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1University of Hagen, Universitätsstraße 41, 58084 Hagen, Germany, rainer.baule@fernuni-

hagen.de

2Auckland University of Technology, Private Bag 92006, 1020 Auckland, New Zealand, bfri-

jns@aut.ac.nz
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Abstract

Standard price discovery measures, particularly information shares, rely on the concept

of co-integration for non-stationary time series. For the definition of information shares,

the existence of a permanent impact of innovations is crucial, as these shares measure the

relative contribution of different markets to this permanent impact. For stationary time

series such as interest rates, CDS prices, or volatilities, permanent impacts do not occur

and thus the concept fails. In this paper, we extend the concept of information shares

to the case of stationary time series. We suggest a price discovery metric based on the

well-known variance decomposition for stationary time series, aiming to be equivalent to

Hasbrouck’s (1995) information share. This new price discovery measure converges to the

standard information share in the limiting case of non-stationarity. As an application,

we use the new measure to gain insight into the behavior of major implied volatility

indices in Japan, Germany, and the US. We find that the US market has lost its dominant

role for global volatility discovery with the emergence of the European debt crisis. In

recent periods, the German volatility index exhibits the largest information shares. The

Japanese market had a higher importance before the global financial crisis, which has

almost vanished within recent periods.

JEL Classification: G14, C32, C10, C51

Keywords: information share, stationarity, co-integration, variance decomposition, volatil-

ity spillover.



1 Introduction

A major strand of price discovery research aims at identifying the extent to which different

markets contribute to the process of determining the price of a traded asset. For this

purpose, several measures have been proposed in the literature. A seminal contribution

by Hasbrouck (1995) introduced the information share concept, which soon became very

popular and is used in a number of influential papers such as Baillie et al. (2002), Hasbrouck

(2003), Grammig et al. (2005), Tse et al. (2006), and Yan and Zivot (2010), among others.

The information share measures the contribution of a market’s innovation to the total

variance of the efficient underlying price innovations. Some shortcomings of this approach,

in particular the non-uniqueness in case of cross-correlated innovation terms, are addressed

by a number of extensions of the original concept, for example the information leadership

share by Putniņš (2013) and the modified and generalized information shares by Lien and

Shrestha (2009) and Lien and Shrestha (2014). Furthermore, an alternative approach

based on the common factor components introduced by Gonzalo and Granger (1995) was

proposed by Booth et al. (1999) and Harris et al. (2002).

All of these approaches assume that the price processes on different markets are co-

integrated of order 1. In particular, the single price processes are supposed to be non-

stationary. This is a necessary assumption, since the measures focus on the long-term—

that is, permanent—impact of price innovations on the price processes of different markets.

Such a permanent impact can only occur if the processes are non-stationary.

Assuming non-stationary time series is very reasonable for asset prices such as stocks,

commodities, exchange rates, etc. There are, however, financial time series which are

less likely to be non-stationary. For example, interest rates or volatilities exhibit mean-
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reverting properties, indicating stationarity.1 Thus the concepts of Hasbrouck and oth-

ers cannot be applied to this kind of financial time series without further consideration.

Nonetheless, despite these theoretical shortcomings a number of papers analyze processes

for interest rates, T-bill rates, CDS prices, or bond prices by means of information shares

and similar measures (for example, Hendry and Juselius (2001), Zapata and Fortenbery

(1996), Blanco et al. (2005), Mizrach and Neely (2008), and Fricke and Menkhoff (2011)).

Even research studies about volatility time series seems to neglect the fact of long-term

stationarity, as Shu and Zhang (2012). The reason these methods do not fail is that while

time series of interest rates are in fact stationary, they are highly persistent. As a conse-

quence, for shorter time horizons, such as a day or a month, they behave very much like

non-stationary time series. Or, stationarity is an inherent property and thus can be tested

reliably just for long enough time horizons. Moreover, standard tests for non-stationarity

very often cannot reject the null hypothesis of a unit root if time frame examined is suf-

ficiently short. But not rejecting a null hypothesis is not a sufficient condition to assume

it to be true.

While maybe sufficient for pragmatic reasons, such a measurement is not totally satisfying.

In particular, the results lack an economic interpretation: Hasbrouck’s information share

measures the contributions to the variance of the permanent component of a price shock—

but what are these contributions when we know that there is no permanent component?

1There are alternative approaches based on fractional co-integration, allowing for mean reversion and

non-stationarity at the same time, see for example Cheung and Lai (1993), Baillie and Bollerslev (1994),

Christensen and Nielsen (2006), and Dias et al. (2016). Nonetheless, volatility modelling is very often based

on stationary autoregressive processes with mean reversion, as for example in the popular time-continuous

model of Heston (1993).
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In this paper, we demonstrate how the information share concept can be extended to

stationary time series. We propose an analogous measure based on the variance decom-

position of the underlying time series. This new metric is closely related to the spillover

indices introduced by Diebold and Yilmaz (2009) and Diebold and Yilmaz (2012). Our

information share for stationary time series can be seen as the directional spillover of a

market, relative to the total spillover in the system. A new interpretation of Hasbrouck’s

original information share reveals that it is actually the limiting case of this new measure;

that is, the latter converges to the former when the underlying time series tend towards

non-stationary. As the metric can be used for both stationary and non-stationary time

series and is identical to Hasbrouck’s information share in the non-stationary case, it is a

way of generalizing the classic measure.2

We apply the generalized stationary information share to volatility time series, considering

the CBOE volatility index VIX for the US-American S&P 500, the VDAX-New volatility

index for the German DAX, and the volatility index NikkeiVI for the Japanese Nikkei

on a daily basis for about 20 years. The Augmented Dickey-Fuller test rejects a unit

root for these time series, thus the time series are stationary and the classical Hasbrouck

information share cannot be applied. The results of the empirical analysis reveal a change

in the role of the three markets for global volatility discovery in recent years: While up

to the financial crisis the VIX was dominating the other markets, with the European debt

crisis the German VDAX-New became increasingly important and now exhibits a higher

information share than the VIX. The Nikkei volatility index has experienced a strong

2It may be surprising that the new measure is not labeled general information share. This name

however refers already to a concept brought forward by Lien and Shrestha (2009), referring to a unique

decomposition of the variance-covariance matrix.
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drop in its informational importance: Before the global financial crisis it was leading the

VDAX-New, whereas in recent time its information share with respect to the VDAX-New

has fallen to only 8%.

The remainder of the paper is organized as follows. In Section 2 we outline the econometric

framework including the concept of information shares. In Section 3 we introduce the

new measure for stationary time series and discuss its analogy to the original concept.

By providing an alternative derivation of Hasbrouck’s information share based on the

concept of variance decomposition, we show that our measure can be seen as a generalized

information share. Section 4 presents some numerical examples regarding the convergence

behavior of the stationary information share to Hasbrouck’s original information share

when the time series move from the stationary to the non-stationary case. In Section 5,

we present empirical results regarding volatility discovery for the VIX, the VDAX-New,

and the NikkeiVI. Section 6 concludes.

2 Classic Information Shares

2.1 Market Microstructure Framework

In this section, we briefly sketch the standard case of non-stationary time series. The

starting point is a vector autoregression that describes the behavior of the underlying

variables yt = (y1,t, . . . , yn,t)
′:

yt = A1yt−1 +A2yt−2 +A3yt−3 . . . Akyt−k + εt, (1)

where Ai ∈ Rn×n, i = 1, . . . , k, are fixed coefficient matrices up to the maximum lag length

k, and εt denotes an (n × 1) vector representing a white noise innovation process. These

innovation terms have zero mean, E(εt) = 0, and a non-singular covariance matrix Ω.
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The classic application deals with stock prices on different markets, but one can also think

of other settings, such as common and preferred stocks, derivatives, etc. For the sake

of simplicity, we will concentrate on the bivariate case in the following, referring to an

asset on two markets, bearing in mind that other applications such as interest rates or

volatilities exist. The multivariate case is outlined in Appendix C.

Hence we have a bivariate vector of asset prices yt = (y1,t, y2,t)
′ and a two-dimensional

covariance matrix Ω = E(εt · ε
′
t) =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

. Under the condition that the asset

prices y1,t and y2,t are co-integrated of order 1, their first differences, ∆yt = yt− yt−1, can

be expressed by a vector error correction model with co-integrating vector β. In the usual

application with asset prices on different markets, the co-integrating vector can be forced

to be (1,−1)′: ∆y1,t

∆y2,t

 =

 α1

α2

 ·
(
β1, β2

)
·

 y1,t−1

y2,t−1

+

k−1∑
l=1

Γl

 ∆y1,t−l

∆y2,t−l

+

 ε1,t

ε2,t


= α · (y1,t−1 − y2,t−1) +

k−1∑
l=1

Γl∆yt−l + εt. (2)

Here, α is defined as the (2×1) error correction vector containing the speed of adjustment

coefficients of both markets to the error correction term y1,t−1−y2,t−1. Γl := −
∑k

i=l+1Ai,

l = 1, . . . , k− 1, are (2× 2) matrices of autoregressive coefficients up to the maximum lag

length k − 1.

The first part of the right hand side of Equation (2), α · (y1,t−1 − y2,t−1), expresses the

long-run equilibrium dynamics between both time series. Hasbrouck’s information share

is based on this long-run dynamics. The second part,
∑k−1

l=1 Γl∆yt−l, depicts the short-run

dynamics, or the transitory deviations of the system, induced by market imperfections or
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other short-term influences.

According to Beveridge and Nelson (1981) and Stock and Watson (1988), not only the

first differences, but also the integrated levels yt of a co-integrated I(1) time series can be

decomposed into a permanent component and a transitory component. The permanent

or common component corresponds to a random walk with zero drift and the transitory

or cyclical component is a zero-mean covariance-stationary process. Based on the vector

moving average representation of ∆yt,

∆yt = Ψ(L)εt, (3)

where Ψ(L) is a matrix polynomial in the lag operator, yt can be decomposed into:

yt = y0 + Ψ(1)
t∑

s=1

εs + Ψ∗(L)εt (4)

(Johansen (1991)). Ψ(1) is the sum of the moving average matrices, which can be expressed

as Ψ(1) = β⊥Πα′⊥ with a scalar Π = (α′⊥(I−
∑k−1

l=1 Γl)β⊥)−1 ∈ R and Γl defined as above,

and Ψ∗(L)εt is a zero-mean covariance stationary process with matrices Ψ∗s = −
∑∞

i=s+1 Ψi.

If β = (1,−1)′, we have β⊥ = (1, 1)′, thus Ψ(1) consists of two equal rows. The long-run

impact of a single innovation εt is therefore identical for both time series, yielding the

common trend representation (Stock and Watson (1988)):

yt = y0 + (1, 1)′ · ψ ·
t∑

s=1

εs + Ψ∗(L)εt, (5)

where ψ := (ψ1,ψ2) is a (1×2) vector orthogonal to α′ representing the common row vector

for the sum of the moving average matrices Ψ(1). The permanent or common component,

(1, 1)′ ·ψ ·
∑t

s=1 εs, incorporates the long-run impact of disturbances due to new innovations

εt and is equal to all markets. The common trend representation of Stock and Watson

(1988) is the key for the construction of Hasbroucks’s information share measure presented

in the following section.
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2.2 The Information Share

Price discovery is driven by the question of which market incorporates new information first

and thus takes the leadership. Because of arbitrage considerations, asset prices are linked

by a common factor, the “efficient price” (Hasbrouck (1995)), while traded on parallel

markets. As the efficient price is unobservable, market microstructure research tries to

identify where exactly price discovery takes place by estimating the relative contribution

of each market to the variance of this common factor.

Referring to the Stock-Watson representation (5), the term ψεt represents the long-term,

permanent impact of an innovation εt on the common efficient price. Although the long-

run impact is equal in both markets, the relative contributions of the single markets to

this common efficient price are not. The basic idea of Hasbrouck’s information share

measure is to break down the variance of this permanent impact of an innovation on

the efficient price, ψεt, according to the different markets. Thus, the information share,

IS, measures the contributions of the markets to the variation of the common factor,

accounting for different innovation terms and also for a possible correlation between the

innovations in the information set. In contrast to the price discovery measure proposed

by Harris et al. (2002), the IS not only incorporates the speed of adjustment vector α,

but also the structure of the covariance matrix Ω.

The variance of the long-term impact of an innovation, ψ εt, amounts to

V ar(ψ εt) = ψΩψ′ = ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ρψ1ψ2σ1σ2. (6)

In the simplest case there is no cross correlation between the two markets, that is, ρ = 0.

In this situation, the relative contributions of the two markets to the total variance and
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thus the information shares for both markets are given by

IS1 =
([ψΩ]1)2

ψΩψ′
=

ψ2
1σ

2
1

ψ2
1σ

2
1 + ψ2

2σ
2
2

, IS2 =
([ψΩ]2)2

ψΩψ′
=

ψ2
2σ

2
2

ψ2
1σ

2
1 + ψ2

2σ
2
2

= 1− IS1. (7)

In the general case, there is contemporaneous correlation between the innovations in the

different markets, resulting in a non-diagonal covariance matrix Ω. That means the in-

novation terms affect each other and blur the respective influence of the single markets.

Hasbrouck (1995) suggests calculating upper and lower bounds for the information share

in this case. By using the Cholesky decomposition, Ω = MM ′, with a triangular matrix

M , the innovation terms can be orthogonalized, leaving the “pure” variance of one market

unaffected by the correlation to the other market. As the Cholesky decomposition always

attaches a greater weight to the first market, the resulting measure depends on the order of

the markets. Upper and lower bounds (expressed by dISe and bISc, respectively) for the

information share are calculated by switching the order of the markets. In the bivariate

case, the lower bound bISc is simply the complement to the upper bound of the other

market:

dIS1e =
([ψM ]1)2

ψΩψ′
=

(ψ1σ1 + ψ2σ2ρ)2

ψ2
1σ

2
1 + ψ2

2σ
2
2 + 2ρψ1ψ2σ1σ2

, bIS2c = 1− dIS1e. (8)

Booth et al. (2002) suggest defining the information share of one market as the average

value of the upper and lower bound.3 Usually the information share is calculated based

on the VECM representation (2), using the relation that ψ is perpendicular to α.

3It is worth noting that the higher the cross-correlation between the two markets, the higher the distance

between the upper and lower bounds of one market and the less reliable is the average of the two bounds as

a price discovery measure. However, our main concern is not with problems of contemporaneous correlation

between innovation terms but with stationary time series.
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3 Information Shares in Stationary Time Series

3.1 Failure of the Classic Information Share

When the price time series are stationary, a long-run impact of innovations on a common

fundamental price represented by the identical random walk component in the Stock-

Watson decomposition (5) no longer exists. Thus the long-run influence of every single

innovation, εt, turns to zero and, consequently, the main idea of the IS measure is pointless:

It is not possible to decompose the variance of the innovation in the efficient price when

there is no permanent impact.

A similar problem arises when considering the VECM representation (2). If both time

series yt = (y1,t,y2,t)
′ are stationary, a unique decomposition of the long-run equilibrium

represented by α · β′ no longer exists. For co-integrated I(1) processes, there is a co-

integrating vector β so that β′yt is stationary, which is unique up to a scalar. In contrast,

when the original time series are already stationary, the combination β′yt remains station-

ary for any arbitrary choice of β. With an ambiguous choice of the co-integrating vector

β, there is also no unique error correction vector α. Hence, also the vector ψ = α
′
⊥ that

defines the information share is arbitrary.4

4The described non-uniqueness that emerges with stationary time series is different from the non-

uniqueness in the case of cross-correlation between the innovation terms. While many researchers, including

Lien and Shrestha (2009), Kehrle and Peter (2013), and Lien and Shrestha (2014), suggest solutions

for the latter problem when innovation terms are correlated, we will focus on the non-uniqueness of

the decomposition in the case of stationary time series, and equivalently, the absent long-run impact

of innovations εt.
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3.2 The Information Share for Stationary Time Series

Because an explicit long-run impact does not exist in the case of stationary time series,

any measure of information share necessarily focuses on transitory influences. The impact

of each innovation term, εt, on the system of asset prices tends towards zero when the

time horizon tends towards infinity. As the measure is intended to be closely related to

the classic information share which decomposes the variance of the long-term impact of

innovations, we consider the variance of an impact of innovations with finite time horizon

and take the resulting ratio of variances to the limit. In contrast to the non-stationary

case, there is no single common factor which could be used for a variance decomposition.

Instead, we need to consider the cross-influences of innovation terms for both markets on

each other. This is done by the well-known variance decomposition for stationary time

series, which we use as the basis for the stationary information share.

Under the condition of stationarity, we can transform the general VAR model (1) into a

vector moving average model:

yt = Ψ(L) · εt, (9)

with Ψ(L) := A−1(L) representing the inverse of the original polynomial in the lag operator

A(L) including all fixed coefficient matrices up to the maximum lag length k. Note that in

contrast to A(L), the inverse operator Ψ(L) = Ψ0 +Ψ1 ·L+Ψ2 ·L2 + · · · is not necessarily

finite. εt ∼ N (0,Ω) depict the innovation terms with covariance structure as above.

In general, the innovation terms are cross-correlated. To cope with this issue, we use, as

in the non-stationary case, the Cholesky decomposition Ω = M ·M ′:

yt = Ψ(L) ·M ·M−1 · εt = Φ(L) · wt =

∞∑
p=0

Φp · wt−p, (10)

with Φ(L) = Φ0 + Φ1 · L + Φ2 · L2 + · · · representing the modified polynomial in the
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lag operator given by the set of Φp = Ψp ·M for p = 0,1, . . .. Applying the Cholesky

matrix to the original innovation vector forces the innovation terms, wt = M−1 · εt, to be

orthonormal; that is, all shocks are uncorrelated with unit variance, wt ∼ N (0,I). As with

the classic information share, applying the Cholesky decomposition leads to non-unique

results, as they depend on the order of markets. Hence, we get upper and lower bounds

of information shares for the stationary time series as in the classic setting.

The concept of variance decomposition is to consider the forecast error of the process and

to split up its variance according to the influence of different innovations on the related

markets. As all innovation terms have a mean of zero, the τ -step ahead forecast at forecast

origin t only depends on past realizations of innovations:

Et[yt+τ ] =
∞∑
p=τ

Φp · wt+τ−p. (11)

The difference between the realized value yt+τ and the forecast Et[yt+τ ] is the forecast

error:

FE(yt+τ ) = yt+τ − Et[yt+τ ] =

τ−1∑
p=0

Φp · wt+τ−p. (12)

It consists solely of the realizations of the innovations between forecast origin t and forecast

horizon t + τ . In a bivariate system we can decompose the (2 × 1) forecast error vector

into two parts, corresponding to the forecast error components of the respective markets:

FEj(yt+τ ) = yj,t+τ − Et[yj,t+τ ] =

τ−1∑
p=0

φ
(p)
j1 · w1,t+τ−p +

τ−1∑
p=0

φ
(p)
j2 · w2,t+τ−p, (13)

where the index j ∈ {1,2} represents the respective market and φ
(p)
ij , i,j ∈ {1,2}, are the

coefficients of the matrices Φp. The forecast error component of the first market is influ-

enced by innovation terms of the second market and vice versa. Analogous to Hasbrouck’s

decomposition of the impact on the long-term variance, we consider the variance of the
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forecast error to be decomposed:

V ar(FEj(yt+τ )) = E[(yj,t+τ − Et[yj,t+τ ])2]

= E


τ−1∑
p=0

φ
(p)
j1 · w1,t+τ−p +

τ−1∑
p=0

φ
(p)
j2 · w2,t+τ−p

2


=
τ−1∑
p=0

(
φ

(p)
j1

)2
+
τ−1∑
p=0

(
φ

(p)
j2

)2
. (14)

The variance of the forecast error of one market is caused by two different kinds of innova-

tion terms: disturbances due to a market’s own innovations and disturbances due to the

other markets shocks.

When the prediction length is extended to t+∞, by comparing Equations (10) and (12),

we notice that the forecast error converges to the process itself—obviously, as the forecast

tends towards zero for a stationary process. Hence, the variance of the forecast error

converges to the variance of the process. For the construction of information shares, we

consider the contributions of one market to the variance of the respective other market:

η12 :=

∑∞
p=0(φ

(p)
12 )2∑∞

p=0(φ
(p)
11 )2 +

∑∞
p=0(φ

(p)
12 )2

, η21 :=

∑∞
p=0(φ

(p)
21 )2∑∞

p=0(φ
(p)
21 )2 +

∑∞
p=0(φ

(p)
22 )2

. (15)

We can interpret η12 as the part of variance of the first market due to innovation terms

of the second market; analogously, η21 represents the portion of variance of the second

market due to the first market’s innovation terms.

These two values do not yet represent relative impacts from one market to another, but

relative variance impacts on the respective other markets. Based on these relative impacts

we construct the stationary information share SIS by taking the ratio again:

dSIS1e :=
η21

η12 + η21
, bSIS2c :=

η12

η12 + η21
. (16)

Note that these values represent upper bounds for the first market and lower bounds for

the second market, according to the definition of the Cholesky matrix M . The respective
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other bounds are obtained by altering the order of the two markets analogously to the

classic case.

The stationary information share SIS1 measures the influence of the first market on the

second market, η21, relative to the aggregated cross-influences of both markets on each

other, η21 +η12. Vice versa, SIS2 represents the influence of the second market on the first

market, relative to the aggregated cross-influences. Comparing the interpretation of the

stationary information share (16) to Hasbrouck’s classic information share (8), we see one

important difference: In the non-stationary case, there is a common trend component, the

common efficient price. For the classic information share IS, we decompose the variance

of the common efficient price, attributing the relative shares of the respective markets to

their contribution in the price discovery process. In the case of stationary time series,

there is no common efficient price. We therefore decompose the variance of the whole

process and calculate cross-influences of the respective markets on each other to obtain

the stationary information share SIS.

The stationary shares is closely related to indices used in the literature on spillover effects.

Diebold and Yilmaz (2009) construct a “spillover index” S(τ) which measures the total

effects of cross variances in a system with a finite τ -step forecast horizon, that is,

S(τ) :=

∑τ−1
p=0(φ

(p)
12 )2 +

∑τ−1
p=0(φ

(p)
21 )2∑τ−1

p=0(φ
(p)
11 )2 +

∑τ−1
p=0(φ

(p)
12 )2 +

∑τ−1
p=0(φ

(p)
21 )2 +

∑τ−1
p=0(φ

(p)
22 )2

. (17)

Diebold and Yilmaz (2012) extend this idea in two directions: First, they apply the gen-

eralized variance decomposition according to Koop et al. (1996) and Pesaran and Shin

(1998), which does not rely on a Cholesky decomposition of the covariance matrix and

is therefore independent of the order of the markets. Second, instead of a total index

they construct “directional spillover” indices, which attribute the total spillover to pair-
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wise cross-influences. In the case of a diagonal covariance matrix (when the Cholesky

decomposition is also diagonal and the generalized variance decomposition equals the

standard decomposition), the directional spillover indices S
(τ)
i are equivalent to our cross-

contributions of variances when the forecast horizon τ is taken to the limit:

S
(∞)
1 =

η21

2
, S

(∞)
2 =

η12

2
. (18)

Thus, in this special case, the stationary information shares can be expressed in terms of

the directional spillover indices:

SIS1 =
S

(∞)
1

S
(∞)
1 + S

(∞)
2

, SIS2 =
S

(∞)
2

S
(∞)
1 + S

(∞)
2

. (19)

As discussed, building these ratios leads to information shares that sum up to 1. Instead of

using the generalized VAR framework, we rely on the Cholesky decomposition and calcu-

late upper and lower bounds by changing the order of markets as with the classical infor-

mation shares. The generalized variance decomposition would attribute cross-correlation

effects to the different markets in a way which is not necessarily justifiable. In the follow-

ing section we show that our approach is actually consistent with the Hasbrouck (1995)

approach.

3.3 Convergence to the Hasbrouck (1995) Information Share

Though somehow similar, the constructions of classical and stationary information shares

seem to have substantial differences. In this section, we show that the approach presented

for information shares in the case of stationary time series in fact leads to the Hasbrouck

information share when applied to non-stationary time series. In this sense, our measure

is a generalization of the classic concept. We derive the IS by using the technique of

variance decomposition. However, as the process variance is not finite for non-stationary
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time series, ratios in terms of Equation (15) have to be built for forecast errors with a

finite time horizon and then taken to the limit.

So in the following, yt represents a system on non-stationary, co-integrated time series.

For ease of exposition we assume that Ω is diagonal, so there is no contemporaneous

correlation between the innovation terms. We present the general case at the end of this

section. Instead of decomposing the variance of the impact of a shock on the common

efficient price—according to the original definition of the information share—we proceed

analogously with the construction of the stationary information share and consider the

variance of the forecast error. Recalling the common trend representation (5), we have

yt = y0 + Ψ(1) ·
t∑

s=1

εs +
∞∑
j=0

Ψ∗j εt−j (20)

with Ψ(1) =
∑∞

i=0 Ψi representing the moving average coefficient matrices with equal rows

ψ and Ψ∗j being the transitory matrices resulting in the zero-mean covariance stationary

process.

As in the stationary case, we can derive the forecast error at time t for a forecast horizon

of τ periods as

FE(yt+τ ) = Ψ(1) ·
t+τ∑
s=t+1

εs +

τ−1∑
j=0

Ψ∗j εt+τ−j = Ψ(1) ·
t+τ∑
s=t+1

εs +

t+τ∑
s=t+1

Ψ∗t+τ−s εs. (21)

Without loss of generality, we set t = 0. Computing the variance of the forecast error, we

obtain for the two markets j ∈ {1,2}:

V ar
(
FEj(yτ )

)
= V ar

[Ψ(1)]j ·
τ∑
s=1

εs

+ V ar

 τ∑
s=1

[Ψ∗τ−s]j εs


+ 2Cov

[Ψ(1)]j ·
τ∑
s=1

εs;

τ∑
s=1

[Ψ∗τ−s]j εs


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= τ · [Ψ(1)]j Ω [Ψ(1)]′j +

τ∑
s=1

[Ψ∗τ−s]j Ω [Ψ∗
′
τ−s]j + 2

τ∑
s=1

[Ψ(1)]j Ω [Ψ∗
′
τ−s]j

= τ · (ψ2
1σ

2
1 + ψ2

2σ
2
2) +

τ−1∑
s=0

(
ψ

(s)∗
j1

)2
· σ2

1 +

τ−1∑
s=0

(
ψ

(s)∗
j2

)2
· σ2

2

+ 2 ·

ψ1 ·
τ−1∑
s=0

ψ
(s)∗
j1 · σ

2
1 + ψ2 ·

τ−1∑
s=0

ψ
(s)∗
j2 · σ

2
2


=

τ · ψ2
1 +

τ−1∑
s=0

(
ψ

(s)∗
j1

)2
+ 2 · ψ1 ·

τ−1∑
s=0

ψ
(s)∗
j1

 · σ2
1

+

τ · ψ2
2 +

τ−1∑
s=0

(
ψ

(s)∗
j2

)2
+ 2 · ψ2 ·

τ−1∑
s=0

ψ
(s)∗
j2

 · σ2
2, (22)

with [Ψ(1)]j and [Ψ∗τ−s]j referring to the j-th-row of the matrices Ψ(1) and Ψ∗τ−s. Con-

sidering contributions of the two markets to each other’s variances, we can identify the

impact of the i-th market by the terms collected with σ2
i . For a finite time horizon τ we

get:

η
(τ)
12 =

(
τψ2

2 +
τ−1∑
s=0

(
ψ

(s)∗
12

)2
+ 2ψ2

τ−1∑
s=0

ψ
(s)∗
12

)
σ2

2(
τψ2

1 +
τ−1∑
s=0

(
ψ

(s)∗
11

)2
+ 2ψ1

τ−1∑
s=0

ψ
(s)∗
11

)
σ2

1 +

(
τψ2

2 +
τ−1∑
s=0

(
ψ

(s)∗
12

)2
+ 2ψ2

τ−1∑
s=0

ψ
(s)∗
12

)
σ2

2

(23)

and η
(τ)
21 analogously.

When τ tends towards infinity, the variances also tend towards infinity due to the non-

stationarity of the process. However, the ratios of variance contributions may remain finite.

As the process Ψ∗(L)εt is covariance stationary, the sum of squared coefficients
(
ψ

(s)∗
ji

)2

is bounded by a constant cji. Furthermore, using the Cauchy-Schwarz inequality, we can

bound the mixed terms by5

ψi ·
τ−1∑
s=0

ψ
(s)∗
ji ≤

√
τ · ψi ·

√√√√τ−1∑
s=0

(
ψ

(s)∗
ji

)2
≤
√
τ · ψi ·

√
cji. (24)

5In the Cauchy-Schwarz inequality
∑τ−1
s=0 (as · bs) ≤

√∑τ−1
s=0 a

2
s ·

√∑τ−1
s=0 b

2
s set as = 1 and bs = ψ

(s)∗
ji .
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For a forecast horizon τ tending towards infinity, the ratio η
(τ)
12 is dominated by the terms

with τ , whereas terms with
√
τ and constants can be neglected.Thus we obtain a finite

value for the relative contributions of the markets to the variances in the limit:

η12 = lim
τ→∞

ητ12 =
τψ2

2σ
2
2

τψ2
1σ

2
1 + τψ2

2σ
2
2

=
ψ2

2σ
2
2

ψ2
1σ

2
1 + ψ2

2σ
2
2

(25)

and analogously

η21 =
ψ2

1σ
2
1

ψ2
1σ

2
1 + ψ2

2σ
2
2

. (26)

As in the stationary case, η12 is the part of the variance of the forecast error of the first

market due to the second market’s innovation terms, divided by the total variance of the

first market’s forecast error, when the forecast horizon tends towards infinity. An impor-

tant point to note is that in the non-stationary case, the denominators of η12 and η21 are

identical, as they represent the limit cases of a forecast horizon tending towards infin-

ity. Hence, in the ratio of these contributions which we used to construct the stationary

information share, the denominator cancels out, yielding Hasbrouck’s information share

(7):

SIS1 =
η21

η12 + η21
=

σ2
1 · ψ2

1

σ2
1 · ψ2

1 + σ2
2 · ψ2

2

= IS1, SIS2 =
η12

η12 + η21
= IS2. (27)

This result ensures the convergence of our new measure SIS to Hasbrouck’s information

share IS in the border case of non-stationarity and diagonal Ω structure. The proof

of convergence for a non-diagonal covariance matrix Ω proceeds analogously, using the

Cholesky decomposition M as in Section 2.2. We start with Equation (22) by setting

Ω = M ·M ′:

V ar
(
FEj(yτ )

)
= τ · [Ψ(1)]jM ·M ′ [Ψ(1)]′j +

τ∑
s=1

[Ψ∗τ−s]jM ·M ′ [Ψ∗
′
τ−s]j + 2

τ∑
s=1

[Ψ(1)]jM ·M ′ [Ψ∗
′
τ−s]j
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= τ · [Φ(1)]j · I · [Φ(1)]′j +

τ∑
s=1

[Φ∗τ−s]j · I · [Φ∗
′
τ−s]j + 2

τ∑
s=1

[Φ(1)]j · I · [Φ∗
′
τ−s]j , (28)

with [Φ(1)]j = [Ψ(1) · M ]j and [Φ∗τ−s]j = [Ψ∗τ−s · M ]j . As in Section 3.2, we obtain

orthonormal innovation terms wt = M−1εt which are uncorrelated with unit variance.

Thus by following the derivation in the uncorrelated case, we get for Equation (27):

dSIS1e :=
φ2

1

φ2
1 + φ2

2

, bSIS2c :=
φ2

2

φ2
1 + φ2

2

, (29)

with  φ1

φ2


′

= [Ψ(1) ·M ]j = ψ ·M =

 ψ1 · σ1 + ψ2 · σ2 · ρ

ψ2 · σ2 ·
√

1− ρ2


′

. (30)

So also in the general case with correlated innovation terms, we obtain the same limit

result as with the original definition of the information share in Equation (8), proofing the

equivalence of our new measure SIS with Hasbrouck’s information share IS in the border

case of non-stationarity.6

4 Numerical Convergence Behavior

In this section, we provide some numerical examples how the stationary information share

converges to Hasbrouck’s information share. For this purpose, we construct a stationary

VAR(1) process with matrix

A1 =

1− a12 −∆ a12

a21 1− a21 −∆

 , (31)

with minor diagonal elements a12 and a21, and a convergence parameter ∆ > 0. One of the

roots of the characteristic polynomial of A1 is 1−∆. By letting ∆→ 0, the root approaches

6In Appendix A we additionally provide a more technical proof for the convergence of the stationary

information share (16) to the classic information share (8) in case of a VAR(1)-process.
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unity, thus the process converges from the stationary case to the non-stationary case. As

an additional example, we furthermore consider a VAR(5) process with matrices Ai for

i = 1, . . . 5 by setting

Ai =


25−i

25−1
− a12+∆

5
a12
5

a21
5

25−i

25−1
− a21+∆

5

 . (32)

The idea of this construction is to have an impact that decreases with lag order, achieved by

the term 25−i

25−1
, while the sum of the Ai equals the matrix A1 in the VAR(1) process. Hence,

we have the same convergence to a unit root of the characteristic polynomial and thus

from the stationary to the non-stationary case when ∆ tends towards zero. Appendix B

demonstrates the structure of the Ai and the calculation of the SIS by an example.

In the following, we analyze the convergence from SIS to IS. Note that depending on

the convergence parameter ∆, by construction of the Ai matrices the setting refers to sub-

stantially different processes, not to equivalent processes sampled at different frequencies.

Without loss of generality, we demonstrate numerical convergence by referring to the first

market, so strictly speaking we do not compute SIS and IS, but the upper bounds for

the first market, dSIS1e and dIS1e.

As mentioned, we consider lag orders of one and five, and we choose different minor

diagonal elements a12, a21 ∈ {0.1,0.3}. Moreover, we consider potential contemporaneous

correlation (ρ = 0.7) in the innovation terms εt and assume different variances (σ1 = 0.2

and σ2 ∈ {0.1,0.2}). We obtain 24 different cases listed in Table 1 representing all potential

variations of the underlying VAR matrices Ai. The results of numerical convergence of

the 24 cases are presented in Figures 1 and 2.

Insert Table 1 about here.
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Insert Figure 1 and Figure 2 about here.

The left columns of each subfigure (1(a), 1(b), 2(a), 2(b)) refer to the VAR(1) processes,

the right columns to the VAR(5) processes. We exemplarily take a closer look at the

situation with identical minor diagonal elements a12 = a21 = 0.1 (Figure 1(a)). In the

first row, also the variance terms σ1 and σ2 are identical and there is no cross-correlation. It

is therefore not surprising that both measures, IS and SIS, are identical at 0.5 in all cases.

In the second row, the innovation term variance of the second market is lower, resulting

in a noticeable rise in both information share measures of the first market. Moreover, we

perceive an approach of the dotted line, representing our new measure in the stationary

case, starting at approximately SIS = 0.9, to the bold line, representing Hasbrouck’s

reference value in the non-stationary case (IS = 0.8). Similar results can be found in the

third row, where error terms exhibit both different variance and cross-correlation. Because

the Cholesky decomposition attaches greater weight to the first market, the correlation

term ρ = 0.7 increases both information share measures further: The dashed line starts at

about SIS = 0.98 and decreases to the reference value of IS = 0.93. Finally, we remark

that the results are fairly consistent through the two columns, representing the different

maximum lag orders k = 1 and k = 5.

The other situations of minor diagonal elements (Subfigures 1(b), 2(a), and 2(b)) exhibit

a qualitatively similar convergence behavior and are therefore not discussed in detail.

Instead, we consider the log-log graphs of the differences |IS − SIS| with respect to the

convergence parameter ∆ in Figure 3.

Insert Figure 3 about here.

The four graphs of Figure 3 correspond with the four subfigures 1(a)–2(b) and thus differ
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by the the minor diagonal elements. The six graphs of each subfigure 1(a)–2(b) are each

represented by a convergence line in the respective graph of Figure 3.7 VAR(1) processes

are shown with solid lines, VAR(5) processes with dashed lines.

Together with Figure 1(b), the second graph of Figure 3 shows that with asymmetric

minor diagonal elements the difference |IS−SIS| is about a factor ten smaller than in the

symmetric case of Figure 1(a). This can be explained by the high reference value of the

IS, particularly when also the variances are asymmetric (IS = 0.989), which leaves little

leeway for deviations. The same can be observed with switched minor diagonal elements

and identical variances (first row of Figure 2(a), corresponding to the respective line in the

third graph of Figure 3). In contrast, with asymmetries in the minor diagonal elements and

the variances in opposite directions (second and third row of Figure 2(a)), the deviations

are the largest. Finally, for larger symmetric minor diagonal elements (Figure 2(b) and

fourth graph of Figure 3), the deviations are similar to the first setting, albeit a little bit

smaller. Regarding the VAR(1) and VAR(5) processes, the convergence behavior is quite

similar in all situations.

The log-log plots furthermore allow a determination of the order of convergence. The

stationary information share SIS(∆) converges at order a to Hasbrouck’s information

share IS = SIS(0) if there exists a constant c > 0 such that

|SIS(∆)− IS| ≤ c ·∆a (33)

for all sufficiently small ∆ ∈ R+. If a = 1, SIS is said to converge linearly to IS. Taking

7For the first row of Figure 1(a) and Figure 2(b) the differences are zero and thus not meaningful in a

log-log scale, hence the corresponding graphs only show four lines.
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logarithms at each side of Equation (33) yields

log(|SIS(∆)− IS|) ≤ log(c) + a · log(∆), (34)

hence, the order of convergence is graphically given by the slopes of the convergence line

on a log-log scale. We see in Figure 3 that the slope a of the lines are close to one. That

means we obtain a linear order of convergence of SIS to IS.

5 Application: Volatility Discovery Around the World

5.1 Review of Empirical Literature

In this section, we discuss the results of an empirical application, analyzing information

shares of volatility indices of different countries: the US, German, and Japanese market.

Effects of volatility spillovers between different countries or regions have been analyzed in

the literature by numerous papers. Most of them, however, focus on realized volatilities

instead of implied volatilities as condensed in volatility indices such as the VIX. Semi-

nal contributions are those of Engle et al. (1990), who find a “meteor shower effect”—a

phenomenon of intra-daily volatility spillovers from one market to the next—for the influ-

ence from news in the yen/dollar exchange rates to volatility in the Japanese market, and

Hamao et al. (1990), who utilize ARCH models, finding strong volatility spillover effects

from the US and the UK stock markets to the Japanese market and vice versa.

The predominant methods for analyzing spillover effects are Granger causality tests and

insights from (structural) VAR or GARCH models. While these methods allow an identifi-

cation of a direction of spillover or a quantification of cross-effects, respectively, they do not

provide a measure of relative informational leadership such as the information share. As

discussed, most closely related to our metric are the spillover indices used by Diebold and
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Yilmaz (2009) and Diebold and Yilmaz (2012). In contrast to these indices, the stationary

information share allows for attributing relative shares of informational leadership.

Especially regarding our three considered markets—the US, Germany, and Japan—, pre-

vious literature mostly finds a dominance of the US market. Diebold and Yilmaz (2009)

show that innovations in US volatility are responsible for 26.9 percent of the error variance

in forecasting German volatility and for 2.7 percent of the error variance in forecasting

Japanese volatility. On the other side, innovations in German volatility are responsible

for only 1.9 percent of the error variance in forecasting US volatility and even less in

forecasting Japanese volatility (0.7 percent). The Japanese influence on German and US

volatility seems to be negligible (below 1 percent). Dimpfl and Jung (2012) use structural

VAR and GARCH models to show that there are spillovers from the US market to the

Japanese market and from the Japanese market to the European market in the pre-crisis

period 2002–2006. Also Ehrmann et al. (2011) confirm the dominant role of the US mar-

ket. Studying transmission between money, bond, and equity markets, they find that US

markets explain, on average, more than 25% of European market movements in the period

1989–2004, whereas European markets account for 8% of the variance of US asset prices.

Slightly different evidence is provided by Jung and Maderitsch (2014), who investigate

volatility transmission between stock markets in Hong Kong, Europe, and the United

States from 2000 to 2011 using a Heterogeneous Autoregressive Distributed Lag Model.

Concerning the US market, they find evidence for a strong positive statistically signifi-

cant volatility spillover from Europe. The European market, on the other hand, is also

influenced by the US market, but not as much as vice versa. Also Clements et al. (2015)

report a higher importance of Europe for global volatility discovery for more recent data

(2005–2013). They investigate the effects between foreign exchange, equity, and bond fu-
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ture markets in the US, Japan, and Europe by a multivariate GARCH model, measuring

bivariate volatility spillovers from one country to the proceeding zone. While US news

seems to have only small but significant explanatory power on Japanese volatility, there

is a huge significant spillover from Europe to the US market.

While the previously mentioned studies focus on realized volatilities, only a few papers

analyze implied volatility indices. The two concepts are closely related, however, there

is an important difference with respect to the interpretation of the results: Spillover of

realized volatilities refers to short-term reactions of the stock markets, whereas implied

volatility indices refer to mid-term expectations of volatility. Aboura (2003) analyzes

implied volatility indices for the US, the French, and the German market in the years

1994–1999. In line with other results for realized volatilities, she finds a predominant role

of the VIX compared to the VDAX and the French volatility index VXI. Konstantinidi

et al. (2008), considering European and US implied volatility indices in the period 2001–

2007, validate this result by showing that the information contained in all implied volatility

indices can be used to predict each European index separately but not the US index.

More timely data covering the recent crises underline the importance of the German

market and the decreasing influence of US market volatility. Narwal et al. (2012) use a

BEKK-GARCH model to examine the bivariate spillover and transmission of the newly

developed implied Indian volatility index on the US volatility index VIX, on the German

volatility index VDAX, and other indices in the period 2007–2011. They find traces of

unidirectional shock spillover from Indian volatility to the VIX, while spillovers are running

unidirectional from Germany to India. On the contrary, Gupta and Kamilla (2015) report

that the VIX also in the most recent period 2011–2013 has the highest causality effects

over its other peer indices and explains approximately 11% or 5% of the fluctuation of

24



German and Japanese volatility, respectively. However, these findings might be flawed by

the method of multivariate variance decomposition, which heavily depends on the ordering

of the markets.

5.2 Empirical Findings

We consider the CBOE volatility index VIX for the US S&P 500, the VDAX-New for the

German DAX, and the NikkeiVI for the Japanese Nikkei 225. Data is taken from Thomson

Reuters on a daily basis of closing prices, starting in June 1996 (VIX and VDAX-New),

respectively in January 1998 (NikkeiVI), and ending in June 2016. To investigate potential

changes in volatility discovery over time, we divide the whole period in 4 subperiods,

referring to crisis periods as defined by Ballester et al. (2016):

• The pre-crisis period starts in 1996/1998 and ends at 2007/07/17, the date when

Bear Stearns disclosed that its major subprime hedge fund had lost nearly all of its

value.

• The global financial crisis starts with the Bear Stearns distress and results in the

European sovereign debt crisis, which starts with the EU summit in October 2009.

• The European debt crisis ends with a package for the Bank of Cyprus at 2013/03/19.

• The post-crisis period runs from 2013/03/20 to the end of the data sample in June

2016.

An overview of the three different volatility time series over the entire period is presented

by Figure 4. All volatility indices reach their maxima of 80% or more within the global

financial crisis, while the minima are reached in the pre-crisis period.
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Insert Figure 4 about here.

Descriptive statistics, correlations, and results of Augmented Dickey-Fuller tests for sta-

tionarity are reported in Table 2. Correlations between the daily index returns tend to

increase in crisis periods. The correlation between VIX and VDAX-New is the highest,

followed by the correlation between VDAX-New and NikkeiVI, and the lowest correlation

is observed between VIX and NikkeiVI.

Insert Table 2 about here.

For all indices, the null hypothesis of a unit root is rejected at a significance level of

1% for the entire period and at least at the 10% level for the non-crisis subperiods. In

the second subperiod, during the global financial crisis, non-stationarity is not rejected

for all indices, while in the third subperiod, the European sovereign debt crisis, it is not

rejected for the VIX and the VDAX-New. This could be explained by the high increase

in volatilities during the crisis periods and by the solicited fact that the tested time series

could be too short to deliver reasonable results. Remember that stationarity is an inherent

property of the time series which can be tested reliably just for long enough time horizons.

Concluding, we can assume stationarity for all three volatility time series.

We compute bivariate stationary information shares.8 Results are presented in Table 3.

The table reports upper and lower bounds of the SIS for each of the three pairs of markets

for the entire period and the four subperiods. Following Baillie et al. (2002), we consider

the mean of the upper and lower bound as the actual information share of a market. By

this, correlation effects are allocated evenly to the respective markets. However, as we

have no further information of the direction of correlation effects, this allocation is only

8We refrain from considering the three-markets system as a whole because of too high cross-correlations.
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based on a simple rule of thumb. We therefore label a market as significantly dominating

another markets in terms of volatility discovery if the lower bound of the market is still

larger than the upper bound of the other market.

Insert Table 3 about here.

Considering the entire period, the VIX has the largest information shares with a mean of

70% relative to the VDAX-New and 73% relative to the NikkeiVI, however, only the latter

being significant. Comparing the VDAX-New and the NikkeiVI, with mean information

shares of 58% and 42% there is no clear leader.

This opaque picture becomes clearer when we look at the different subperiods. Within

the pre-crisis period until 2007, we observe a strong significant leadership of the VIX with

respect to the VDAX-New with an SIS of 89%. The VIX also dominates the NikkeiVI

with an SIS of 71%, which is slightly smaller than in the entire period. Regarding the

VDAX-New and the NikkeiVI, in contrast to the entire period we observe a larger SIS for

the NikkeiVI with 61%, which is significant. In interpreting these results one should keep

in mind that the “pre-crisis” period actually covers Japan’s lost decade in the aftermath

of the Japanese crisis in the early 1990s.

During the global financial crisis, the dominance of the VIX becomes even more pro-

nounced with SIS values of 90% with respect to the VDAX-New and 95% with respect

to the NikkeiVI. The relation between the VDAX-New and the NikkeiVI is switched to a

leadership of the German volatility index with an SIS of 69%, albeit not significant.

Within the following European debt crisis, the importance of the German market in terms

of volatility discovery becomes stronger. The VDAX-New is now dominating the NikkeiVI

significantly with an SIS of 78%. With respect to the VIX, the leadership of the US market
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is no longer existent; the respective SIS values of 55% and 45% indicate equable influences

in both directions. Further, the VIX still dominates the NikkeiVI with an SIS of 84%.

The trend of an increasing importance of the German market continues in recent years

in the “post-crisis” period. The VDAX-New now exhibits an SIS of 70% with respect

to the VIX. The SIS with respect to the NikkeiVI rises to 92%. Again, we further see a

leadership of the VIX over the NikkeiVI with an SIS of 81%.

The core findings can be summarized as follows:

• Regarding the entire period, the VIX is the most important index in terms of volatil-

ity discovery with SIS values of 70% and 73% with respect to the VDAX-New and

the NikkeiVI, respectively.

• The relevance of the VDAX-New has continuously increased, in particular with the

European debt crisis and its aftermath. While previously being dominated by the

other indices, the VDAX-New now has a higher information share compared to the

NikkeiVI and also the VIX.

• The NikkeiVI had a higher information share compared to the VDAX-New in the

pre-crisis period until 2007. It is now dominated by both the VIX and the VDAX-

New.

These results are in line with previous literature, which has reported a dominance of

US volatility in previous periods, which has decreased in favor of European markets, in

particular the German market, in more recent periods. Our findings provide a clearer

picture of this change in global volatility discovery and allow an interpretation in terms of

the origin of a crisis: Those regions which are most influenced by crises tend to send shock

waves around the world. In the first subperiod, the Japanese crisis was still prevalent
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in the country, and obviously changes in market expectations about future volatility in

Japan were transmitted into similar changes in Germany. The global financial crisis had its

origin in the United States, and most shock events spread from the US around the globe,

including Germany and Japan. As a consequence, the SIS values of the VIX reached

a maximum during this period. The following European debt crisis shifted the focus to

Europe, represented by Germany in our sample. Thus, SIS values of the VDAX-New

increased and still tend to increase although the peak of the European debt crisis seems

to have passed. Obviously, global market participants still consider Europe as the most

important origin for global shock waves. This is not surprising, since for instance the

Greek crisis is far from being solved with potential impacts on Germany and markets

around the world.

6 Conclusion

Information share measures are based on the contribution of a market’s innovation to

the total variance of the efficient underlying price innovations. All modifications of the

seminal information share concept proposed by Hasbrouck (1995) rely on the assumption

that the price processes on the different markets are co-integrated of order 1, and that

single price processes are non-stationary. This necessary assumption seems to have been

subtly ignored in the recent past by several authors applying information share measures

to stationary time series. While such an application might work for stationary, though

highly persistent time series, the results lack an economic interpretation: Information

shares measure the relative contribution to the permanent impact of shocks in the time

series systems—when time series are stationary, there is however no permanent shock.
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In this paper, we present a new measure, a stationary information share, based on the

idea of the classic variance decomposition for stationary time series. This measure is

related to the spillover indices introduced by Diebold and Yilmaz (2009) and Diebold and

Yilmaz (2012). We show that the stationary information share converges to Hasbrouck’s

information share in the border case of non-stationarity. Thus, we establish a link between

the spillover literature and the information share literature.

We apply the stationary information share to gain insight into the interdependence between

implied volatilities for countries around the globe: the United States, Germany, and Japan.

By considering different subperiods, defined by recent financial crises, we demonstrate that

the origin of a crisis plays a decisive role for volatility discovery: In the aftermath of the

Japan crisis, the Japanese volatility index has a significantly larger information share for

the German volatility index than vice versa. This relationship turns into its opposite

with the emergence of the European debt crisis. The US volatility index VIX exhibits the

largest information shares over the entire period of 20 years with a peak during the global

financial crisis which spread from the US across the world. In recent periods, the VIX

has lost its dominance over the German market, as global shocks tend to originate from

Europe and its sovereign debt crisis.
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A Technical Proof of Convergence

In addition to the general proof of convergence given in Section 3.3, we present a more

direct, but technical proof of convergence of the SIS to the IS in the case of a VAR(1)-

process when the root of its characteristic polynomial tends towards one.

Theorem 1 (Convergence of stationary information share to Hasbrouck’s information

share). Assume a VAR(1) process yt = A1 ·yt−1 +εt. In the border case of non-stationarity

the stationary information share converges to Hasbrouck’s information share.

Proof. While developing the non-stationary reference value IS, we make the assumption

of a VAR(1) process with A1 := A =

a11 a12

a21 a22

 ∈ R2×2
+ , where each of the coefficients

are less than one and the sum over rows equals one:

aij ≤ 1 ∀i,j ∈ {1,2}, a11 + a12 = 1, a21 + a22 = 1. (35)

First we develop Hasbrouck’s information share IS under the presented restrictions as

the reference value. In the VAR(1) case, the cointegrating vector α is given by (see also

Equation (55) below)

α = (−a12, a21)′. (36)

Without loss of generality we calculate the upper bound dIS1e (in the following simply

referred to as IS1). Computing ψ′ as an orthogonal complement of α:

ψ′ = α⊥ :=

(
1

a12
,

1

a21

)′
, (37)

and setting this result into Equation (8), we obtain Hasbrouck’s information share IS1 as
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the reference value:

IS1 =
(ψ1σ1 + ψ2σ2ρ)2

(ψ1σ1 + ψ2σ2ρ)2 +
(
ψ2σ2

√
1− ρ2

)2 =
1

1 +

(
ψ2σ2

√
1− ρ2

)2

(ψ1σ1 + ψ2σ2ρ)2

=
1

1 +

(
1

a21
σ2

√
1− ρ2

)2

(
1

a12
σ1 +

1

a21
σ2ρ

)2

=
1

1 +

(
σ2)2 · (1− ρ2

)(
a21

a12
σ1 + σ2ρ

)2

. (38)

After developing the price discovery measure in the non-stationary case, we will now focus

on the information share concept when time series are stationary. Each of the coefficients

of A is thus less than one and the sums over the rows tend toward one:

aij ≤ 1 ∀i,j ∈ {1,2}, a11 + a12 . 1, a21 + a22 . 1. (39)

In Section 3, we defined SIS based on an orthonormalized VAR system yt =
∑∞

p=0 Φp ·

wt−p, see Equation (10). To characterize the moving average matrices Φp, we develop the

moving average representation for a general VAR(1) process:

yt = A · yt−1 + εt

=

∞∑
p=0

Apεt−p

=
∞∑
p=0

Ap ·M ·M−1 · εt−p

=
∞∑
p=0

Φp · wt−p,

where M represents a triangular matrix given by the Cholesky decomposition of the matrix

A, Φp := Ap ·M and wt−p := M−1 · εt−p.

How do the matrices Ap and consequently Φp look like? We use the theory of diagonaliza-

tion and eigendecomposition to get an analytical solution for the shape of Ap. Applying
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basic linear algebra, if a matrix A is diagonalizable we can decompose it into matrices

containing its eigenvectors and eigenvalues as follows (e.g., Schay (2012) or Anthony and

Harvey (2012)):

A = S ·D · S−1,

where S contains the eigenvectors of A and D contains its eigenvalues. Furthermore we

know that, if A is diagonalizable,

Ap = S ·Dp · S−1. (40)

In Lemma 1 below, we calculate eigenvalues λ1,2 and eigenvectors v1,2, finally concluding:

λ1/2 =
a11 + a22

2
±

√(
a11 + a22

2

)2

− a11a22 + a12a21, (41)

v1 =

(
1

1 +B2
,

B

1 +B2

)′
, (42)

v2 =

(
C

1 + C2
,

1

1 + C2

)′
, (43)

where

B :=
λ1 − a11

a12
, C :=

λ2 − a22

a21
. (44)

By normalization of the eigenvalues, the matrix S arises:

S =


1

1+B2
C

1+C2

B
1+B2

1
1+C2

 ,

S−1 =

(
(1 +B2)(1 + C2)

1−BC

)
1

1+C2 − C
1+C2

− B
1+B2

1
1+B2

 .

Putting our results into Equation (40), we obtain:

Ap = S ·Dp · S−1
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=
(1 +B2)(1 + C2)

1−BC
·


1

1+B2
C

1+C2

B
1+B2

1
1+C2

 ·
λ

p
1 0

0 λp2

 ·


1
1+C2 − C

1+C2

− B
1+B2

1
1+B2



=
1

1−BC
·

λ
p
1 −BCλ

p
2 C(λp2 − λ

p
1)

B(λp1 − λ
p
2) λp2 −BCλ

p
1.

 .

So, we finally get an analytical closed formula for the moving average matrices Φp:

Φp = Ap ·M

=
1

1−BC
·

λ
p
1 −BCλ

p
2 C(λp2 − λ

p
1)

B(λp1 − λ
p
2) λp2 −BCλ

p
1

 ·
 σ1 0

ρσ2 σ2(1− ρ2)
1
2



=
1

1−BC
·

σ1(λp1 −BCλ
p
2) + ρσ2C(λp2 − λ

p
1) σ2C(1− ρ2)

1
2 (λp2 − λ

p
1)

σ1B(λp1 − λ
p
2) + ρσ2(λp2 −BCλ

p
1) σ2(1− ρ2)

1
2 (λp2 −BCλ

p
1)

 . (45)

To obtain SIS1 in Equation (16), we have to calculate η12 and η21 by Equation (15) from

the entries of the moving average matrices Φp. Neglecting the factor 1
1−BC in Equation

(45) (which is possible because we build ratios in the following), we obtain for the first

entry of Φp:(
φ

(p)
11

)2
=
(
σ1(λp1 −BCλ

p
2) + ρσ2C(λp2 − λ

p
1)
)2

(46)

= σ2
1 · (λ

p
1 −BCλ

p
2)2 + 2 · σ1σ2ρC(λp1 −BCλ

p
2) · (λp2 − λ

p
1) + (ρσ2)2C2(λp2 − λ

p
1)2.

Calculating the η’s requires summing up φ
(p)
11 (and additionally φ

(p)
12 , φ

(p)
21 and φ

(p)
22 ) from

p = 0, . . .∞. For the first expression on the right side of Equation (46), we can use the

infinite geometric series:

∞∑
p=0

σ2
1 · (λ

p
1 −BCλ

p
2)2

=
∞∑
p=0

σ2
1 ·
(
λ2p

1 − 2 ·BC(λ1λ2)p + (BC)2λ2p
2

)
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=σ2
1 ·

(
1

1− λ2
1

− 2 · BC

1− λ1λ2
+

(BC)2

1− λ2
2

)
.

Analogously, the other two terms of Equation (46) are computed. Finally we get:

∞∑
p=0

(
φ

(p)
11

)2
= σ2

1 ·Kλ2 + 2σ1σ2ρC ·Xλ2 + σ2
2ρ

2C2 ·K,

where

Kλ2 :=

(
1

1− λ2
1

− 2 · BC

1− λ1λ2
+

(BC)2

1− λ2
2

)
,

Xλ2 :=

(
− 1

1− λ2
1

+
1 +BC

1− λ1λ2
− BC

1− λ2
2

)
,

K :=

(
1

1− λ2
1

− 2 · 1

1− λ1λ2
+

1

1− λ2
2

)
.

The missing terms are obtained analogously:

∞∑
p=0

(
φ

(p)
12

)2
= σ2

2C
2 · (1− ρ2) ·K,

∞∑
p=0

(
φ

(p)
21

)2
= σ2

1B
2 ·K + 2σ1σ2ρB ·Xλ1 + σ2

2ρ
2 ·Kλ1 ,

∞∑
p=0

(
φ

(p)
22

)2
= σ2

2(1− ρ2) ·Kλ1 ,

where

Kλ1 :=

(
(BC)2

1− λ2
1

− 2 · BC

1− λ1λ2
+

1

1− λ2
2

)
,

Xλ1 :=

(
− BC

1− λ2
1

+
1 +BC

1− λ1λ2
− 1

1− λ2
2

)
.

Setting the results into Equation (15), we obtain η12 as follows:

η12 =
σ2

2C
2 · (1− ρ2) ·K

σ2
2C

2 · (1− ρ2) ·K + σ2
1 ·Kλ2 + 2σ1σ2ρC ·Xλ2 + σ2

2ρ
2C2 ·K

=
σ2

2C
2 · (1− ρ2) ·K

σ2
2C

2 ·K + σ2
1 ·Kλ2 + 2σ1σ2ρC ·Xλ2
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=
σ2

2C
2 · (1− ρ2) ·

[
1

1−λ21
− 2 · 1

1−λ1λ2 + 1
1−λ22

]
σ2

2C
2
[

1
1−λ21

− 2 · 1
1−λ1λ2 + 1

1−λ22

]
+ σ2

1

[
1

1−λ21
− 2 BC

1−λ1λ2 + (BC)2

1−λ22

]
+ 2σ1σ2ρC

[
− 1

1−λ21
+ 1+BC

1−λ1λ2 −
BC

1−λ22

] .
Since we are interested in the border case when time series switch from stationarity to

non-stationarity, we develop the eigenvalues λ1,2 under this restriction in Lemma 1 below.

Building the common denominator and letting λ1 → 1, η12 tends to:

η12 →
σ2

2C
2 · (1− ρ2) ·

[
(1− λ1λ2)(1− λ2

2)
]

σ2
2C

2 ·
[
(1− λ1λ2)(1− λ2

2)
]

+ σ2
1 ·
[
(1− λ1λ2)(1− λ2

2)
]
− 2σ1σ2ρC ·

[
(1− λ1λ2)(1− λ2

2)
]

=
σ2

2C
2 · (1− ρ2)

σ2
2C

2 + σ2
1 − 2σ1σ2ρC

. (47)

Analogously:

η21 →
σ2

1B
2 − 2σ1σ2ρB

2C + σ2
2ρ

2B2C2

σ2
1B

2 − 2σ1σ2ρB2C + σ2
2B

2C2
=
σ2

1 − 2σ1σ2ρC + σ2
2ρ

2C2

σ2
1 − 2σ1σ2ρC + σ2

2C
2
. (48)

Putting these values into Equation (16), we get SIS1 in the border case of non-stationarity:

SIS1 =
1

1 + η12
η21

→ 1

1 +

σ22C
2·(1−ρ2)

σ22C
2+σ21−2σ1σ2ρC

σ21−2σ1σ2ρC+σ22ρ
2C2

σ21−2σ1σ2ρC+σ22C
2

=
1

1 +
σ2
2 ·(1−ρ2)

(σ1C −σ2ρ)
2

.

In the non-stationary border case we moreover know from Lemma 1 below that C → −a12
a21

,

so it finally follows

SIS1 →
1

1 +
σ2
2 ·(1−ρ2)(

σ1·(−a21a12
)−σ2ρ

)2

=
1

1 +
σ2
2 ·(1−ρ2)(

σ1·a21a12
+σ2ρ

)2

= IS1,

by comparison with the reference value in Equation (38).

Eigenvalues of A We calculate the eigenvalues λ1/2 of A by setting:

det(A− λI)
!

= 0

⇒ λ1/2 =
a11 + a22

2
±

√(
a11 + a22

2

)2

− a11a22 + a12a21
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=
a11 + a22

2
±

√(
a11 − a22

2

)2

+ a12 · a21. (49)

To obtain the associated eigenvectors v1/2, from A · v1/2 = λ1/2 · v1/2 we get

v1 =

(
1

1 +B2
,

B

1 +B2

)′
,

v2 =

(
C

1 + C2
,

1

1 + C2

)′
,

where B = λ1−a11
a12

and C = λ2−a22
a21

.

To ensure that A is diagonalizable, λ1 and λ2 must be different from each other. This is

the case if the sum under the root is greater than zero:

(
a11 − a22

2

)2

+ a12 · a21
!
> 0

⇔
(
a11 − a22

2

)2
!
> −a12 · a21. (50)

This inequality is satisfied if A has strictly positive entries, meaning A ∈ Rn×n+ , which is

a reasonable assumption.

Furthermore, we need to discuss the behavior of the eigenvalues and eigenvectors under

the assumption of the border case of non-stationarity. Under the assumed relations of

Equation (39), we now consider the border case a11 + a12 → 1 and a21 + a22 → 1.

Lemma 1 (Eigenvalues and eigenvectors in border case of non-stationarity). The eigen-

values for A ∈ R2×2
+ , in the border case of non-stationarity converge to

λ1 → 1,

λ2 → a11 + a22 − 1.

The auxiliary variables for the eigenvectors tend to

B → 1− a11

a12
=
a12

a12
= 1,
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C → −a12

a21
.

Proof. Putting a11 + a12 → 1 and a21 + a22 → 1 in Equation (49) immediately yields:

λ1/2 =
a11 + a22

2
±

√(
a11 − a22

2

)2

+ a12 · a21

→ a11 + a22

2
±

√(
a11 − a22

2

)2

+ (1− a11) · (1− a22)

=
a11 + a22

2
±

√√√√[1−
(
a11 + a22

2

)]2

⇒λ1 →
a11 + a22

2
+

[
1−

(
a11 + a22

2

)]
= 1;

λ2 →
a11 + a22

2
−

[
1−

(
a11 + a22

2

)]
= a11 + a22 − 1.

Setting these results in Equation (44) proves the equations for B and C.

B Exemplary Calculation of Stationary Information Shares

We refer to the setting in Section 4 and first demonstrate the structure of the Ai, i =

1, . . . , 5 by an example: The coefficients 25−i

25−1
are 16

31 , 8
31 , 4

31 , 2
31 , and 1

31 , and add up to 1.

Using minor diagonal elements a12 = a21 = 0.1 and a convergence parameter ∆ = 0.05,

the matrices read

A1 =

0.486 0.02

0.02 0.486

 , A2 =

0.228 0.02

0.02 0.228

 , A3 =

0.099 0.02

0.02 0.099

 ,

A4 =

0.035 0.02

0.02 0.035

 , A5 =

0.002 0.02

0.02 0.002

 . (51)

We assume a covariance matrix with σ1 = 0.2, σ2 = 0.1, and no cross-correlation. To

calculate the stationary information share depicted in Section 3.2, we have to transform
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the constructed VAR(5) process into a moving average process according to Equation (9),

which can be done by the method of recursion, obtaining the moving average matrices

Ψp.
9 In the case of no cross-correlation, the Cholesky matrix is simply the root of the

covariance matrix, hence the Φp matrices are obtained by multiplying the columns of Ψp

with the respective standard deviations σj .
10 Following further the procedure in Section

3.2, we determine the contributions of the respective market’s variances by Equation (15),

which requires calculating the sum of the squared entries of the Φp matrices:

η12 =
0.008

0.128 + 0.008
= 0.059, η21 =

0.032

0.032 + 0.032
= 0.500. (52)

So, for the stationary information share, we finally obtain:

SIS1 =
0.500

0.059 + 0.500
= 0.894, SIS2 =

0.059

0.059 + 0.500
= 0.106. (53)

As we expected, information share of the first market is larger than of the second as the

variance in the error terms is positively related to the information share.

To calculate the information share in the non-stationary case as a reference value, we note

9The recursion is simply defined as Ψp =
∑k
i=1Ai ·Ψp−i for p ≥ 1 and Ψ0 is set as unit matrix. Note

that even for a VAR(1) process, the number of Ψp matrices is infinite. The first matrices read:

Ψ0 :=

1 0

0 1

 , Ψ1 =

0.486 0.020

0.020 0.486

 , Ψ2 =

0.237 0.019

0.019 0.237

 , Ψ3 =

0.465 0.039

0.039 0.465

 .

10For the first Φp matrices we obtain

Φ0 =

0.2 0

0 0.1

 , Φ1 =

0.097 0.002

0.004 0.049

 , Φ2 =

0.047 0.002

0.004 0.024

 , Φ3 =

0.093 0.004

0.008 0.047

 .
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that the VECM representation (2) can be derived from the VAR(k) process as11

∆yt =

 k∑
i=1

(Ai)− I

 · yt−1 −
k−1∑
i=2

k∑
j=i

Aj ·∆yt−i+1 + εt. (54)

A comparison with (2), where the long-run impact is contained in the vectors α and β,

yields:

k∑
i=1

(Ai)− I = αβ′ =

α1 −α1

α2 −α2

 , (55)

since β = (1;−1)′. The common row vector in the Stock-Watson decomposition (5) is

defined as ψ = α
′
⊥ = (α2,−α1), and is thus given by the sum over the minor diagonal

elements of the matrices A
(k)
i . Hence, by construction, ψ = (a21, a12) throughout our

numerical examples (with ∆ = 0).

With these results we obtain by Equation (7):

IS1 =
ψ2

1σ
2
1

ψ2
1σ

2
1 + ψ2

2σ
2
2

=
(0.1 · 0.2)2

(0.1 · 0.2)2 + (0.1 · 0.1)2
= 0.8, IS2 = 1− IS1 = 0.2. (56)

11To see this, note that:

∆yt = (A1 − I) · yt−1 +A2yt−2 +A3yt−3 . . .+Akyt−k + εt

= (A1 − I) · yt−1 +A2yt−1 −A2yt−1 +A2yt−2 +A3yt−3 . . .+Akyt−k + εt

= (A1 +A2 − I) · yt−1 −A2(yt−1 − yt−2) +A3yt−3 . . .+Akyt−k + εt

= (A1 +A2 − I) · yt−1 −A2(yt−1 − yt−2) +A3yt−2 −A3yt−2 +A3yt−3 . . .+Akyt−k + εt

= (A1 +A2 +A3 − I) · yt−1 − (A2 +A3)(yt−1 − yt−2)−A3(yt−2 − yt−3) . . .+Akyt−k + εt

= (A1 +A2 +A3 − I) · yt−1 − (A2 +A3) ·∆yt−1 −A3 ·∆yt−2 . . .+Akyt−k + εt

. . .

=

 k∑
i=1

(Ai)− I

 · yt−1 − (A2 +A3 + . . .+Ak) ·∆yt−1

− (A3 +A4 + . . .+Ak) ·∆yt−2 − · · · − (Ak−1 +Ak) ·∆yt−k+1 + εt.
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C Stationary Information Shares in the Multivariate Case

Hasbrouck’s Information share concept can easily be extended to a multivariate n-market

setting. In the simplest case without cross correlation between any markets, the rela-

tive contribution of market k with k ∈ {1 . . . n} to the total variance and thus the k’th

information shares is given by:

ISk =
([ψΩ]k)

2

ψΩψ′
=

ψ2
kσ

2
k∑n

j=1(ψ2
jσ

2
j )
. (57)

with the covariance matrix Ω ∈ Rn×n and ψ ∈ Rn×1 representing the common row vector

for the sum of the moving average matrices.12

In the general case with contemporaneous correlation between the innovations in the dif-

ferent markets, again the Cholesky decomposition Ω = MM ′ with a triangular matrix

M ∈ Rn×n is applied. Following Hasbrouck (2002) and Yan and Zivot (2010), all per-

mutations of the n markets have to be considered to get the lower and upper bounds of

the information share. With a given order and thus a given Cholesky matrix, the k’th

information share is defined as:

ISk =
([ψM ]k)

2

ψΩψ′
. (58)

The bounds are calculated by switching the order of the markets resulting in n! values for

the information share for one market k, of which the largest and the smallest define the

upper and lower bound, respectively.

Regarding the generalization of the information share for stationary time series, the idea

of variance decomposition can also be applied for a multivariate n-market system. In this

n-market system we can break down the forecast error vector into n parts, corresponding

12Note that ψ is constructed as the (n × 1)-dimensional subspace orthogonal to the error correction

vector α ∈ Rn×(n−1) in Equation 2.
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to the forecast error components of the respective markets. Analogous to Equation (13)

in Section 3.2 we get:

FEj(yt+τ ) = yj,t+τ − Et[yj,t+τ ]

=

τ−1∑
p=0

n∑
k=1

φ
(p)
jk · wk,t+τ−p,

where the index j ∈ {1, 2, . . . , n} represents the respective market and φ
(p)
jk , j, k ∈

{1, 2, . . . , n}, are the coefficients of the matrices Φp ∈ Rn×n. τ remains the forecast

horizon as in the two-market system. The forecast error component of the first market

(j = 1) is thus influenced by itself (k = 1) and moreover by innovation terms of the second

market, third market and so on (k = 2, 3, . . . , n). Analogous to the bivariate market case,

we consider the variance of the forecast error to be decomposed:

V ar(FEj(yt+τ )) = E[(yj,t+τ − Et[yj,t+τ ])2]

=
τ−1∑
p=0

n∑
k=1

(
φ

(p)
jk

)2
. (59)

The relative contribution of market k to the variance of market j is given by

ηjk =

∞∑
p=0

(
φ

(p)
jk

)2

∞∑
p=0

n∑
l=1

(
φ

(p)
jl

)2
. (60)

Based on these relative impacts we construct the stationary information share SISk of

market k in a multivariate market system by considering all cross-influences of market k

on the other n − 1 markets relative to the aggregated cross-influences of all markets on

each other:

SISk =

n∑
j=1,j 6=k

ηjk

n∑
l=1

n∑
j=1,j 6=k

ηjl

. (61)
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Note that this value depends on the Cholesky matrix M and thus on the order of the

markets. To obtain the upper and lower bounds, as in the non-stationary case, all permu-

tations have to be evaluated.

Convergence to Hasbrouck’s information share can be shown analogously to the bivariate

case.

48



(a
)
a
1
2

=
a
2
1

=
0.

1

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.4960.5000.504

MD
E 1=

0.1
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.2
 ; ρ

=0
 ; L

=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.4960.5000.504

MD
E 1=

0.1
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.2
 ; ρ

=0
 ; L

=5

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.800.840.88

MD
E 1=

0.1
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
 ; L

=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.800.840.880.92

MD
E 1=

0.1
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
 ; L

=5

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.940.960.98

MD
E 1=

0.1
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
.7 

; L
=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.940.960.98

MD
E 1=

0.1
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
.7 

; L
=5

−lo
g(∆

)

Information Share

(b
)
a
1
2

=
0.

1
a
n
d
a
2
1

=
0.

3

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.9000.9040.908

MD
E 1=

0.1
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.2
 ; ρ

=0
 ; L

=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.9000.9020.904

MD
E 1=

0.1
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.2
 ; ρ

=0
 ; L

=5

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.9740.9780.982

MD
E 1=

0.1
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
 ; L

=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.9740.9780.982

MD
E 1=

0.1
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
 ; L

=5

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.9890.9910.993

MD
E 1=

0.1
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
.7 

; L
=1

−lo
g(∆

)
Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.9890.9910.993

MD
E 1=

0.1
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
.7 

; L
=5

−lo
g(∆

)

Information Share

F
ig
u
re

1
.

N
u

m
er

ic
a

l
co

n
ve

rg
en

ce
o

f
S
I
S
1

to
I
S
1
.

B
y

d
ec

re
a

si
n

g
∆

,
th

e
d

a
sh

ed
li

n
e

sh
o

w
s

th
e

be
h

a
vi

o
r

o
f
S
I
S
1

w
h

en
th

e
p

ro
ce

ss
co

n
ve

rg
es

to
th

e
n

o
n

-s
ta

ti
o

n
a

ry

ca
se

.
T

h
e

u
n

d
er

ly
in

g
V

A
R

p
ro

ce
ss

is
co

n
st

ru
ct

ed
a

cc
o

rd
in

g
to

E
qu

a
ti

o
n

(3
2

)
w

it
h

m
in

o
r

d
ia

go
n

a
l

el
em

en
ts

(M
D

E
)

a
s

in
th

e
h

ea
d

er
o

f
th

e
tw

o
su

bfi
gu

re
s.

T
h

e

le
ft

co
lu

m
n

o
f

bo
th

su
bfi

gu
re

s
sh

o
w

s
th

e
V

A
R

(1
)

p
ro

ce
ss

,
th

e
ri

gh
t

th
e

V
A

R
(5

)
p

ro
ce

ss
.

T
h

e
co

va
ri

a
n

ce
m

a
tr

ix
is

ch
a

n
gi

n
g

by
ro

w
s:

In
th

e
fi

rs
t

ro
w

,
id

en
ti

ca
l

va
ri

a
n

ce
s

a
n

d
n

o
cr

o
ss

-c
o

rr
el

a
ti

o
n

,
Ω

=
( 0
.0

4
0

0
0
.0

4

) ;
in

th
e

se
co

n
d

ro
w

d
iff

er
en

t
va

ri
a

n
ce

s
bu

t
st

il
l

n
o

cr
o

ss
-c

o
rr

el
a

ti
o

n
,

Ω
=
( 0
.0

4
0

0
0
.0

1

) ;
fi

n
a

ll
y

in
th

e
th

ir
d

ro
w

d
iff

er
en

t
va

ri
a

n
ce

s
a

n
d

cr
o

ss
-c

o
rr

el
a

ti
o

n
,

Ω
=
( 0
.0

4
0

0
.0

1
4

0
.0

1
4

0
.0

1
0

) .

49



(a
)
a
1
2

=
0.

3
a
n
d
a
2
1

=
0.

1

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.0900.0940.098

MD
E 1=

0.3
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.2
 ; ρ

=0
 ; L

=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.0960.0980.100

MD
E 1=

0.3
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.2
 ; ρ

=0
 ; L

=5

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.350.400.45

MD
E 1=

0.3
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
 ; L

=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.300.400.50

MD
E 1=

0.3
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
 ; L

=5

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.800.840.88

MD
E 1=

0.3
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
.7 

; L
=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.800.840.880.92

MD
E 1=

0.3
 ; M

DE
2=

0.1
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
.7 

; L
=5

−lo
g(∆

)

Information Share

(b
)
a
1
2

=
a
2
1

=
0.

3

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.4960.5000.504

MD
E 1=

0.3
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.2
 ; ρ

=0
 ; L

=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.4960.5000.504

MD
E 1=

0.3
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.2
 ; ρ

=0
 ; L

=5

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.800.820.840.86

MD
E 1=

0.3
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
 ; L

=1

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.800.840.88

MD
E 1=

0.3
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
 ; L

=5

−lo
g(∆

)

Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.9350.9450.955

MD
E 1=

0.3
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
.7 

; L
=1

−lo
g(∆

)
Information Share

1.0
1.5

2.0
2.5

3.0
3.5

4.0

0.9350.9450.9550.965

MD
E 1=

0.3
 ; M

DE
2=

0.3
 ; σ

1=
0.2

 ; σ
2=

0.1
 ; ρ

=0
.7 

; L
=5

−lo
g(∆

)

Information Share

F
ig
u
re

2
.

N
u

m
er

ic
a

l
co

n
ve

rg
en

ce
o

f
S
I
S
1

to
I
S
1
.

B
y

d
ec

re
a

si
n

g
∆

,
th

e
d

a
sh

ed
li

n
e

sh
o

w
s

th
e

be
h

a
vi

o
r

o
f
S
I
S
1

w
h

en
th

e
p

ro
ce

ss
co

n
ve

rg
es

to
th

e
n

o
n

-s
ta

ti
o

n
a

ry

ca
se

.
T

h
e

u
n

d
er

ly
in

g
V

A
R

p
ro

ce
ss

is
co

n
st

ru
ct

ed
a

cc
o

rd
in

g
to

E
qu

a
ti

o
n

(3
2

)
w

it
h

m
in

o
r

d
ia

go
n

a
l

el
em

en
ts

(M
D

E
)

a
s

in
th

e
h

ea
d

er
o

f
th

e
tw

o
su

bfi
gu

re
s.

T
h

e

le
ft

co
lu

m
n

o
f

bo
th

su
bfi

gu
re

s
sh

o
w

s
th

e
V

A
R

(1
)

p
ro

ce
ss

,
th

e
ri

gh
t

th
e

V
A

R
(5

)
p

ro
ce

ss
.

T
h

e
co

va
ri

a
n

ce
m

a
tr

ix
is

ch
a

n
gi

n
g

by
ro

w
s:

In
th

e
fi

rs
t

ro
w

,
id

en
ti

ca
l

va
ri

a
n

ce
s

a
n

d
n

o
cr

o
ss

-c
o

rr
el

a
ti

o
n

,
Ω

=
( 0
.0

4
0

0
0
.0

4

) ;
in

th
e

se
co

n
d

ro
w

d
iff

er
en

t
va

ri
a

n
ce

s
bu

t
st

il
l

n
o

cr
o

ss
-c

o
rr

el
a

ti
o

n
,

Ω
=
( 0
.0

4
0

0
0
.0

1

) ;
fi

n
a

ll
y

in
th

e
th

ir
d

ro
w

d
iff

er
en

t
va

ri
a

n
ce

s
a

n
d

cr
o

ss
-c

o
rr

el
a

ti
o

n
,

Ω
=
( 0
.0

4
0

0
.0

1
4

0
.0

1
4

0
.0

1
0

) .

50



-5

-4

-3

-2

-1

 1  1.5  2  2.5  3  3.5  4

lo
g
(|

IS
-S

IS
|)

-log(Δ)

-5

-4

-3

-2

-1

 1  1.5  2  2.5  3  3.5  4

lo
g
(|

IS
-S

IS
|)

-log(Δ)

-5

-4

-3

-2

-1

 1  1.5  2  2.5  3  3.5  4

lo
g
(|

IS
-S

IS
|)

-log(Δ)

-5

-4

-3

-2

-1

 1  1.5  2  2.5  3  3.5  4

lo
g
(|

IS
-S

IS
|)

-log(Δ)

Figure 3. Numerical convergence of SIS1 to IS1 on a log-log scale. The four graphs correspond to the

four subfigures 1(a)–2(b): upper left graph with minor diagonal elements a12 = a21 = 0.1 (1a); upper

right graph with minor diagonal elements a12 = 0.1, a21 = 0.3 (1b); lower left graph with minor diagonal

elements a12 = 0.3, a21 = 0.1 (2a); lower right graph with minor diagonal elements a12 = a21 = 0.3 (2b).

Solid lines represent V AR(1) processes, dashed lines V AR(5) processes. The slopes of the lines indicate at

least linear convergence.
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Figure 4. VIX, VDAX-New, and NikkeiVI over the entire period 1996–2016.
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k a12 a21 σ1 σ2 ρ

1 0.1 0.1 0.2 0.2 0.0

0.2 0.1 0.0

0.2 0.1 0.7

1 0.1 0.3 0.2 0.2 0.0

0.2 0.1 0.0

0.2 0.1 0.7

1 0.3 0.1 0.2 0.2 0.0

0.2 0.1 0.0

0.2 0.1 0.7

1 0.3 0.3 0.2 0.2 0.0

0.2 0.1 0.0

0.2 0.1 0.7

k a12 a21 σ1 σ2 ρ

5 0.1 0.1 0.2 0.2 0.0

0.2 0.1 0.0

0.2 0.1 0.7

5 0.1 0.3 0.2 0.2 0.0

0.2 0.1 0.0

0.2 0.1 0.7

5 0.3 0.1 0.2 0.2 0.0

0.2 0.1 0.0

0.2 0.1 0.7

5 0.3 0.3 0.2 0.2 0.0

0.2 0.1 0.0

0.2 0.1 0.7

Table 1. Description of the 24 different cases used to demonstrate the speed of convergence of stationary

information shares SIS to Hasbrouck’s information share IS. The left table considers a fixed lag length

k = 1, and the four blocks represent different minor diagonal element combinations a12, a21 ∈ {0.1,0.3}.
Within each block, the first row uses equal variances in the innovation terms, σ1 = σ2 = 0.2; the second

row a lower variance of the second market (σ1 = 0.2 and σ2 = 0.1); and the third row additionally cross-

correlation between the innovation terms (ρ = 0.7). The right table is built up analogously to the left one,

except the lag length k = 5.
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VDAX VIX VDAX NikkeiVI VIX NikkeiVI

Entire period 1996/1998–2016

SIS Mean 0.30 0.70 0.58 0.42 0.73* 0.27

SIS Upper Bound 0.59 0.98 0.69 0.53 0.81 0.35

SIS Lower Bound 0.02 0.41 0.47 0.31 0.65 0.19

First subperiod 1996/1998–2007

SIS Mean 0.11 0.89* 0.39 0.61* 0.71* 0.29

SIS Upper Bound 0.19 0.97 0.45 0.67 0.77 0.34

SIS Lower Bound 0.03 0.81 0.33 0.55 0.66 0.23

Second subperiod 2007–2009

SIS Mean 0.10 0.90* 0.69 0.31 0.95* 0.05

SIS Upper Bound 0.18 0.98 0.91 0.53 0.98 0.08

SIS Lower Bound 0.02 0.82 0.47 0.09 0.92 0.02

Third subperiod 2009–2013

SIS Mean 0.55 0.45 0.78* 0.22 0.84* 0.16

SIS Upper Bound 0.89 0.79 0.92 0.36 0.93 0.25

SIS Lower Bound 0.21 0.11 0.64 0.08 0.75 0.07

Fourth subperiod 2013–2016

SIS Mean 0.70 0.30 0.92* 0.08 0.81* 0.19

SIS Upper Bound 0.95 0.56 0.99 0.14 0.88 0.26

SIS Lower Bound 0.44 0.05 0.86 0.01 0.74 0.12

Table 3. Bivariate stationary information shares over the entire period and the four subperiods for the

combinations of VDAX-New & VIX, VDAX-New & NikkeiVI and VIX & NikkeiVI. The rows represent

upper and lower bounds and mean values of the respective SIS. Information shares are declared to be

significant (*) if the upper-lower bound range of one volatility index is not touched by the respective upper-

lower bound range of the second volatility index. For the entire period and for the four subperiods, VIX

is leading NikkeiVI significantly. For the first and second subperiods, VIX also has a significant higher

information share compared with VDAX-New. VDAX-New is gaining information share after the global

financial crisis and tends to lead the VIX. The relation between VDAX-New and NikkeiVI is also changing:

While for the first period NikkeiVI is leading the VDAX-New significantly, VDAX-New is taking leadership

in and after the European sovereign debt crisis in the third and fourth subperiod.
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