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1. Introduction

To assess investment decisions, it is standard in economics and management to consider

the present value of the expected cumulative future cash flow that will be generated by

the project. If the net present value1 (NPV) is positive then the project can be decided.

Often, the underlying assumptions of this popular and simple approach lead to a significant

misestimation of the firm’s (investment/disinvestment) opportunity. Among the most critical

concerns, this valuation technique does not account for the flexibility, the firm can have in the

management of the project, such as the possibility of delaying investment (or sequentially

increasing production) and disinvestment. Such decisions, furthermore, have to be made

under uncertainty. These two intricate decisions are typically similar to the management

of an option to expand/abandon productions. In real-life situations, the randomness and

fluctuations of the cash-flows generated by the project highly influence the decisions made

by the managers. In other words, their decisions are clearly contingent. Most often the

decisions imply the payment of sunk costs2. In this paper, we investigate situations where the

firm’s manager can decide, in the future, to expand (increase firm’s capacity) or to abandon

their activities. The real option3 approach, we undertake, will take into consideration these

important aspects. The real option approach may be viewed as an application of some

concepts of financial asset pricing theory to real-life concerns such as project analysis, firm

valuation, etc. In fact, the level of cash flow that will be generated by the project is critical

for the manager’s decision and is assumed to behave as a financial asset. Thus, the real option

approach can a) take into account uncertainty of cash flows in the investment environment,

b) deal with the contingency of the manager’s decision as it depends on the state of the

market (favorable/unfavorable) and, c) provide normative insights to decide whether and

when to delay the investment/disinvestment decision.

Considering an option to expand or abandon activities may be of paramount importance

for the firm. The real option approach was initiated by Black & Scholes (1973) who succeeded

in pricing the equity of a levered company as a call option written on the firm’s assets value.

They state that it is possible to take the equity in a levered company as a call option on the

company’s value. Later, Merton (1973) extends the work of Black and Scholes with additional

assumptions pricing corporate liabilities. Their approach was extended in many directions

for analyzing firm concerns such as investment and disinvestment decisions and more. Kester

1The net present value is the present value of the expected cumulative future cash flow that will be
generated by the project net of the investment cost.

2A sunk cost is a cost that cannot be recovered once it is incurred.
3A real option is a right and not an obligation to undertake a certain firm’s decisions, such as abandoning,

expanding, deferring, etc., its activities.
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(1984) argues that the opportunity of a firm to invest or expand its activities resembles to the

decision to exercise a call option. Trigeorgis (1993) and Copeland, Antikarov, & Copeland

(2001) explain that a real option is a right and not an obligation to make an investment

decision at a prespecified cost (that may be viewed as the strike) and within a given period

of time (the maturity of the option). A firm may also be worth abandoning activities. Myers

& Majd (1990) discuss this critical and important decision and analyzed the decision to

abandon a project by means of an American put option. The empirical investigation of Kaiser

& Stouraitis (2001) evidences the importance, for a firm, of abandoning activities with low

value creation. Wong (2006, 2009) analyses the effect of abandonment options on operating

leverage. Clark, Rousseau, & Gadad (2010) offer an empirical work on abandonment options.

McDonald & Siegel (1986) evaluates the option to differ an investment spending4. The book

of Dixit & Pindyck (1994) is the turning point for development and application of real

options theory in investment decisions under uncertainty. They investigate a wide range

of problems solvable by real option in the Black-Scholes’ setting. They notably apply the

dynamic programming approach for pricing purposes. The value of a project in the real

option approach is equal to its value obtained using traditional net present value (NPV)

augmented with the value of the flexibility (the value of the real option).

In almost all the aforementioned references, the opportunity to invest and to disinvest

decisions are not considered simultaneously. There exist many situations where the firm’s

manager has to consider the possibility to expand their ongoing activities or abandon them

depending on the behavior of future cash flows that will be generated. This is typically the

case of start-ups’ managers, for example. Dixit & Pindyck (1994) (Chapter 7) address this

issue by valuing a firm with a combined Entry-Exit option. They assume that the firm could

suspend (exit) operation, and resume (entry) it later without any cost. This assumption

appears, however, not that realistic specially in the example, they consider, of a research

laboratory engaged in the development of a new pharmaceutical product. Abandoning the

project means losing the team of research scientists and hence the ability to resume the

project in the future. This may also be the case when it is very costly to pause activities

more than undertaking a new project. Some papers have investigated the combined decisions

under different scenarios. Costeniuc, Schnetzer, & Taschini (2008) analyses the entry-exit

decisions when there is a time lag from the time the decision is taken to time when the

decision is implemented. Feil & Musshoff (2013) consider the investment and disinvestment

decisions under competition and different market intervention. Kwon (2010) was the first

4For more reading about real options and their applications, one may consult Dixit & Pindyck (1994),
Smith & Nau (1995), Trigeorgis (1999), Brennan & Trigeorgis (2000), Copeland & Antikarov (2003),
Grenadier (2000) and Trigeorgis & Smith (2004) with an application in game theory, Brach (2003), Tri-
georgis & Schwartz (2001), Damodaran (2016) among others.
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to study the investment decision in the presence of a permanent exit option. He considers a

declining market and uses a Brownian motion with negative drift to model the firm’s profit

stream. Matomäki (2013) uses the geometric Brownian motion and generalizes Kwon (2010)

while Hagspiel, Huisman, Kort, & Nunes (2016) extends the works to a firm that also decides

on capacity in a declining market.

It’s worth noting that most of the literature in real option consider a perpetual time hori-

zon for the investment/disinvestment decision especially those that consider the combined

decisions. It must stress that the delay of the decision may sometimes not be perpetual.

Temporal constraints are typically imposed by the competitors, technological evolution or

regulation constraints, etc. It’s also worth investigating different market and firm configura-

tions since the valuation models proposed in the literature does not apply for all firm’s.

This paper proposes a new analysis of the close interplay between the decision to expand

and to abandon a business. It considers the situation of a firm, with ongoing activities, that

holds simultaneously an opportunity to expand and a possibility to abandon its activities. It

is assumed that the expansion decision will be undertaken when the present value of the cash

flows reaches an upper barrier and that the abandonment decision will occur whenever the

present value of the cash flows drops below a lower barrier. Note that, by contrast with Dixit

and Pyndick, it is assumed that there is no possibility to resume activities once they are

abandoned. This is justified by the example of the research laboratory, discussed earlier, or

in some situations where maintaining suspended activities may cost more than investing in a

new project. Under these assumptions, we analyze the cases of the infinite and finite expiry

time horizon for the decisions and provide analytical formulas for the firm’s value based on

the dominance arguments. Decision to expand or abandon the project can be taken at any

time before or at the maturity. Optimal decision thresholds are then obtained. They are

key for the manager’s decision and are time-varying when the decision time horizon is finite.

Numerical simulations highlight how the value of the firm’s opportunity behaves and the way

the boundaries are interconnected. They suggest that a manager holding simultaneously the

two options may wait longer before deciding to exercise one of the options in comparison

with a manager holding only one option (either the abandonment option or the expansion

option). The holder of a perpetual option to decide may also wait longer before exercising

his option in comparison with the one holding a finite lived option. At the end, we measured

the sensitivity of the firm’s value with respect to different parameters showing how the firm’s

value and the manager’s decision can drastically change for little variations.

The rest of this paper is organized as follows: Section 2 presents some notations and

the valuation framework, Section 3 values the firm’s opportunity when the manager has an

infinite horizon for decision-making. The section considers three different situations. In the
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first subsection, it is considered a single option to abandon. In the second subsection, there

is only one option to expand. In the third subsection, the manager has both options (the

coupled options). Section 4 is organized as Section 3 except that the manager has a finite

time horizon for decision-making. Section 5 presents numerical simulations and discussions.

Section 6 gives some concluding remarks.

2. The Framework

We consider the McDonald & Siegel (1986)’s pricing model and assume that the under-

lying asset P , which is the cash flow generated by the project, follows a geometric Brownian

motion defined on a filtered probability space
(
Ω,F , {Ft}t≥0 ,Q

)
where Ft represents the

information available at time t. The cash flow5 process is described by

dPt = µPtdt+ σPtdWt, t ≥ 0, P0 given, (1)

where W is a standard Brownian motion, µ is the trend or the expected rate of return

of the project, and σ the volatility of the project cash flows. Parameters µ and σ are

supposed to be constant. Unlike financial assets, real assets are not traded on financial

markets6. Consequently the trend of the project may differ from the expected rate of return

in equilibrium in financial markets.

We denote by V the value of the firm. This value is a contingent or derivative asset, whose

payoff depends on the value of the underlying asset P . If future revenues are discounted at

the rate r, it is well known (see for instance Merton (1973)) that the value V (Pt, t) of every

contract written on P satisfies the following fundamental partial differential equation

∂V

∂t
+ (r − δ)P ∂V

∂P
+

1

2
σ2P 2∂

2V

∂P 2
− rV = 0, 0 ≤ t ≤ T. (2)

The constant δ = r − µ acts as a dividend payment rate on the project value.

Our starting point is the value of a firm with no real option and generating infinitely cash

flows driven by the process (Pt)t≥0. Denote by Ṽ (Pt, t) the value of such a firm, i.e., the

expected present value of cash flows that will be generated, at any time t. If Et [·] ≡ E [· | Ft]
denotes the conditional expectation relative to P given information Ft then the following

proposition holds.

5For simplicity, the cash flows are considered net of the production costs, and this, without lost of
generality unless the production costs are suspected of being stochastic.

6The volatility of the project cash flows can be estimated from simulations or historical data of publicly
traded firms specialized in the considered business.
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Proposition 1 (Dixit & Pindyck (1994)). Let (Pt)t≥0 be a geometric Brownian motion

following Equation (1). If the risk-free interest rate r > µ then the expected present value,

at any time t, of the cumulative cash flow driven by the price process (Pt)t≥0 is given by

Ṽ (Pt, t) = Et

[∫ ∞
t

Pse
−r(s−t)ds

]
=

Pt
r − µ

(3)

where Et [.] is the mathematical expectation under risk-neutral probability and given Pt.

Proposition 1 is a well-known and important result of real option analysis. Dixit &

Pindyck (1994) designate Ṽ (Pt, t) as the ”fundamental component”.

Proof of Proposition 1. Solving Equation (1) yields to

Ps = Pte
(µ− 1

2
σ2)(s−t)+σ(Ws−Wt),

and for s ≥ t, we have Et [Ps] = Pte
µ(s−t). Thus, using the Guido Fubini’s theorem, the

expected present value of cash flows is

Et

[∫ ∞
t

Pse
−r(s−t)ds

]
=

∫ ∞
t

Et [Ps] e
−r(s−t)ds

=

∫ ∞
t

Pte
−(r−µ)(s−t)ds

=
Pt

r − µ
.

3. Investment decision under an infinite time horizon

The literature on real options most often considers an infinite time horizon for invest-

ment/disinvestment decisions. In this section, we present general results useful for valuing

firms with additional flexibility in decisions. Following the standard approach, the firm’s

manager is supposed to have infinite time horizon for the decisions.

When considering infinite time horizon, the derivative with respect to the time t, in

Equation (2), vanishes and we have

1

2
σ2P 2∂

2V

∂P 2
+ (r − δ)P ∂V

∂P
− rV = 0. (4)
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This is the PDE to consider for deriving analytical expressions for ”perpetual” real op-

tions.

3.1. Decision to abandon

Under unfavorable market conditions, i.e., when the value of cash flow drops below a

lower exogenous level L ( at the stopping time τL), the manager of the firm can decide to

abandon the production. Note that abandoning activities at τL implies losing the cash flows

that would be generated if activities continue beyond τL. The decision threshold L is time-

invariant due to the absence of a time constraint, that is, the manager has an infinite time

horizon for the decision. We assume that, when the abandonment is decided, the manager

receives the salvage value B7. Let τL be the first hitting time of a constant exogenous level

L and B the salvage value of the firm. The rational value of such a firm is given by the

following proposition:

Proposition 2. The value of the firm with an option to abandon, V ab
L (Pt, t), is given by

V ab
L (Pt, t) = Et

[∫ τL

t

Pse
−r(s−t)ds+Be−r(τL−t)

]
(5)

where τL ≡ inf {ε ≥ t : Pε = L}, or τL ≡ ∞ if no such time exists in [t,∞). V ab
L (Pt, t) has

the analytical expression as follows:

V ab
L (Pt, t) =

Pt
r − µ

+

(
B − L

r − µ

)(
Pt
L

)θ0
(6)

where

θ0 =
1

2
− µ

σ2
−

√
2r

σ2
+

(
1

2
− µ

σ2

)2

< 0

with

0 < L ≤ (r − µ)B.

It is understood from Equation (5) that the project will generate cash flows from time t

until the random abandonment date τL and that the manager receives the salvage value at

that time (B). If ever the level L is never reached from t ≥ 0, then the first hitting time is

τL ≡ ∞ and the second component Be−r(τL−t) collapses. In such a case, V ab
L (Pt, t) is simply

equal to the value of the fundamental component.

7The salvage value is the estimated value of the project upon its sale at the abandonment date. It can
result from the sale of machines and furniture, for example.
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The expression in (6) decomposes the value of the firm as the sum of the fundamental

component and the value of the option to abandon. Recall that the level L is considered

exogenous in this context. This property is important for examining the optimal decision

level that will be discussed later. The additional condition (inequalities in the last line of the

above proposition) ensures the rationality of the financial decision. The option to abandon

must be indeed positive. So, we must have (B − L/ (r − µ)) ≥ 0.

Proof of Proposition 2. To demonstrate the proposition we will analyze both cases that arise

for the firm.

Case 1: The stopping time τL exists in [t,∞)

The activities of the firm will generate cash flows driven by the process (Pt)t≥0 until the

abandonment date τL. The expected cumulative discounted cash flows is represented as

follows: Et
[∫ τL
t
Pse

−r(s−t)ds
]
. At that stopping date τL the salvage value of the firm is

assumed to be equal to B. We end up with

V ab
L (Pt, t) = Et

[∫ τL

t

Pse
−r(s−t)ds+Be−r(τL−t)

]
.

Case 2: The stopping time τL does not exist in [t,∞)

In that case, τL ≡ ∞, and this situation is similar to that of a firm with no option to abandon

activities. The project will infinitely generate cash flows from time t. Thus V ab
L (Pt, t) is

equal to the expected present value of cash flows generated and the discounted value of B

is just zero for the infinite time horizon. The value of the firm is given by the fundamental

component

V ab
L (Pt, t) = Et

[∫ ∞
t

Pse
−r(s−t)ds

]
.

Thanks to some well-known properties of Brownian motion, the analytical expression

can be derived for V ab
L (Pt, t). The expectation in Equation (5) is decomposed into two

components. The first is the expected present value of the cumulative cash flow generated

until the random abandonment time τL and it is equal to

Et

[∫ τL

t

Pse
−r(s−t)ds

]
.

The second is the expected present value of the salvage value Et
[
Be−r(τL−t)

]
. Its value is

computed from the Laplace transform of τL (see Karatzas & Shreve (1998), p.63–67) and it
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is given by the solution of the homogeneous part of the Equation (4):

Et
[
e−r(τL−t)

]
=

(
Pt
L

)θ0
where

θ0 =
1

2
− µ

σ2
−

√
2r

σ2
+

(
1

2
− µ

σ2

)2

< 0.

An alternative approach is to solve the PDE and then view θ0 as the negative root of the

characteristic fundamental quadratic equation

1

2
σ2θ (θ − 1) + (r − δ) θ − r = 0. (7)

Once the expectation Et
[
Be−r(τL−t)

]
is obtained, we can compute V ab

L (Pt, t) and we have

V ab
L (Pt, t) = Et

[∫ τL

t

Pse
−r(s−t)ds

]
+ Et

[
Be−r(τL−t)

]
= Et

[∫ ∞
t

Pse
−r(s−t)ds

]
− Et

[
e−r(τL−t)EτL

[∫ ∞
τL

Pse
−r(s−τL)ds

]]
+ Et

[
Be−r(τL−t)

]
= Et

[∫ ∞
t

Pse
−r(s−t)ds

]
+ Et

[(
B − EτL

[∫ ∞
τL

Pse
−r(s−τL)ds

])
e−r(τL−t)

]
= Et

[∫ ∞
t

Pse
−r(s−t)ds

]
+ Et

[(
B − EτL

[∫ ∞
τL

Pse
−r(s−τL)ds

])]
× Et

[
e−r(τL−t)

]
=

Pt
r − µ

+

(
B − L

r − µ

)(
Pt
L

)θ0
.

Note that

Et

[(
B − EτL

[∫ ∞
τL

Pse
−r(s−τL)ds

])
e−r(τL−t)

]
= Et

[(
B − EτL

[∫ ∞
τL

Pse
−r(s−τL)ds

])]
× Et

[
e−r(τL−t)

]
.

In fact, the variables τL and PτL are independent.
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Because this decision is strategic, the manager may endogenize the decision threshold L,

i.e. choose L so as to maximize the firm’s value. Let’s denote by L∗ the optimal level that

maximizes V ab
L (Pt, t) over L. We have the following properties for the function V ab

L (Pt, t):

Theorem 3.1. Let V ab
L (Pt, t) be the value of a firm with an option to abandon activities at

level L. We have

i)V ab
L (Pt, t) is continuous on R2

+,

ii) the inequality

V ab
L (P, t) ≤ V ab

L∗ (P, t) , ∀P > 0, L > 0

where

L∗ =
θ0

θ0 − 1
(r − µ)B.

The continuity argument in i) follows from the properties of payoff functions of the option

side8 in Equation (6). Property ii) provides the expression of the optimal level L∗ at which

the manager can optimally decide to abandon the activities.

Proof of Theorem 3.1. The property i) is ensured by the continuity of the option payoff

function and the continuity of the cash flows process driven by Equation (1).

To prove ii) we define the function φ (L) = (B − L/(r − µ)) /Lθ0 . This function is an

increasing function on (0, L∗) and decreasing on (L∗,∞). Consequently it has its maximum

on (0,∞) at L∗.

The value of the optimal level L∗ can be plugged into Equation (6) to obtain

Ṽ ab
∗ (Pt, t) =

Pt
r − µ

+
B

1− θ0

(
Pt/ (r − µ)

B θ0/ (θ0 − 1)

)θ0
. (8)

3.2. Decision to expand

Under favorable market conditions, the manager of the firm can decide to expand current

activities by a factor α. Here, it is assumed that the firm is compelled to continue activities

despite unfavorable conditions. This is realistic for some public services or when the cash

flows level is significantly high so that the probability of falling below a defined barrier

becomes negligible. The decision to expand will be at an optimal stopping time when the

present value of the cash flow reaches or exceeds an upper barrier H. We also assume that

the manager will face a constant investment cost Iα
9 when increasing the firm’s capacity by

α.
8Here the option side is the component of the equation beside the fundamental component Pt/(r − µ).
9We let Iα unspecified for the seek of generality. Obvious specifications are linear investment costs so

that Iα = αI where I is the cost of one unit of investment.
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Let τH be the first hitting time of an exogenous level H and Iα the cost of investment of

increasing the firm’s capacity by α. The next proposition is concerned with the value of a

firm with an option to expand its activities.

Proposition 3. The rational value of the firm with an option to expand , V exp
H (Pt, t), is

given by

V exp
H (Pt, t) = Et

[∫ ∞
t

Pse
−r(s−t)ds

]
+ Et

[
e−r(τH−t)

(
αEτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]
− Iα

)]
(9)

where τH ≡ inf {ε ≥ t : Pε = H}, or τH ≡ ∞ if no such time exists in [t,∞). The value

V exp
H (Pt, t) has the analytical expression as follows:

V exp
H (Pt, t) =

Pt
r − µ

+

(
αH

r − µ
− Iα

)(
Pt
H

)θ1
(10)

where

θ1 =
1

2
− µ

σ2
+

√
2r

σ2
+

(
1

2
− µ

σ2

)2

> 1

with

H ≥ (r − µ) Iα/α.

The intuition behind Equation (9) is that a firm with an option to expand activities

has at least the cash flows that will be infinitely generated by the initial project (first

expectation). If the option is exercised then additional cash flows times α are obtained

given an investment cost Iα (second expectation). Otherwise V exp
H (Pt, t) is no more than the

fundamental component.

The expression of Equation (10) also decomposes the value of the firm into the sum

of the fundamental component and the value of the option to expand. Later, we will see

that it is important for the parameter θ1 to be greater than 1 for the determination of an

optimal decision level. The final condition H ≥ (r − µ) Iα/α is also imposed for the seek of

rationality as explained in Proposition 2.

Proof of Proposition 3. To prove the proposition, let us analyze the two scenarios as in the

proof of Proposition 2.

Case 1: The stopping time τH exists in [t,∞)

The activities of the firm will generate cash flows driven by the process (Pt)t≥0 until the
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random abandonment date τH . The random discounted cumulative cash flow is represented

as follows: ∫ τH

t

Pse
−r(s−t)ds.

At that stopping time τH , the present value of the future cumulative cash flow of the new

production capacity, from τH , is

(1 + α)

∫ ∞
τH

Pse
−r(s−τH)ds.

The new investment cost, Iα, is deducted from the global revenue. Thus the expected present

value of the firm is

V exp
H (Pt, t) = Et

[∫ ∞
t

Pse
−r(s−t)ds

+

(
αEτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]
− Iα

)
e−r(τH−t)

]
. (11)

Case 2: The stopping time τH does not exist in [t,∞)

It means that τL ≡ ∞ and we have the particular case of Equation (11). The project will

infinitely generate cash flows from time t. V exp
H (Pt, t) is therefore equal to the expected

present value of the cumulative cash flow that will be generated as the discounted value of

Iα is just zero for the infinite time horizon. The value of the firm is given by

V exp
H (Pt, t) = Et

[∫ ∞
t

Pse
−r(s−t)ds

]
.

A closed-form formula is available for the value of the firm. Recall that the value of the

firm is the sum of the present value of cumulative cash flow of the initial investment

Et

[∫ ∞
t

Pse
−r(s−t)ds

]
=

Pt
r − µ

and the expected present value of cumulative cash flow of the newly added capacity from τH

to infinity:

αe−r(τH−t)EτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]
.
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The sum is reduced by the present value of the investment cost Iα. Summing up, we have

V exp
H (Pt, t) = Et

[∫ ∞
t

Pse
−r(s−t)ds

]
+ Et

[
αe−r(τH−t)EτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]]
− Et

[
Iαe
−r(τH−t)

]
=

Pt
r − µ

+ Et

[
e−r(τH−t)

(
αEτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]
− Iα

)]
=

Pt
r − µ

+ Et

[(
αEτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]
− Iα

)]
× Et

[
e−r(τH−t)

]
=

Pt
r − µ

+

(
αH

r − µ
− Iα

)(
Pt
H

)θ1
.

where

Et
[
e−r(τH−t)

]
=

(
Pt
H

)θ1
with θ1 the second root of Equation (7).

In addition αH/ (r − µ)− Iα must be positive. Thus we have

H ≥ (r − µ) Iα/α.

The manager can also endogenize the decision level H in order to maximize the value of

the firm. An optimal decision threshold H∗ can be derived by maximizing V exp
H (Pt, t) over

H. This is given in next theorem.

Theorem 3.2. Let V exp
H (Pt, t) be the value of a firm with an option to expand activity by α

at level H. We have

i)V exp
H (Pt, t) is continuous on R2

+,

ii) the inequality

V exp
H (Pt, t) ≤ V exp

H∗ (Pt, t) , ∀P > 0, H > 0

where

H∗ =
θ1

θ1 − 1

r − µ
α

Iα.

The continuity in i) is a consequence of the continuity of the option’s payoff functions

and the continuity of cash flows process. Property ii) provides the value of the optimal level

H∗ for the manager to decide for the expansion of the activity.

12



Proof of Theorem 3.2. i) The continuity argument developed in Theorem (3.1) also holds for

the function V exp
H (Pt, t).

For the proof of ii) we consider the function φ (H) = (αH/ (r − µ)− Iα)H−θ1 . This

latter is an increasing function on (0, H∗), decreasing on (H∗,∞), and thus has it maximum

on (0,∞) at H∗.

The expected maximum value of the firm is obtained by plugging H∗ into Equation (10)

and we have

V exp
∗ (Pt, t) =

Pt
r − µ

+
Iα

θ1 − 1

(
αPt/ (r − µ)

Iα θ1/ (θ1 − 1)

)θ1
.

3.3. Combining abandonment and expansion decisions

In previous subsections, the decision to abandon and to expand are analyzed indepen-

dently. What if the manager has both possibilities for the firm? Expand the activities when

market conditions are favorable or abandon under unfavorable market conditions. This is

the case of many start-ups and firms with ongoing activities.

To value such firms, it is assumed that managers will take the decisions at exogenous

thresholds; expand at H and abandon at L. Recall that in our context there is no possibility

to resume activities once it is abandoned. The cash flow process (Pt)t≥0 should satisfy the

inequalities 0 < L < Pt < H at the inception date t. Two cases arise depending on whether

the upper barrier H is first to be reached, by (Pt)t≥0, or the lower barrier L. If the upper

barrier H is reached first at time τH (case 1), activities will be extended by α, given an

investment cost Iα and the global activity will continue generating the cumulative cash flow.

If the lower barrier L is reached first at time τL (case 2), the cash flows are interrupted at τL

and we have a salvage value of B. As explained previously, we assumed that once the project

is abandoned there is no possibility to extend activities in the future. This is summarized

as follows:

Proposition 4. Let τL and τH be respectively the first hitting time of exogenous levels L and

H. For 0 < L < Pt < H and t ≥ 0, the value of the firm with an option to abandon and an

option to expand activities by α, V c
L,H (Pt, t),is given by

V c
L,H (Pt, t) = Et

[
Φt,11{τH<τL} + Φt,21{τL<τH}

]
(12)

where

Φt,1 =

∫ ∞
t

Pse
−r(s−t)ds+ αe−r(τH−t)EτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]
− Iαe−r(τH−t)

13



and

Φt,2 =

∫ τL

t

Pse
−r(s−t)ds+Be−r(τL−t).

The value V c
L,H (Pt, t) has the analytical expression as follows:

V c
L,H (Pt, t) =

Pt
r − µ

+

(
B − L

r − µ

)
×
(
Pt
H

)θ0 − (Pt
H

)θ1(
H
L

)−θ0 − (H
L

)−θ1
+

(
αH

r − µ
− Iα

)
×
(
Pt
L

)θ0 − (Pt
L

)θ1(
H
L

)θ0 − (H
L

)θ1 . (13)

Each of the component Φt,1 and Φt,2 represents a particular case depending on the first

hitting time of the thresholds. Equation (12) shows how interconnected both decisions are.

The equation can be rewritten as

V c
L,H (Pt, t) = Et

[
Φt,11{τH<τL} + Φt,21{τL<τH}

]
= Et [Φt,1 | τH < τL]×Q (τH < τL)

+ Et [Φt,2 | τL < τH ]×Q (τL < τH)

where

Q (τH < τL) =

(
Pt
L

)−(θ0+θ1) − 1(
Pt
L

)−(θ0+θ1) − (Pt
H

)−(θ0+θ1)
and

Q (τL < τH) = 1−Q (τH < τL)

=
1−

(
Pt
H

)−(θ0+θ1)(
Pt
L

)−(θ0+θ1) − (Pt
H

)−(θ0+θ1)
are respectively the probability of hitting the upper barrier H first and the probability of

hitting the lower barrier L first. Their expressions are derived in Appendix A.

Equation (13) gives closed-form expression for the value of a firm with an option to

abandon and to expand activities. This analytical expression is very interesting since it

shows that both options, to expand and to abandon, interact and are not simply the sum of

the values of two independent real options.

Proof of Proposition 4. To prove the proposition let us analyze both cases.

Case 1: The upper barrier H is reached first (τH < τL)

If the upper barrier H is reached first, activities will be first expanded (by α at a given

14



investment cost Iα) and then the cumulative activity of size (1 + α) infinitely generates cash

flows. The present value of cumulative discounted cash flow of the activity
∫∞
t
Pse

−r(s−t)ds

is then augmented by the α unites of the discounted revenue that will be generated by the

activity starting at τH , that is αe−r(τH−t)
∫∞
τH
Pse

−r(s−τH)ds, net of the discounted investment

cost Iαe
−r(τH−t). Summing up, we have

Φt,1 =

∫ ∞
t

Pse
−r(s−t)ds+ αe−r(τH−t)

∫ ∞
τH

Pse
−r(s−τH)ds− Iαe−r(τH−t).

Case 2: The lower barrier L is reached first (τL < τH)

If the lower barrier L is reached first, the activities are stopped at time τL and we have the

salvage value B. It is assumed that there is no possibility to resume the activities in the

future once stopped. Otherwise it is evaluated as an independent new project. The (random)

firm’s value under this scenario is

Φt,2 =

∫ τL

t

Pse
−r(s−t)ds+Be−r(τL−t).

The first result of Proposition (4) follows.

The derivation of the analytical expression is exposed in Appendix B.

The barriers H and L were considered exogenous. They can, however, be determined

optimally so as to maximize the value of the firm. In addition both barriers depend on each

other and must be computed numerically. It is obvious that the optimal values of H and L,

respectively denoted by L∗ and H∗, satisfy the equations

∂V c
L,H

∂L
|L=L∗,H=H∗= 0,

∂V c
L,H

∂H
|L=L∗,H=H∗= 0.

Theorem 3.3. Let V c
L,H (Pt, t) be the value of a firm with an option to abandon at L and

expand activities by α at level H. The function V c
L,H (Pt, t) is continuous on R2

+.

This continuity property suggests that the immediate exercise region is a closed set.

Furthermore, and by definition, the region above H∗ is up-connected and the region below

L∗ is down-connected. The uniqueness of H∗ and L∗ then follows.

Proof of Theorem 3.3. As with the functions V ab
L (Pt, t) and V exp

H (Pt, t), the continuity of

the function V c
L,H (Pt, t) holds due to the continuity of the option payoff function and the

continuity of the cash flows process driven by Equation (1).
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4. Investment decision under finite time horizon

Previously we have considered an infinite time horizon for the financial decisions. In some

circumstances, the firm’s manager has some time constraint for their decisions to abandon or

to expand their activities. This section considers finite lived opportunities to invest/disinvest

before or at a given expiry time.

Consider the value of a firm, V (Pt, t)
10, with a finite lived option written on the under-

lying process P . The value of the firm also satisfies the PDE of Equation (2). Due to the

time constraint, the optimal decision levels are now time-variant. They can be decreasing

or increasing functions of time, depending on the nature of the contract (abandonment or

expansion). In fact, as time passes and tends to the time horizon, the set of early exercise

possibilities shrinks. The following subsections undertake the valuation of firms enjoying

different real option opportunities.

4.1. Decision to Abandon

This subsection is about the valuation, at time t, of a firm with an option to abandon

activities given that, if necessary, the decision should be taken within a period of time

delimited by the interval [0, T ]. Let us denote by L (·) the unknown time-varying optimal

exercise boundary (or early exercise boundary) to determine, and by S ([t, T ]) ≡ St,T the set

of stopping times of the filtration taking values between t and T . The value of the firm with

the abandonment option is given by the following proposition.

Proposition 5. Consider a firm with an option to abandon activities with a salvage value

of B. The rational value of the firm , at time t, is given by

V
ab

L (Pt, t) = sup
τ∈St,T

Et

[∫ ∞
t

Pse
−r(s−t)ds

+e−r(τ−t)
(
B − Eτ

[∫ ∞
τ

Pse
−r(s−τ)ds

])+
]

(14)

The optimal exercise policy is characterized by

τt = inf {s ∈ [t, T ] : Ps = L (s)} .
10The overline over V indicates that the firm’s manager has a finite time horizon for the financial decision.
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The value V
ab

L (Pt, t) has the analytical expression as follows:

V
ab

L (Pt, t) =
Pt

r − µ
+

1

r − µ
P (Pt, t, (r − µ)B,L (·)) (15)

for t ∈ [0, T ], where P (Pt, t,KB, L (·)) is the value of a standard American put option on

Pt with strike KB = (r − µ)B and maturity T . The early exercise boundary L solves the

non-linear recursive integral equation

KB − L (t) = P (L (t) , t,KB, L (·)) (16)

for all t ∈ [0, T ], subject to the boundary condition limt↑T L (t) = min {KB, (r/δ)KB}. At

maturity L (T ) = (r − µ)B.

This proposition gives a representation of the value of the firm. This representation

suggests that the American-style contingent claim ought to equalize the expected maximum

value of the global payoff.

Following the EEP representation, the value of a standard American put option can be

rewritten as

P (Pt, t,K, L (·)) = p (Pt, t) + πp (Pt, t;L (·)) , for 0 ≤ t ≤ T, (17)

where p (Pt, t) represents the value of a standard European put option given by

p (Pt, t) = Ke−r(T−t)ℵ (−d2 (Pt, T − t;K))− Se−δ(T−t)ℵ (−d1 (Pt, T − t;K))

and πp (Pt, t;L (·)) represents the early exercise premium defined by

πp (Pt, t;L (·)) =

∫ T

t

[
rKe−r(η−t)ℵ (−d2 (Pt, η − t;L (η)))

−δPte−δ(η−t)ℵ (−d1 (Pt, η − t;L (η)))
]
dη

with

d1 (Pt, s− t; β) =
ln (Pt/β) + (r − δ + 1/2σ2) (s− t)

σ
√
s− t

,

d2 (Pt, s− t; β) = d1 (Pt, s− t; β)− σ
√
s− t.

Proof of Proposition 5. The result of the proposition is obtained by analyzing the resulting

payoff of the option to abandon. At the inception date t, the firm worth the present value
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of the cumulative future cash flows ∫ ∞
t

Pse
−r(s−t)ds,

and if the manager exercises the option at a date τ within [t, T ], He/She will lose the expected

present value of cumulative future cash flow from τ onwards and, in return, will receive the

salvage value of the firm. Of course, a rational manager will exercise the option only if the

salvage value is higher than the expected present value of cumulative future cash flow. The

global payoff is given by∫ ∞
t

Pse
−r(s−t)ds+ e−r(τ−t)

(
B − Eτ

[∫ ∞
τ

Pse
−r(s−τ)ds

])+

.

We end up with the result by applying, to the payoff, the Theorem 5.3 of Karatzas & Shreve

(1998).

The analytical expression can be established by considering Equation (14) and we have

V
ab

L (Pt, t) = sup
τ∈St,T

Et

[∫ ∞
t

Pse
−r(s−t)ds+ e−r(τ−t)

(
B − Eτ

[∫ ∞
τ

Pse
−r(s−τ)ds

])+
]

= Et

[∫ ∞
t

Pse
−r(s−t)ds

]
+ sup

τ∈St,T
Et

[
e−r(τ−t)

(
B − Eτ

[∫ ∞
τ

Pse
−r(s−τ)ds

])+
]

=
Pt

r − µ
+ sup

τ∈St,T
Et

[
e−r(τ−t)

(
B − Pτ

r − µ

)+
]

=
Pt

r − µ
+

1

r − µ
× sup

τ∈St,T
Et
[
e−r(τ−t) ((r − µ)B − Pτ )+

]
.

One just has to remark that the maximization of the expectation

Et

[∫ ∞
t

Pse
−r(s−t)ds+ e−r(τ−t)

(
B − Eτ

[∫ ∞
τ

Pse
−r(s−τ)ds

])+
]

over τ , in time interval [t, T ], is equivalent to the maximization of the expectation

Et
[
e−r(τ−t) ((r − µ)B − Pτ )+

]
(18)

over τ , in [t, T ]. Obviously, the last expectation corresponds to the price of a standard

American put option on the underlying asset Pt with strike (r − µ)B and maturity T .
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4.2. Decision to Expand

Now it is considered a firm with a single option to expand its activities by α under

favorable market conditions where the manager has a given time interval, [0, T ], for the

expansion decision. The valuation of the firm is made at an inception time t ∈ [0, T ]. Let

H (·) be the unknown time-varying EEB and define the optimal expansion time by

τt = inf {s ∈ [t, T ] : Ps = H (s)} .

The next proposition gives the value of the considered firm.

Proposition 6. Consider a firm with an option to expand activities by α unite given an

investment cost Iα. The rational value of the firm , at time t, is given by

V
exp

H (Pt, t) = sup
τ∈St,T

Et

[∫ ∞
t

Pse
−r(s−t)ds

+e−r(τ−t)
(
αEτ

[∫ ∞
τ

Pse
−r(s−τ)ds

]
− Iα

)+
]
. (19)

The optimal exercise policy is given by

τt = inf {s ∈ [t, T ] : Ps = H (s)} .

The value V
exp

H (Pt, t) has the analytical expression as follows:

V
exp

H (Pt, t) =
Pt

r − µ
+

α

r − µ
C (Pt, t, (r − µ) Iα/α,H (·)) (20)

where C (Pt, t,K
α
I , H (·)) is the value of a standard American call option on Pt with strike

Kα
I = (r − µ) Iα/α and maturity T . The early exercise boundary H solves the non-linear

recursive integral equation

H (t)−Kα
I = C (H (t) , t,Kα

I , H (·)) (21)

for all t ∈ [0, T ], subject to the boundary condition limt↑T H (t) = max {Kα
I , (r/δ)K

α
I }. At

maturity H (T ) = (r − µ) Iα/α.

The value of a standard American call option is given by

C (Pt, t,K,H (·)) = c (Pt, t) + πc (Pt, t;H (·)) , for 0 ≤ t ≤ T, (22)
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where c (Pt, t) represents the value of a standard European call option given by

c (Pt, t) = Se−δ(T−t)ℵ (d1 (Pt, T − t;K))−Ke−r(T−t)ℵ (d2 (Pt, T − t;K))

and πc (S, t;H (·)) represents the early exercise premium defined by

πc (Pt, t;H (·)) =

∫ T

t

[
δPte

−δ(η−t)ℵ (d1 (Pt, η − t;H (η)))

−rKe−r(η−t)ℵ (d2 (Pt, η − t;H (η)))
]
dη

with

d1 (Pt, s− t; β) =
ln (Pt/β) + (r − δ + 1/2σ2) (s− t)

σ
√
s− t

,

d2 (Pt, s− t; β) = d1 (Pt, s− t; β)− σ
√
s− t.

Proof of Proposition 6. The proof of the proposition can be derived along the one of Propo-

sition (5). Here the payoff of the option to expand is

e−r(τ−t)
(
αEτ

[∫ ∞
τ

Pse
−r(s−τ)ds

]
− Iα

)+

.

That is, when the option is exercised at a random time τ , the manager will receive α quantity

of the present value of the expected cumulative future cash flow at a cost of Iα. Of course

the exercise should occur only if the difference between these two values is positive (positive

gain for the firm).

For the analytical expression, we have

V
exp

H (Pt, t) = sup
τ∈St,T

Et

[∫ ∞
t

Pse
−r(s−t)ds+ e−r(τ−t)

(
αEτ

[∫ ∞
τ

Pse
−r(s−τ)ds

]
− Iα

)+
]

=
Pt

r − µ
+

α

r − µ
× sup

τ∈St,T
Et

[
e−r(τ−t)

(
Pτ −

1

α
(r − µ) Iα

)+
]

At the end we have to optimize the expectation

Et

[
e−r(τ−t)

(
Pτ −

1

α
(r − µ) Iα

)+
]

over τ in the time interval [t, T ] which corresponds the price of a standard American call

option on Pt, with strike 1
α

(r − µ) Iα and maturity T .
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4.3. Combining abandonment and expansion decisions

Suppose now that the manager has the right to exercise one of the two options (option

to abandon or to expand) within a finite time interval [0, T ] and consider a valuation date t

within the finite time interval. There will be two unknown time-varying and interdependent

EEBs. Each of the boundaries is linked to a specific side of the option, either the aban-

donment side or the expansion side. We denote by L̃ (·) the abandonment option side EEB

and H̃ (·) the one of the expansion option side. The next proposition gives an expectation

representation of the value of the firm.

Proposition 7. Consider a firm with an option to expand activities by α, at an investment

cost of Iα, or to abandon activities with a salvage value of B. The rational value of the firm

, at time t, is given by

V
c

H̃,L̃ (Pt, t) = sup
τ∈St,T

Et

[∫ ∞
t

Pse
−r(s−t)ds

+e−r(τ−t)

[(
αEτ

[∫ ∞
τ

Pse
−r(s−τ)ds

]
− Iα

)+

+

(
B − Eτ

[∫ ∞
τ

Pse
−r(s−τ)ds

])+
]]

. (23)

The optimal exercise policy is given by

τt = inf
{
s ∈ [t, T ] : Ps = H̃ (s) or Ps = L̃ (s)

}
.

The value V
c

H̃,L̃ (Pt, t) has the analytical expression as follows:

V
c

H̃,L̃ (Pt, t) =
Pt

r − µ

+
1

r − µ

[
αC
(
Pt, t, (r − µ) Iα/α, H̃ (·)

)
+ P

(
Pt, t, (r − µ)B, L̃ (·)

)]
. (24)

The early exercise boundaries H̃ and L̃ solve the coupled recursive non-linear integral equa-

tions

H̃ (t)−Kα
I = C

(
H̃ (t) , t,Kα

I , H̃ (·)
)

+
1

α
P
(
H̃ (t) , t,KB, L̃ (·)

)
(25a)

KB − L̃ (t) = αC
(
L̃ (t) , t,Kα

I , H̃ (·)
)

+ P
(
L̃ (t) , t,KB, L̃ (·)

)
(25b)

for all t ∈ [0, T ], subject to the boundary conditions limt↑T H̃ (t) = max {Kα
I , (r/δ)K

α
I }
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and limt↑T L̃ (t) = min {KB, (r/δ)KB}. At maturity H̃ (T ) = (r − µ) Iα/α and L̃ (T ) =

(r − µ)B.

Remark 4.1. Both optimal exercise boundaries H̃ (t) and L̃ (t) interact. This is emphasized

by Equations (25a)-(25b). Consequently they may not be identical to those of two independent

real options.

Proof of Proposition 7. The expectation form of the value of the firm can be obtained using

the same trick as in Proposition 5 and given the combined option’s payoff

e−r(τ−t)

[(
αEτ

[∫ ∞
τ

Pse
−r(s−τ)ds

]
− Iα

)+

+

(
B − Eτ

[∫ ∞
τ

Pse
−r(s−τ)ds

])+
]
.

The analytical expression of the value of the firm with the combined real options is

derived by computing the expectation representation in Proposition (7). We have

V
c

H̃,L̃ (Pt, t) = sup
τ∈St,T

Et

[∫ ∞
t

Pse
−r(s−t)ds

+e−r(τ−t)

[(
αEτ

[∫ ∞
τ

Pse
−r(s−τ)ds

]
− Iα

)+

+

(
B − Eτ

[∫ ∞
τ

Pse
−r(s−τ)ds

])+
]]

=
Pt

r − µ
+ sup

τ∈St,T
Et

[
e−r(τ−t)

[(
αPτ
r − µ

− Iα
)+

+

(
B − Pτ

r − µ

)+
]]

=
Pt

r − µ

+
1

r − µ
sup
τ∈St,T

Et

[
e−r(τ−t)

[
α

(
Pτ −

1

α
(r − µ) Iα

)+

+ ((r − µ)B − Pτ )+
]]

.

The problem is reduced to the optimization of

Et

[
e−r(τ−t)

[
α

(
Pτ −

1

α
(r − µ) Iα

)+

+ ((r − µ)B − Pτ )+
]]

over τ in [t, T ].

At any exercise time τ , the corresponding payoff function is

e−r(τ−t)

[
α

(
Pτ −

1

α
(r − µ) Iα

)+

+ ((r − µ)B − Pτ )+
]
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and is comparable the one of a Strangle contract developed in Chapter ??. Thus similar

materials can be used to derive the analytical formulas.

5. Numerical results and analysis

This section presents numerical investigation of the valuation methodologies developed

above. For illustration, consider a fictitious small firm called LM Factory. The firm has

recently begun its activities and now is interested in determining its value. Assume that

the firm has the opportunity to increase by 50% its current capacity at a cost of 15011.

Abandoning the current activities can be considered when the profit is low, i.e., when the

present value of cash flows falls below a threshold L. Once an abandonment is decided,

the production machines and furniture can be sold for 140. The value of the cash flow is

estimated to 20. The analysis of previous years of operation suggests a cash flow variance

of 0.4 and a trend of 0.04. The risk-free interest rate is r = 0.08. At a first stage, we will

consider that the manager has an infinite time horizon for these two decisions. At a second

stage, the horizon will be considered finite and decisions can only occur within the next 5

years. The objective here is to examine the firm’s behavior in different scenarios.

Starting with the values of the firm’s opportunities under different scenarios, Figure 1

represents the values of the expansion, abandonment and combined real options as functions

of the level of cash flow Pt. Of course, the single abandonment option is a decreasing function

of Pt while the expansion option is an increasing function of the same variable. The curve

of combined option is an upward-pointing curve, meaning that lower and higher values of Pt

add value to the option. We can see that within the corridor [L,H], the combined option is

more valuable than its single counterparts.

[Insert Figure 1 about here]

Figure 2 shows the values of a single expansion option and combined options as functions

of the decision threshold H. The single expansion option presents a hump by varying the

decision threshold. It reaches its maximum at H = 54.73. This critical threshold is ana-

lytically given by ii) in Theorem 3.2. A hump also appears when plotting the curve of the

combined option value as function of H̃. The maximum, here, is H̃ = 59.66, meaning that

the manager of a firm with both options exercises the expansion option later, i.e., at higher

values of cash flows, compared to the one holding a single expansion option.

[Insert Figure 2 about here]

11All amounts are given in thousands of euros, unless otherwise specified. The choice of the parameters’
values is made as to numerically highlight the behavior of the opportunities’ values (real options).
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Figure 3 is about the values of a single abandonment option and combined options as

functions of the threshold L. The optimal decision level that maximizes the abandonment

option can be graphically observed at L = 2.45 as given by ii) in Theorem 3.1. The maximum

for the combined option is reached at a lower level L̃ = 2.08. That is, when the cash flows

decreases, the manager of the firm with the combined option may wait a little while longer

before abandoning the activities compared to the manager with a single abandonment option.

In contrast to Figure 2, a significant difference between the combined and single real option is

observed. Analyzing Figure 1, we can see that the expansion side real option is very valuable

for Pt = 20. Thus, the combined option may be significantly valuable in comparison with

the single abandonment option.

[Insert Figure 3 about here]

Figure 4 presents a 3D graph of the value of the combined option as a multivariate

function of both decision thresholds H and L. The surface of the function also presents a

hump, reflecting the existence and uniqueness of the pair (L̃, H̃) that maximizes the value

of the option. The maximum of the option is obtained for L̃ = 2.08 and H̃ = 59.66.

These optimal thresholds are numerically determined because their analytical expressions

are almost impossible to obtain.

[Insert Figure 4 about here]

Figure 5 shows the value of the option to abandon as a function of the salvage value of

the firm. It is an increasing and unlimited function of the salvage value B. On the other

side, the expansion option is a decreasing and limited function of the investment cost Iα as

shown by Figure 6. In fact, higher investment costs can jeopardize the investment decision,

thus lowers the value of the option.

[Insert Figure 5 about here]

[Insert Figure 6 about here]

We also compare decision thresholds of finite lived options with those of perpetual options.

Figures 7 and 8 show how the early exercise boundaries behave when varying the time t for

some chosen values of the maturity date (5 years, 10 years and infinity). As expected the

decision thresholds are constant (for the perpetual option), decreasing with regard to the

time t (for the finite-lived expansion options) and increasing with regard to the time t (for

the finite-lived abandonment options). We can observe the convergence of the EEB to the
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constant decision threshold of the perpetual options when increasing the maturity date from

5 to 10 years, for example. This illustrates how a manager with a shorter finite lived option

may exercise the real option far earlier than a manager with longer maturity. However the

exercise policy, starting from t = 0, of the short-dated (5 years) maturity is identical to the

one of the long-dated maturity (10 years) when starting from t = 5 (in the interval [5, 10]).

Both graphs have the same shape.

[Insert Figure 7 about here]

[Insert Figure 8 about here]

Figures 9 and 10 show how EEBs of the combined option and those associated to single

abandonment and expansion options differ from each other. The first figure represents the

EEB of the upper side of the combined option with the EEB of an expansion option. The

second one, consider those of the lower side of the combined option and the abandonment

option. We can observe a difference between the EEBs suggesting that the value of combined

options may be different from the sum two independent single real options (Abandonment +

Expansion) . The manager holding the combined option may wait longer before exercising

the option. This supports the conclusions in the case the perpetual options discussed earlier.

[Insert Figure 9 about here]

[Insert Figure 10 about here]

Table 1 gives the values of different real option contracts for different values of Pt. Recall

that Ṽ is the value of the firm without any real option and generating, infinitely, cash flows

driven by the process P . The notations vabL , vexpH and vabexp
L̃,H̃

stand, respectively, for the value

of the abandonment, expansion and combined options when the manager has infinite time

horizon for the financial decisions. In the case of a finite time horizon12 (T = 5 years), an

overline is added and we have vabL , vexpH and vabexp
L̃,H̃

. The analysis of Table 1 indicates that

infinite lived contracts are more valuable than their finite lived counterpart. The reason is

that the additional leeway to delay the financial decisions increases the value of the option.

Here also, the numerical values show that the combined option is not a simple sum of an

abandonment and an expansion option.

[Insert Table 1 about here]

12The integral equation involved in the computation of the EEB is computed using subintervals of length
h = T/1000. Using thinner subintervals would improve the approximation of the integral equations.
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Table 2 shows how the values of the different opportunities (expansion and/or abandon-

ment) vary when changing the maturity date T for P = 10, r = 0.08, δ = 0.04, σ = 0.4,

α = 0.5, Iα = 150 and B = 140. The values increase with the maturity date and converge to

those of the corresponding opportunities with infinite time horizon (last line of the table).

In fact, the time constraint shrinks the additional possibilities for the future cash flows sce-

narios. Thus, the managers are more likely to take the decisions earlier than they would do

if they have more leeway in terms of time (see also Figures 7 and 8). Consequently, the value

for waiting is lowered and the different opportunities lose value when maturity decreases.

[Insert Table 2 about here]

Table 3 analyzes the sensitivity of the value of the investment/disinvestment opportunities

to the volatility (σ) underlying the future cash flows for P = 10, r = 0.08, δ = 0.04, T = 5

(for finite lived opportunities), α = 0.5, Iα = 150 and B = 140. We can see, from the table,

that the investment/disinvestment is highly sensitive to volatility in the future values of the

cash flows. The value of the project significantly increases when σ increases. In other words,

firms are more valuable under very uncertain market conditions. This highlight a significant

advantage of the real option approach compared to the classical NPV approach. In this

latter approach, it is often assumed that σ = 0.

[Insert Table 3 about here]

6. Conclusion

This paper extends the work of Dixit & Pindyck (1994) by considering the valuation of a

firm holding simultaneously an option to abandon and an option to expand activities in the

Black-Scholes’s framework. The cases of finite and infinite-lived options were investigated.

Expectation representations and analytical formulas for the firm’s values were given. It is

assumed that the firm can extend its activities when the generated cash flow reaches an upper

decision level and abandon the activities when it drops below a lower level. The decision

levels were firstly considered exogenous and, secondly, determined endogenously in order to

optimize the investment/disinvestment decisions. These levels were shown to be constant for

infinite-lived options and time varying for finite-lived options. Numerical results documented

this behavior. It is also shown, numerically, that the coupled options is not a simple sum

of two independent options. This indicates that a manager with coupled options may react

differently from two independent managers, each of them holding a single option.
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The methodology developed in this paper may be suitable for valuing firms in general and

small firms in particular with significant opportunities to expand their activities (export). In

fact, in the first years of activity, most firms’ managers face situations where they consider

a possible extension or abandonment of their activities. These decisions can be delayed

infinitely in the future or, due to some constraints, to a maximum finite time horizon. The

methodology developed can also account for valuing levered firms by appropriately adjusting

the options’ parameters.
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Appendix A. First hitting time

In this appendix we derive the expressions of the probabilities of first hitting the upper

barrier H and the lower barrier L respectively represented by Q (τH < τL) and Q (τL < τH).

The expressions are used to determine the corresponding conditional expectations Et
[
e−r(τH−t) | τH < τL

]
and Et

[
e−r(τL−t) | τL < τH

]
.

We first define the new process (Xs)s≥t≥0 by

Xs =
1

σ
ln

(
Ps
Pt

)
, Pt given.

The process can be written as Xs = νs+Ws with ν = 1
σ

(µ− σ2/2) and we have Ps = Pte
σXs .

The Girsanow theorem ensures that there exists a new probability measure for which the

process X is a standard Brownian motion. Let h and l be, respectively, an upper and a lower

barrier for X with h = 1
σ

ln (H/Pt) and l = 1
σ

ln (L/Pt). The inequality l < 0 < h must hold

at inception date t.

Let τh and τl be respectively the first hitting times of the barriers h and l by the process

X and τh,l = inf {τh, τl}. Consequently

Q (τH < τL) ≡ Q (τh < τl) and Q (τL < τH) ≡ Q (τl < τh) .

By means of the Laplace transform of the first hitting time τh,l, it is well known13 that

Et
[
e−r(τh−t) | τh < τl

]
Q (τh < τl) =

eνh sinh
[√
ν2 + 2r|l|

]
sinh

[√
ν2 + 2r (h− l)

] (26)

and

Et
[
e−r(τl−t) | τl < τh

]
Q (τl < τh) =

eνl sinh
[√
ν2 + 2rh

]
sinh

[√
ν2 + 2r (h− l)

] (27)

where

Q (τh < τl) =
e−2νl − 1

e−2νl − e−2νh
(28)

and

Q (τl < τh) = 1−Q (τh < τl)

=
1− e−2νh

e−2νl − e−2νh
. (29)

13See Douady (1999)
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In fact, Q (τh < τl) (Equation (28)) is obtained using the fundamental theorem of mar-

tingales. We know that for any scalar ν, the process defined by

Ys = e(−2ν)(Ws−Wt)− 1
2
(−2ν)2(s−t)

is a martingale such that

Et
[
Yτh,l

]
= e−2νl +

(
e−2νh − e−2νl

)
Q (τh < τl)

= 1.

The expressions of Q (τh < τl) and Q (τl < τh) follow.

Recall that h = 1
σ

ln (H/Pt) and l = 1
σ

ln (L/Pt). Relying on Moraux (2009), we get more

explicit form for Equations (26)-(29). For the first equation (Equation (26)) we have

Et
[
e−r(τh−t) | τh < τl

]
Q (τh < τl) =

eνh sinh
[√
ν2 + 2r|l|

]
sinh

[√
ν2 + 2r (h− l)

]
=

(
Pt
H

)− ν
σ

×
(
Pt
L

) 1
σ

√
ν2+2r −

(
Pt
L

)− 1
σ

√
ν2+2r(

H
L

) 1
σ

√
ν2+2r −

(
H
L

)− 1
σ

√
ν2+2r

=

(
Pt
L

)− ν
σ(

H
L

)− ν
σ

×
(
Pt
L

) 1
σ

√
ν2+2r −

(
Pt
L

)− 1
σ

√
ν2+2r(

H
L

) 1
σ

√
ν2+2r −

(
H
L

)− 1
σ

√
ν2+2r

=

(
Pt
L

)− ν
σ
+ 1
σ

√
ν2+2r −

(
Pt
L

)− ν
σ
− 1
σ

√
ν2+2r(

H
L

)− ν
σ
+ 1
σ

√
ν2+2r −

(
H
L

)− ν
σ
− 1
σ

√
ν2+2r

=

(
Pt
L

)θ0 − (Pt
L

)θ1(
H
L

)θ0 − (H
L

)θ1
where

θ0 =
1

2
− µ

σ2
−

√
2r

σ2
+

(
1

2
− µ

σ2

)2

= −ν
σ
− 1

σ

√
ν2 + 2r

29



and

θ1 =
1

2
− µ

σ2
+

√
2r

σ2
+

(
1

2
− µ

σ2

)2

= −ν
σ

+
1

σ

√
ν2 + 2r.

The remain expressions are obtained using the same trick. For Equations (28) and (29),

one can just remark that −2ν
σ

= θ0 + θ1.

Appendix B. Derivation of the analytical expression

To derive the analytical expression in Proposition 4, recall that:

V c
L,H (Pt, t) = Et [Φt,1 | τH < τL]×Q (τH < τL)

+ Et [Φt,2 | τL < τH ]×Q (τL < τH) (30)

where

Φt,1 =

∫ τL

t

Pse
−r(s−t)ds+ αe−r(τH−t)EτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]
− Iαe−r(τH−t)

and

Φt,2 =

∫ τL

t

Pse
−r(s−t)ds+Be−r(τL−t).

Equation (30) can be evaluated by means of well-known Brownian motion properties.

Let’s start with the first expectation of the equation.

Et [Φt,1 | τH < τL] = Et

[∫ τL

t

Pse
−r(s−t)ds

+αe−r(τH−t)EτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]
− Iαe−r(τH−t) | τH < τL

]
= Et

[∫ ∞
t

Pse
−r(s−t)ds

+e−r(τH−t)
(
αEτH

[∫ ∞
τH

Pse
−r(s−τH)ds

]
− Iα

)
| τH < τL

]
= Et

[
Pt

r − µ
+

(
αH

r − µ
− Iα

)
e−r(τH−t) | τH < τL

]
=

Pt
r − µ

+

(
αH

r − µ
− Iα

)
× Et

[
e−r(τH−t) | τH < τL

]
,
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where the conditional expectation

Et
[
e−r(τH−t) | τH < τL

]
=

1

Q (τH < τL)
×
(
Pt
L

)θ0 − (Pt
L

)θ1(
H
L

)θ0 − (H
L

)θ1
is derived in Appendix A.

The second expectation of Equation (30) is obtained similarly.

Et [Φ2 | τL < τH ] = Et

[∫ τL

t

Pse
−r(s−t)ds+Be−r(τL−t) | τL < τH

]
= Et

[∫ ∞
t

Pse
−r(s−t)ds

−e−r(τL−t)EτL
[∫ ∞

τL

Pse
−r(s−τL)ds

]
+Be−r(τL−t) | τL < τH

]
= Et

[
Pt

r − µ
+ e−r(τL−t)

(
B − L

r − µ

)
| τL < τH

]
=

Pt
r − µ

+

(
B − L

r − µ

)
Et
[
e−r(τL−t) | τL < τH

]
,

where

Et
[
e−r(τL−t) | τL < τH

]
=

1

Q (τL < τH)
×
(
Pt
H

)θ0 − (Pt
H

)θ1(
H
L

)−θ0 − (H
L

)−θ1 . (31)

See Appendix A for the derivation of (31).
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Fig. 1. Expansion, abandonment and combined options as functions of Pt
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Fig. 2. Expansion and combined real options as functions of H.
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Fig. 3. Abandonment and combined real options as functions of L.
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Fig. 4. Combined option as function of the thresholds L and H.

36



0 100 200 300 400 500 600 700 800

Salvage value  B

0

50

100

150

200

250

300

350

V
al

ue
 o

f t
he

 o
pt

io
n

Fig. 5. Abandonment option as function of the salvage value B.
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Fig. 7. Early Exercise Boundaries for different maturity dates.
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Fig. 8. Early Exercise Boundaries for different maturity dates.
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Table 1: Values of real options as function of the cash flow level Pt

Pt Ṽ vabL vabL vexpH vexpH vabexp
L̃,H̃

vabexp
L̃,H̃

3 75 67.23 65.65 12.96 2.00 72.90 66.69

5 125 45.12 38.03 24.92 7.96 64.97 45.72

10 250 26.26 14.29 60.55 36.87 83.36 51.14

15 375 19.14 6.83 101.78 77.92 117.76 84.74

20 500 15.29 3.71 147.13 125.75 159.17 129.44

25 625 12.84 2.20 195.80 177.92 205.12 180.06

Table 2: Values of real options as function of the maturity T

T vabL vexpH vabexp
L̃,H̃

1 1.85 12.57 14.43

2 5.75 21.35 27.11

3 9.20 27.79 36.99

4 12.01 32.81 44.82

5 14.29 36.87 51.14

∞ 26.26 60.55 83.36
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Table 3: Values of real options as function of the volatility σ

σ vabL vabL vexpH vexpH vabexp
L̃,H̃

vabexp
L̃,H̃

10% 0.03 0.002 30.91 9.95 30.88 9.96

20% 3.83 1.18 40.69 18.92 43.70 20.11

40% 26.26 14.29 60.55 36.87 83.36 51.14
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