927

99% 7.4394 9.5562 2.7754 3.8086
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(a) Real world

GMAB

Rollover dates: (2/12/22) years

α
Merton model GBM model

VaRα CTEα VaRα CTEα

50% −3.6358 0.4742 −4.3349 −1.530

90% 2.4454 4.4669 0.0340 1.1964

95% 3.7636 5.9005 0.8962 2.0090

97.5% 5.2359 7.3723 1.6091 2.7927

99% 7.2243 9.3730 2.7754 3.8086
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(b) Esscher-risk-neutral world

Table 5: Probability distribution functions and risk measures of the ADL for 100 USD premium VAs with GMAB benefits: Hedging
using the Θ′ ratio (5a) and the Θ ratio (5b), compared with the GBM model.
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GMAB

Rollover dates: (2/12/22) years

α
∆ Hedging Θ′ Hedging

VaRα CTEα VaRα CTEα

50% −3.4456 0.7134 −3.5716 0.5272

90% 2.6964 5.0506 2.5365 4.5793

95% 4.2893 6.6697 3.8859 6.0512

97.5% 5.9655 8.2374 5.3802 7.5373

99% 7.9812 10.3335 7.4394 9.5562

Table 6: Risk measures of the ADL, for 100 USD premium VAs with GMAB benefits,
obtained via the optimal Θ′ ratio (15) and via the ∆ ratio (20).

4 Conclusion

In this paper we present a general methodology for pricing, hedging, and
managing a GMAB contract with an incorporated ratchet feature. Formula
(8) gives the price of this path-dependent contract in a general closed-form
expression. We obtain an optimal hedging ratio, which we call the Θ ratio,
in an expression well suited for easy computation by FFT formula (16). We
show that this ratio is equivalent to the ratio used in Cont and Tankov (2004).
We give a quasi-explicit formula for the Θ ratio in the Merton jump-diffusion
model. TheΘ ratio is easily and quickly obtained in a general Lévy framework.
Table 2 shows the related computational time for the Merton, Kou, Variance
Gamma, and CGMY processes, which is approximately one millisecond with
a standard PC. We also show that the difference between the ∆ and Θ ratios
highlights the risk of using delta hedging for options, especially when they
are at-the-money. The numerical part of our study is not solely presented for
illustrative purposes, it also provides results that have important practical im-
plications for the management of GMABs. It shows that changing the rollover
dates affects the fees and prices of the embedded option. It also proposes a
simple rule for choosing a pertinent hedging strategy. If financial markets
support the Gaussian hypothesis for financial asset returns, then the hedging
strategy obtained in this setting is the best because it requires less economic
capital than the strategy obtained in an environment that assumes jumps in
financial prices. Conversely, if jumps are present, which is rare, developing
a hedging strategy based on the Black and Scholes model undervalues the
economic capital required by the insurer to implement a safe hedging policy.
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Appendix

In this appendix, we prove the results stated in the main text.

A The Λ ratio in a Merton Economy

Let us rewrite in the following way the formula giving the Λ ratio in Cont and Tankov
(2004)

Λt =
σ2 ∂FM

∂S (τ, S,σ, ϵ) + 1
S

∫ +∞
−∞ [FM (τ, Sex,σ, ϵ)− FM (τ, S,σ, ϵ)](ex − 1)ν(dx)

σ2 +
∫ +∞
−∞ (ex − 1)2ν(dx)

.

Observe that the computation of the above formula is not straightforward
although

∫ +∞

−∞
(ex − 1)2νX(dx) = λ[e2γ+2δ2 − 2eγ+

δ
2 + 1],

from the Laplace transform of Gaussian random variable and that

∂FM

∂S
(τ, S,σ, ϵ) =

∑

n≥0

e−λτ (λτ)n

n!

{

ϵ,
Sn

S
N
(

ϵ
ln Sn

K + (r + σ2
n
2 )τ

σn
√
τ

)}

is readily derived. Note that Lemma 1 will be useful for deriving the remaining
quantities.

Lemma 1. Let X be a random variable such that X ∼ N (γ, δ2), for all α ∈ R,
β > 0, ϵ ∈ {−1, 1} and η ≥ 0,

E
[
eηXN

(
ϵ
X + α

β

)]
= eηγ+

(ηδ)2

2 N
(
ϵ
α+ γ + ηδ2√

β2 + δ2

)
.

Proof.

E
[
eηXN

(
ϵ
X + α

β

)]
=

∫ +∞

−∞
eηx
(∫ +∞

−∞
1y<ϵx+α

β

e−
y2

2

√
2π

dy
)e−

1
2

(x−γ)2

δ2

√
2πδ2

dx

=

∫ +∞

−∞
eηx
(∫ +∞

−∞
1ηy<ϵ ηx+ηα

β

e−
y2

2

√
2π

dy
)e−

1
2

(x−γ)2

δ2

√
2πδ2

dx

=

∫ +∞

−∞
ex
(∫ +∞

−∞
1ηy<ϵx+ηα

β

e−
y2

2

√
2π

dy
)e−

1
2

(x−ηγ)2

(ηδ)2

√
2π(ηδ)2

dx

=

∫ +∞

−∞
ex
(∫ +∞

−∞
1y<ϵx+ηα

ηβ

e−
y2

2

√
2π

dy
)e−

1
2

(x−ηγ)2

(ηδ)2

√
2π(ηδ)2

dx.
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We can write,

E
[
eηXN

(
ϵ
X + α

β

)]

= eηγ+
(ηδ)2

2

∫ +∞

−∞

(∫ +∞

−∞
1y<ϵx+ηα

ηβ

e−
y2

2

√
2π

dy
)e−

1
2

(
x−(ηγ+(ηδ)2)

)2
(ηδ)2

√
2π(ηδ)2

dx

= eηγ+
(ηδ)2

2

∫ +∞

−∞

∫ +∞

−∞
1y<ϵx+ηα

ηβ

e−
y2

2

√
2π

e
− 1

2

(x−(ηγ+(ηδ)2))2

(ηδ)2

√
2π(ηδ)2

dydx.

Hence,

E
[
eηXN

(
ϵ
X + α

β

)]
= eηγ+

(ηδ)2

2 E
[
1
Y <ϵX+ηα

ηβ

]
.

while Y ∼ N (0, 1) is independent from X ∼ N
(
ηγ + (ηδ)2, (ηδ)2

)
,we obtain:

E
[
eηXN

(
ϵ
X + α

β

)]
= eηγ+

(ηδ)2

2 N
(

ϵ
ηα+

(
ηγ + (ηδ)2

)
√
(ηβ)2 + (ηδ)2

)

.

After simplification,

E
[
eηXN

(
ϵ
X + α

β

)]
= eηγ+

(ηδ)2

2 N
(

ϵ
α+ γ + ηδ2√

β2 + δ2

)

, ∀ ϵ ∈ {−1, 1}.

Proposition 4. We have:
∫ +∞

−∞
FM (τ, Sex,σ, ϵ)exνX(dx) = λeγ+

δ2

2 FM (τ, Seγ+
3δ2

2 ,Σ, ϵ),

Proof.
∫ +∞

−∞
FM (τ, Sex,σ, ϵ)exνX(dx) =

∑

n≥0

e−λτ (λτ)n

n!
EQ[FBS(τ, Sne

X ,σn, ϵ)e
X ].

But

EQ[FBS(τ, Sne
X ,σn, ϵ)e

X ] = ϵSnEQ

[
e2XN

(
ϵ
X + ln Sn

K + (r + σ2
n
2 )τ

σn
√
τ

)]

− ϵKe−rτEQ

[
eXN

(
ϵ
X + ln Sn

K + (r − σ2
n
2 )τ

σn
√
τ

)]
.

Using Lemma 1,

λ−1EQ[FBS(τ, Sne
X ,σn, ϵ)e

X ]

= ϵSne
2γ+2δ2N

(
ϵ
(γ + 2δ2) + ln Sn

K + (r + σ2
n
2 )τ

√
(σ2n + δ2

τ )τ

)

−ϵeγ+
δ2

2 Ke−rτN
(
ϵ
γ + δ2 + ln Sn

K + (r − σ2
n
2 )τ

√
(σ2n + δ2

τ )τ

)
.
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Adding and subtracting δ2

2 ,

λ−1EQ[FBS(τ, Sne
X ,σn, ϵ)e

X ]

= ϵSne
2γ+2δ2N

(
ϵ
(γ + 2δ2) + ln Sn

K − δ2

2 + (r + σ2
n
2 + δ2

2τ )τ√
(σ2n + δ2

τ )τ

)

−ϵeγ+
δ2

2 Ke−rτN
(
ϵ
γ + δ2 + ln Sn

K + δ2

2 + (r − σ2
n
2 − δ2

2τ )τ√
(σ2n + δ2

τ )τ

)
.

with Σn =
√
σ2n + δ2

τ ,

λ−1EQ[FBS(τ, Sne
X ,σn, ϵ)e

X ]

= ϵSne
2γ+2δ2N

(
ϵ
ln Sn

K + γ + 3δ2

2 +
(
r + Σ2

n
2

)
τ

√
Σ2
nτ

)

−ϵeγ+
δ2

2 Ke−rτN
(
ϵ
ln Sn

K + γ + 3δ2

2 +
(
r − Σ2

n
2

)
τ

√
Σ2
nτ

)
.

In an equivalent way,

λ−1EQ[FBS(τ, Sne
X ,σn, ϵ)e

X ]

= ϵSne
2γ+2δ2N

(
ϵ
ln Sne

γ+3δ2
2

K +
(
r + Σ2

n
2

)
τ

√
Σ2
nτ

)

−ϵeγ+
δ2

2 Ke−rτN
(
ϵ
ln Sne

γ+3δ2
2

K +
(
r − Σ2

n
2

)
τ

√
Σ2
nτ

)
.

Leading to

λ−1E[FBS(t, Sne
X ,σn, ϵ)e

X ] = FBS(τ, Sne
γ+ 3δ2

2 ,Σn, ϵ).

With Σ =
√
σ2 + δ2

τ ,

∫ +∞

−∞
FM (τ, Sex,σ, ϵ)exνX(dx) = λeγ+

δ2

2 FM (τ, Seγ+
3δ2

2 ,Σ, ϵ),

where

FM (τ, S,Σ, ϵ) =
∑

n≥0

e−λτ (λτ)n

n!
FBS(τ, Sn,Σn, ϵ).

Using Lemma 1 and the similar above rationale, it can be shown that
∫ +∞

−∞
FM (τ, S,σ, ϵ)(ex − 1)νX(dx) = λ(eγ+

δ2

2 − 1)FM (τ, S,σ, ϵ),

and with
∫ +∞

−∞
FM (τ, Sex,σ, ϵ)νX(dx) = λFM (τ, Seγ+

δ2

2 ,Σ, ϵ),

we obtain the result in Proposition 3.
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ance contracts under Lévy process specifications. Insurance: Mathematics
and Economics, 42(1):419–433.

Kou, S. G. (2002). A jump-diffusion model for option pricing. Management
Science, 48:1086–1101.

Madan, D. B. and Seneta, E. (1990). The variance gamma model for share
market returns. Journal of Business, 63(4):511–524.

27



Melnikov, A. and Romaniuk, Y. (2006). Evaluating the performance of gom-
pertz, makeham and lee-carter mortality models for risk-management with
unit-linked contracts. Insurance: Mathematics and Economics, 39:310–329.

Merton, R. C. (1976). Option pricing when underlying stock returns are
discontinuous. Journal of Financial Economics, 3:125–144.

Milevsky, M. A. and Posner, S. E. (2001). The Titanic Option: Valuation of
the Guaranteed Minimum Death Benefit in Variable Annuities and Mutual
Funds. The Journal of Risk and Insurance, 68(1):91–126.

Quittard-Pinon, F. and Randrianarivony, R. (2011). Impacts of jumps and
stochastic interest rates on the fair costs of guaranteed minimum death
benefit contracts. The Geneva Risk and Insurance Review, 36(1):51–73.

Shiryaev, A. N. (1999). Essential of Stochastic Finance: Facts, Models,Theory,
volume 3. World Scientific Company.

Tanskanen, A. J. and Lukkarinen, J. (2003). Fair valuation of path-dependent
participating life insurance contracts. Insurance: Mathematics and Eco-
nomics, 33(3):595 – 609.

28


	Product and Modeling
	Fair Market Value
	Valuation: General Formulae

	Pricing and Hedging
	Examination of Lévy Processes
	Pricing
	Hedging
	 and  ratios
	 and  ratios
	Explicit solutions in the Merton Jump-Diffusion model

	Discussion of the Q-measure
	Hedging in Practice


	Numerical Illustration
	Hedging

	Conclusion
	The  ratio in a Merton Economy

