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Abstract

Predicting stock market crashes is a focus of interest for both
researchers and practitioners. Several prediction models have been
developed, mostly for use on mature financial markets. In this pa-
per, we investigate whether traditional crash predictors, the price-to-
earnings ratio, the Cyclically Adjusted Price-to-Earnings ratio and the
Bond-Stock Earnings Yield Differential model, predicts crashes for the
Shanghai Stock Exchange Composite Index and the Shenzhen Stock
Exchange Composite Index.
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1 Introduction

Through the summer of 2015, the gyrations of the Shanghai stock exchange
captured the headlines of the financial press. In fact, what has been labeled
the “2015 Chinese stock market crash” is just the latest in a series of 22
major downturns in the twenty-five years of the Chinese stock market his-
tory. Headlines aside, the Chinese stock market is certainly one of the most
interesting equity markets in the world by its size, scope, structure and re-
cency. These features have a deep influence on the behavior and returns of
the Chinese stock market.

In this paper, we discuss four four stylized facts on the return distribu-
tion of the Shanghai Stock Exchange Composite Index (SHCOMP) and the
Shenzhen Shenzhen Stock Exchange Composite Index (SZCOMP). Then,
we explain how equity downturn and crash prediction models work, and
how to test their accuracy. The construction process for the signal and
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hit sequence is crucial to ensure that the crash prediction models produce
out of sample predictions free from look-ahead bias. It also eliminates data
snooping by setting the parameters ex ante, with no possibilities of changing
them during the analysis. Also, the construction process removes the effect
of autocorrelation, making it possible to test the accuracy of the measures
using standard statistical techniques. We also conduct a Monte Carlo study
to address small sample bias.

Then, we test whether the price-to-earnings ratio (P/E) based on current
earnings, the Bond-Stocks Earnings Yield Differential model (BSEYD) and
the Cyclically Adjusted Price-to-Earnings ratio (CAPE), accurately predicts
downturns in the SHCOMP and SZECOMP indexes. We find that the loga-
rithm of the P/E has successfully predicted crashes over the entire length of
the study (1990-2015 for the SHCOMP and 1991-2016 for the SZECOMP).
During the shorter 9-year period from 2006 to 2015, we find mixed evidence
of the predictive ability of the BSEYD. Overall, this study provides support-
ing evidence for the application of crash prediction models to the Chinese
market.

The academic literature on bubbles and crashes is well established, start-
ing with the studies on bubbles by Blanchard and Watson (1982), Flood
et al. (1986), Camerer (1989), Allen and Gorton (1993), Diba and Gross-
man (1988), Abreu and Brunnermeier (2003) and more recently Corgnet
et al. (2015), Andrade et al. (2016) or Sato (2016). A rich literature on
bubble and crash predictions has also emerged. We can classify bubble
and crash prediction models in three broad categories, based on the type
of methodology and variable used: fundamental models, stochastic models
and sentiment-based models.

Fundamental models use fundamental variables such as stock prices, cor-
porate earnings, interest rates, inflation or GNP to forecast crashes. The
Bond-Stock Earnings Differential (BSEYD) measure (Ziemba and Schwartz,
1991; Lleo and Ziemba, 2012, 2015b, 2017) is the oldest model in this cate-
gory, which also includes the CAPE Lleo and Ziemba (2017) and the ratio
of the market value of all publicly traded stocks to the current level of
the GNP (MV/GNP) that Warren Buffett popularized Buffett and Loomis
(1999, 2001); Lleo and Ziemba (2015a). Recently, Callen and Fang (2015)
also found evidence that short interest is positively related to one-year ahead
stock price crash risk.

Stochastic models construct a probabilistic representation of the asset
prices. This representation can be either a discrete or a continuous time
stochastic processes. Examples include the local martingale model proposed
by Jarrow and Protter (Jarrow et al., 2011a; Jarrow, 2012; Jarrow et al.,
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2011b,c), the disorder detection model proposed by Shiryaev, Zhitlukhin
and Ziemba (Shiryaev and Zhitlukhin, 2012a,b; Shiryaev et al., 2014, 2015)
and the earthquake model of Gresnigt et al. (2015). When it comes to ac-
tual implementation, the local martingale model and the disorder detection
model share the same starting point: they assume that the evolution of the
asset price S(t) can be best described using a geometric Brownian motion:

dS(t) = µ(t, S(t))S(t)dt+ σ(t, S(t))S(t)dW (t), S(0) = s0, t ∈ R+

where W (t) is a standard Brownian motion on the underlying probability
space. However, the two models look at different aspect of the evolution.
The disorder detection model detects crashes by looking for a change in
regime in the drift µ and volatility σ. The local martingale model detects
bubbles by testing whether the volatility σ is a local martingale or a strict
martingale. In contrast, the earthquake model uses a jump-diffusion pro-
cess and has a shorter forecasting horizon: 5 trading days.Gresnigt et al.
(2015) implement the Epidemic-type Aftershock Sequence model (ETAS)
geophysics model proposed by Ogata (1988) and based on an Hawkes pro-
cess, a type of inhomogeneous point process.

Behavioural models look at crashes in relation to market sentiment and
behavioural biases. Goetzmann et al. (2016) use surveys of individual and
institutional investors, conducted regularly over a 26 year period in the
United States, to assess the subjective probability of a market crash. They
observe that these probabilities are much higher than the actual historical
probabilities. To understand this observation, the authors examine a num-
ber of factors that influence investor responses and found evidence consistent
with an availability bias. This research takes its roots in recent efforts to
measure investor sentiment on financial markets (Fisher and Statman, 2000,
2003; Baker and Wurgler, 2006) and identify collective biases such as over-
confidence and excessive optimism (Barone-Adesi et al., 2013).

In this paper, we focus on the main fundamental models: the BSEYD,
P/E ratio and CAPE.

2 A Brief Overview of the Chinese Stock Market

Mainland China has two stock exchanges, the Shanghai Stock Exchange
(SSE) and the Shenzhen Stock Exchange (SZSE). The Shanghai Stock Ex-
change is the larger of the two. With an average market capitalization of
USD 3.715 billion over the first half of 2016, it is the fourth largest stock mar-
ket in the world1. The modern Shanghai Stock Exchange officially came into

1Source: The World federation of Exchanges, http://www.world-exchanges.org/

home/index.php/statistics/monthly-reports retrieved on September 13th, 2016
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being on November 26, 1990 and started trading on December 19, 1990. The
Shenzhen Stock Exchange was formally founded on December 1, 1990, and
it started trading on July 3, 1991. While the largest and most established
companies usually trade on the Shanghai Stock Exchange, the Shenzhen
Stock Exchange is home to smaller and privately-owned companies.

With an average market capitalization of USD 6.656 billion over the first
half of 2016, the Shanghai and Shenzhen Stock Exchanges taken together
represents the third largest stock market in the world after the New York
Stock Exchange at USD 17.970 billion, and the NASDAQ at USD 6.923
billion, and before 4th place Japan Exchange Group at USD 4.625 billion
and fifth place LSE Group at USD 3.598 billion2.

On November 17, 2014, the Chinese government launched the Shanghai-
Hong Kong Stock Connect to enable investors in either market to trade
shares on the other market. The Hong Kong Exchanges and Clearing is
currently the 8th largest exchange in the world with an average market cap-
italisation of USD 2.932 Billion over the half of 20163. This announcement
was followed by the creation of a Shenzhen-Hong Kong link on August 16th,
2016. These initiatives herald a closer integration between securities markets
in China and further boosts the rapid development of the Chinese market.

Chinese companies may list their shares under various schemes, either
domestically or abroad. Domestically, companies may issue:

• A-shares: common stocks denominated in Chinese Reminbi and listed
on the Shanghai or Shenzhen stock exchanges.

• B-shares: special purpose shares denominated in foreign currencies
but listed on the domestic stock exchange. Until 2001, only foreign
investors had access to B-shares.

In addition to B-shares, foreign investors interested in the Chinese equity
market may buy:

• H-shares: shares denominated in Hong Kong Dollars and traded on
the Hong Kong Stock Exchange.

• L-chips, N-chips and S-chips: shares of companies with significant
operations in China, but incorporated respectively in London, New
York and Singapore.

2Source: ibid
3Source: ibid
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• American Depository Receipts (ADRs): an ADR is a negotiable certifi-
cate issued by a U.S. bank representing a specified number of shares in
a foreign stock traded on an American exchange. As of October 2015,
there were about 110 Chinese ADRs listed on American exchanges and
another 200 Chinese ADRs on American over-the-counter markets.

The diversity of investment schemes available shows that although the
Shanghai and Shenzhen Stock Exchange are a large and crucial part of the
Chinese equity market, they do not represent the whole market. For exam-
ple, there are also red chips (shares of companies incorporated outside main-
land China but owned or substantially controlled by Chinese state-owned
companies) and P-chips (shares of companies owned by private individuals
and traded outside mainland China, for example on the Hong Kong stock
exchange). Our study focuses on equity market downturns on the Shanghai
and Shenzhen Stock Exchanges.

3 Four Key Stylized Facts

The Shanghai Stock Exchange Composite Index, or SHCOMP, is the main
Chinese stock index. It is a market capitalisation weighted index of all the
A-shares and B-shares listed on the SSE. In August 2016, the SHCOMP
consisted of the shares of 1,155 Chinese companies.

The Shenzhen Composite Index, or SZCOMP, is a market capitalisation
weighted index of all the A-shares and B-shares listed on the SZSE. In Au-
gust 2016, 478 Chinese companies were listed on the SZSE.

We observe and discuss four key stylized facts on the historical distribu-
tion of daily log returns on the SHCOMP and SZECOMP. These stylised
facts help understand statistically the behaviour of the market and the fre-
quency of large market movements such as equity market downturns. Un-
doubtedly, various other aspects of the index are of interest and would war-
rant a thorough analysis similar to Cont’s (2001) analysis of the S&P500,
but this is beyond the scope of this paper.

3.1 Stylized Fact 1: The return distribution is highly volatile,
right skewed with very fat tails

Figure 1 displays the evolution of the SHCOMP since its launch on Decem-
ber 19, 1990, as well as the distribution of daily log returns on the index.
Figure 2 displays the evolution of the SZEComp since April 3, 1991, as well
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as the distribution of daily log returns on the index.

Table 1 shows that over the entire period, the daily log return on the
SHCOMP averaged 0.0541%, with a median return of 0.0693%. The low-
est and highest daily returns were respectively -17.91% and +71.92%. The
exhibit also gives the corresponding statistics at a weekly and monthly fre-
quency.

The returns are highly volatile: the standard deviation of daily returns
is 2.40%, equivalent to around 40 times the mean daily return. The distri-
bution of daily returns is positively skewed (skewness = 5.26) with very fat
tails (kurtosis = 149). As a result, the Jarque-Bera statistic is 5,419,808,
rejecting normality at any level of significance. The Jarque-Bera statistic
also leads to a strong rejection of normality for weekly and monthly data.
The aggregational gaussianity, the phenomenon in which the empirical dis-
tribution of log-returns tends to normality as the time scale ∆t over which
the returns are calculated increases, is much weaker on the SHCOMP and
SZCOMP than on the S&P500 where Cont (2001) initially documented it.

[Place Figure 1 here]

[Place Table 1 here]

We make similar observations on the SZEComp. Table 2 shows that
over the entire period, the daily log return on the SZE averaged 0.04784%,
with a median return of 0.05933%. The lowest and highest daily returns
were respectively -23.36% and +27.11%. here as well, the returns are highly
volatile: the standard deviation of daily returns is 2.28%, equivalent to
around 50 times the mean daily return. The distribution of daily returns
has a mildly positive skewness (skewness = 0.3517) and fat tails (kurtosis =
17). Although the SZECOMP is much less skewed than the SHCOMP and
its tails are fat. The Jarque-Bera statistic for the SZECOMP still reaches
52,879. The test leads to a rejection of normality at any level of significance
not only for daily data, but also for weekly and monthly data.

[Place Figure 2 here]

[Place Table 2 here]

Next, we turn our attention to the joint behaviour of the SHCOMP and
SZECOMP during the period from April 4, 1991 to June 30, 2016 (6,170
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daily observations). Figure 3 displays the joint distribution of log returns
and a Quantile-Quantile (QQ) plot for the two indexes. Both charts suggest
that the two indexes are not perfectly correlated, with a small proportion of
outliers in the body of the distribution (relative to the total number of data
points), and a larger proportion of outliers in the two tails of the distribution
(as evidenced by the QQ plot).

To test this hypothesis, we compute the Pearson linear correlation, Spear-
man’s rho (rank correlation) and Kendal’s tau of log returns over the entire
period. While the Pearson linear correlation measures the strength of the
linear dependence of two data series, Spearman’s rho computes the correla-
tion between data of the same rank, and Kendal’s Tau measures the distance
between two ranking lists based on pairwise disagreements. Spearman’s rho
and Kendall’s tau have the advantage of being non parametric and of not
requiring any assumption on the underlying distribution. At 0.6801, 0.7922
and 0.6443 respectively, the Pearson linear correlation, Spearman’s rho and
Kendall’s Tau are all statistically different from 0. However, neither of them
is close to 1. In fact, the statistical association between the SHCOMP and
the SZECOMP is weaker than, for example, the association between the
S&P500 and the NASDAQ. Over the same period, the two US indices had
respective Pearson linear correlation, Spearman’s rho and Kendall’s Tau of
0.8742, 0.8592 and 0.6884.

[Place Figure 3 here]

Extreme Value Theory (EVT) is the field of choice to uncover the sta-
tistical properties of rare and large events. We analyse the tail behaviour
of the SHCOMP and SZECOMP. We refer the reader to Coles (2001) for a
concise and clear introduction to EVT and to Embrechts et al. (2011) for a
thorough tour of the subject.

Here, we apply EVT to the loss distribution, which we define as the neg-
ative of probability distribution of returns, so if the stock market returns
-1.5% on a given day, the associated loss will be 1.5%. We focus on the tail
behaviour, identified as the loss above a certain threshold u, that we will
determine during our analysis.

Let X be the random variable representing the loss, and let F be its
cumulative density function. Then the cumulative density function of the
loss in excess of u is:

Fu(y) = P (X − u ≤ y|X > u) =
F (u+ y)− F (u)

1− F (u)
,
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for 0 ≤ y ≤ xF − u, where xF is the right endpoint of F .

Theorem 3.1 (Pickands-Balkema-de Haan (PBH) (Pickands, 1975; Balkema
and de Haan, 1974)). For a large class of distribution functions F , and for u
large enough, we can approximate the conditional excess distribution Fu(y)
by a Generalized Pareto Distribution Gξ,σ, that is:

Fu(y) ≈ Gξ,σ(y)

where

Gξ,σ(x) =

 1−
(

1 + ξ
σy
)− 1

ξ
if ξ 6= 0,

1− e−
ξ
σ if ξ = 0,

for y in [0, xF − u] if ξ ≥ 0 and y ∈
[
0,−σ

ξ

]
if ξ < 0.

The parameters σ and ξ are respectively the scale and shape parameter
of the GPD.

There is no firm rule or mathematical result to govern the choice of
threshold u. Essentially, the choice of thshold must achieve a trade-off. If
u is to low then the PBH theorem will not apply. If u is too high, then
we will have too few observations to estimate the parameters of the Gen-
eralized Pareto distribution accurately. Table 3 shows that the number of
observations decreases sharply as the threshold increases. For example, we
have 6,242 daily return observations for the SHCOMP, out of which 2,851
correspond to negative returns (i.e. positive loss). We still have 716 obser-
vations at a threshold of 2%, and 128 at a threshold of 5% but only 48 at
7%. The situation is similar on the SZCOMP.

[Place Table 3 here]

A popular method consists in plotting the sample mean excess loss
against the threshold u, and picking the threshold u such that the sample
mean excess loss is broadly linear for v ≥ u. Figure 4 displays the excess loss
against threshold for both the SHCOMP and SZCOMP. For the SHCOMP,
we observe that the sample mean excess loss against the threshold becomes
broadly linear in the threshold u starting at about u = 4%. At that level,
we still have 211 observations to fit the Generalized Pareto distribution. For
the SZCOMP, the post suggests choosing u = 6%, which leaves us with 85
observations to fit the distribution.
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[Place Figure 4 here]

We estimate the scale parameter σ shape parameter ξ of the Generalized
Pareto distribution using maximum likelihood. This estimation is performed
against 100y, or 100 times the loss, in order to improve numerical stability.
Table 4 presents the estimated parameters, standard error of estimates as
well as the AIC and BIC for both indexes.

[Place Table 4 here]

3.2 Stylized Fact 2: Log returns do not exhibit a significant
autocorrelation

Figures 5 and 6 show that the autocorrelation of daily log returns is low for
both indexes. The autocorrelations do not appear statistically meaningful
and the partial autocorrelations up to lag 20 are in the interval [0.03, 0.06].
This suggests that neither indexes tend to have had a short-term memory:
hence, today’s return does not help forecast tomorrows return.

[Place Figure 5 here]

[Place Figure 6 here]

3.3 Stylized Fact 3: A Gaussian Hidden Markov Chain pro-
vides a good probabilistic description of the evolution of
log returns... but we need between five and six states.

Stylized Fact 1 indicates that the distribution of log returns is skewed with
fat tails, while Stylized Fact 2 supports the use of a Markov model to de-
scribe the probabilistic behaviour of the log returns on the SHCOMP and
SZECOMP. So, we look for a simple discrete-time Markov Model able to
describe the probabilistic behaviour and the evolution of log returns.

A good starting point is to look at Hidden Markov Models (HMMs).
HMMs are a useful way to model the behavior of a physical or economic
system when we suspect that this behavior is determined by the transi-
tion between a finite number of underlying but unobservable “regimes” or
“states.” We present a short overview of HMMs in Appendix A and refer
the reader to the excellent presentation of HMMs in Rabiner (1989) and
Rabiner and Juang (1993).

The simplest, and often the best, HMM models are Gaussian Hidden
Markov Chains. In these models, the returns in each state are normally
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distributed, but the parameters of each normal distribution are specific to
that state. As the state transitions over time, the returns are drawn from
different distributions, resulting in an aggregate distribution that bears little
resemblance to a normal one. Gaussian HMMs are estimated via the Baum-
Welch algorithm (Baum et al., 1970), an application of the well-known EM
algorithm (see Dempster et al., 1977).

One of the difficulties is to find the optimal number of states for the
model. To that end, it is customary to use an information criterion such as
the Akaike Information Criterion (AIC) or the Bayesian Information Crite-
rion (BIC) to discriminate between model formulations. The optimal model
will minimize the value of teh information criterion, in purchase the AIC
or the BIC. Contrary to the LogLikelihood, the AIC and BIC penalize the
model for the number of parameters used. This penalty is stiffer in the BIC
than the in the AIC.

Tables 5 and 7 present the Loglikelihood, AIC and BIC for a HMM with
one to seven states, fitted respectively on the SHCOMP and the SZECOMP.
We performed the numerical procedure using the depmixS4 package in R.
For the SHCOMP, we find that the optimal model specification, the spec-
ification that minimizes the AIC and BIC, is a six- state model, while the
optimal model for the SZECOMP is a slightly more parsimonious, but still
large, five-state model.

[Place Table 5 here]

The transition probability matrix PSHCOMP for the SHCOMP is
7.2689e− 01 4.3972e− 175 2.6749e− 231 2.7311e− 01 6.2691e− 303 2.3976e− 220
2.5311e− 04 9.3881e− 01 2.2433e− 58 3.8282e− 02 2.0163e− 05 2.2637e− 02

2.5622e− 202 1.2809e− 90 8.6320e− 01 1.4495e− 117 5.2279e− 33 1.3680e− 01
8.5411e− 03 1.1560e− 01 9.9862e− 04 8.7043e− 01 5.1730e− 27 4.4282e− 03

3.6201e− 127 2.5515e− 02 4.1153e− 22 1.6460e− 15 5.2982e− 01 4.4466e− 01
2.3777e− 115 6.5345e− 06 1.1122e− 02 2.8003e− 47 7.5704e− 01 2.3184e− 01

 .

The initial probability and the parameters of the normal distribution for
each state are given in Table 6.

The transition probability matrix PSZECOMP for the SZECOMP is
2.9883e− 01 2.4262e− 16 1.1294e− 27 6.7930e− 01 2.1866e− 02
6.0465e− 02 9.3154e− 01 7.9941e− 03 1.1369e− 18 5.6279e− 14
4.3118e− 16 1.7914e− 02 7.8243e− 01 3.9601e− 62 1.9965e− 01
1.4320e− 01 2.6999e− 02 3.1915e− 03 8.1727e− 01 9.3390e− 03
1.3235e− 08 2.9150e− 03 1.8946e− 02 2.5725e− 02 9.5241e− 01

 .
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The initial probability and the parameters of the normal distribution for
each state are given in Table 8.

[Place Table 8 here]

3.4 Stylized Fact 4: Downturns and large market movements
occur frequently

The return distribution of the SHCOMP has fat tails, which indicates that
extreme events are more likely to occur than a Normal distribution would
predict. Here, we focus on the large downward movements that occurred on
the SHCOMP and SZECOMP.

Earlier studies, such as Lleo and Ziemba (2015b, 2017), defined an equity
market downturn or crash as a decline of at least 10% from peak to trough
based on the closing prices for the day, over a period of at most one year
(252 trading days).

We identify a correction on the day when the daily closing price crosses
the 10% threshold. The identification algorithm is as follows:

1. Identify all the local troughs in the data set. Today is a local trough if
there is no lower closing price within ±d business days.

2. Identify the crashes. Today is a crash identification day if all of the
following conditions hold:

(a) The closing level of the index today is down at least 10% from
its highest level within the past year, and the loss was less than
10% yesterday;

(b) This highest level reached by the index prior to the present crash
differs from the highest level corresponding to a previous crash;
and

(c) This highest level occurred after the local trough that followed
the last crash.

The objective of these rules is to guarantee that the downturns we identify
are distinct. Two downturns are not distinct if they occur within the same
larger market decline. Although these rules might be argued with, they have
the advantage of being unambiguous, robust and easy to apply.

Table 9 lists the 22 downturns that occurred between December 19, 1990
and June 30, 2016. On average, the downturns lasted 163 days and had a
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27.8% decline in the value of the SHCOMP. With 22 downturns in 25 years,
the SHCOMP had as many downturns as the S&P 500 had over the 50 year
period from January 31, 1964 to December 31, 2014.

[Place Table 9 here]

Table 10 presents the 21 downturns that occurred on the SZECOMP
between April 3, 1991 and June 30, 2016. On average, the downturns lasted
122 days and had a 26.4% decline in the value of the index. While the num-
ber and magnitude of equity market corrections are comparable between
both indexes, we observe that downturns tend to last noticeably longer on
average on the Shanghai stock Exchange than on the Shenzhen Stock Ex-
change.

[Place Table 10 here]

Collectively, these stylized facts indicate that the SHCOMP and SZE-
COMP behaves differently from the mature equity markets in Europe and
North America.

4 Methodology

In order to apply the equity downturn prediction models to the SHCOMP
and SZECOMP, we need to examine the inner workings of these models: how
they are constructed, how to convert them into a testable model, and how
to test the accuracy of their predictions. This is the objective of this section.

4.1 Signal Construction

As discussed above the construction process for the signal and hit sequence
is crucial to ensure that the crash prediction models produce out of sam-
ple predictions free from look-ahead bias. It also eliminates data snooping
by setting the parameters ex ante during the signal construction, with no
possibilities of changing them when we construct the hit sequence. More
importantly, the construction of the hit sequence removes the effect of au-
tocorrelation, making it possible to test the accuracy of the measures using
a standard likelihood ratio test. In addition to the standard likelihood ratio
test using the asymptotic χ2 distribution, we conduct a Monte Carlo study
on the empirical distribution to address small sample bias.

Equity market crash prediction models such as the BSEYD (Ziemba and
Schwartz, 1991; Lleo and Ziemba, 2012, 2017), the high P/E model (Lleo
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and Ziemba, 2017), the variations on Warren Buffett’s market value-to-GNP
measure (Lleo and Ziemba, 2015a), or the continuous time disorder detection
model (Shiryaev et al., 2014, 2015) generate a signal to indicate a downturn
in the equity market at a given horizon h. This signal occurs whenever the
value of a crash measure crosses a threshold. Given a prediction measure
M(t), a crash signal occurs whenever

SIGNAL(t) = M(t)−K(t) > 0 (4.1)

where K(t) is a time-varying threshold for the signal.

Three key parameters define the signal: (i) the choice of measure M(t);
(ii) the definition of threshold K(t); and (iii) the specification of a time in-
terval H between the occurrence of the signal and that of an equity market
downturn.

We test the measures using two time-varying thresholds: (1) a dynamic
confidence interval based on a Normal distribution; and (ii) a dynamic con-
fidence interval using Cantellis inequality - see Problem 7.11.9 in Grimmett
and Stirzaker (2001) for a statement of the mathematical result, and Lleo
and Ziemba (2012, 2017) for applications to crash predictions.

To construct the confidence intervals, we compute the sample mean and
standard deviation of the distribution of the measures as a moving average
and a rolling horizon standard deviation respectively. Using rolling hori-
zon means and standard deviations has the advantage of providing data
consistency. Importantly, this construction is purely in-sample. The h-day
moving average at time t, denoted by µht , and the corresponding rolling
horizon standard deviation σht are

µht =
1

h

h−1∑
i=0

xt−i, σht =

√√√√ 1

h− 1

h−1∑
i=0

(xt−i − µht )2.

We establish the one-tailed confidence interval at the 95% level. This cor-
responds to 1.645 standard deviations above the mean in the Normal distri-
bution.

We select the one-tailed confidence interval at α = 95%This corresponds
to 1.645 standard deviations above the mean in the Normal distribution.
This choice is consistent with the crash prediction literature and can be
traced to the first published work on the BSEYD Ziemba and Schwartz
(1991).

Looking at the statistical inference literature, α = 95% is a natural
choice for two-tailed tests: R.A. Fisher suggested the use of a two-tailed
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5% significance level Fisher (see for example pp. 45, 98, 104, 117 in 1933).
Pearson and Neyman insisted on the significance level to be selected a pri-
ori, before Neyman introduced the idea of a confidence interval (Neyman
and Pearson, 1933; Neyman, 1934, 1937) first thought of by Pearson. Al-
though Fisher later clarified that the level of significance need to be selected
in relation to the statistical problem under consideration (Fisher, 1955), the
5% significance / 95% confidence has remained in widespread used ever since.

Another way to look at the choice of α = 95% is in the context of the ex-
pert opinion literature; see (Meyer and Booker, 2001; O’Hagan, 2006) for an
up-to-date treatment.. Here, we change our frame of reference from a clas-
sical frequentist approach, which assumes that that we are sampling repeat-
edly IID random variables, to subjective probabilities, and more specifically
to the personal probability framework introduced by Ramsey, de Finetti and
Savage (we refer the reader to the classic book by Savage, 1971). In this
framework, the crash prediction model is subjective in nature and akin to an
expert opinion. The confidence level α is properly defined as the subjective
level of confidence in the our measure’s ability to predict “normal” market
operations. Any departure above this level would indicate that we are out-
side of the confidence interval around our measure: a market disruption such
as an equity market downturn, is likely to happen. In the expert opinion
literature, it is customary to ask for a two-tailed 90% confidence bound,
translating into a one-tailed confidence interval. This observation provides
another motivation for our selection of α. Still, this discussion emphasises
the need to test how our models perform for various choices of α in order
to ascertain whether they are robust to a misspecification or a change in
confidence level.

As an alternative to the normal confidence level, we also construct the
confidence level using Cantelli’s inequality. This inequality relates the proba-
bility that the distance between a random variable X and its mean µ exceeds
a number k > 0 of standard deviations σ to provide a robust confidence in-
terval:

P [X − µ ≥ kσ] ≤ 1

1 + k2
.

Setting α = 1
1+k2

yields P
[
X − µ ≥ σ

√
1
α − 1

]
≤ α. Contrary to the nor-

mal confidence level, Cantelli’s inequality does not require any assumption
on the shape of the underlying distribution. It should therefore provide
more robust results for fat tailed distributions. The parameter β provides
an upper bound for a one-tailed confidence level on any distribution. In our
analysis, the horizon for the rolling statistics is h = 252 days. There is no
clear rule on how to select β, so we chose β = 25% to produce a slightly
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higher threshold than the standard confidence interval. In a Normal distri-
bution, we expect 5% of the observations to lie in the right tail, whereas
Cantelli’s inequality implies that the percentage of outliers in a distribution
will be no higher than 25%.

The last parameter we need to specify is the horizon H. Recall that the
crash identification time is the date by which the SHCOMP has declined by
at least 10% in the last year (252 trading days). We define the local market
peak as the highest level reached by the market index within 252 trading
days before the crash. We set the horizon H to a maximum of 252 trading
days prior to the crash identification date.

To conclude this discussion, we revisit the three determinants of the
signal: the measure, which e revisit the measure is the stochastic variable
we are analysing, two key parameters influencing the signals are:

1. the measure is the stochastic variable that we are studying;

2. the confidence level α and β are the key parameter which determines
the threshold K and by extension the number of signals generated;

3. the horizon H is the key parameter which determines the prediction
period and influences the accuracy of the measure.

To determine the robustness of the prediction models, we will need to study
their sensitivity to the choice of confidence level and the horizon.

4.2 Construction of the Hit Sequence X

Crash prediction models have two components: (1) a signal, which takes the
value 1 or 0 depending on whether the measure has crossed the confidence
level, and (2) a crash indicator, which takes the value 1 when an equity
market correction occurs and 0 otherwise.

From a probabilistic perspective, these components are Bernoulli ran-
dom variables, but they exhibit a high degree of autocorrelation, that is, a
value of 1 (0) for the crash signal is more likely to be followed by another
value of 1 (0) on the next day. This autocorrelation makes it difficult to test
the accuracy of the model.

To remove the effect of autocorrelation, we define a signal indicator se-
quence S = {St, t = 1, . . . , T}. This sequence records as the signal date the
first day in a series of positive signals, and it only counts distinct signal dates.
Two signals are distinct if a new signal occurs more than 30 days after the
previous signal. The objective is to have enough time between two series of
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signals to identify them as distinct. The signal indicator St takes the value
1 if date t is the starting date of a distinct signal, and 0 otherwise. Thus,
the event “a distinct signal starts on day t” is represented as {St = 1}. We
express the signal indicator sequence as the vector s = (S1, . . . , St, . . . , ST ).
This construction effectively removes the effect of autocorrelation.

For the crash indicator, we denote by Ct,H the indicator function return-
ing 1 if the crash identification date of at least one equity market correction
occurs between time t and time t + H, and zero otherwise. We identify
the vector CH with the sequence CH := {Ct,H , t = 1, . . . , T −H} and de-
fine the vector cH := (C1,H , . . . , Ct,H , . . . CT−H,H). The number of correct
predictions n is defined as

n =

T∑
t=1

Ct,H = 1′cH .

The accuracy of the crash prediction model is the conditional probabil-
ity P (Ct,H = 1|St = 1) of a crash being identified between time t and time
t+H, given that we observed a signal at time t. The higher the probability,
the more accurate the model.

We use maximum likelihood to estimate this probability and to test
whether it is significantly higher than a random guess. We obtain a simple
analytical solution because the conditional random variable {Ct,H = 1|St = 1}
is a Bernoulli trial with probability p = P (Ct,H = 1|St = 1).

To estimate the probability p, we change the indexing to consider only
events along the sequence {St|St = 1, t = 1, . . . T} and denote byX := {Xi, i = 1, . . . , N}
the “hit sequence” where xi = 1 if the ith signal is followed by a crash and
0 otherwise. Here N denotes the total number of signals, that is

N =
T∑
t=1

St = 1′s

where 1 is a vector with all entries set to 1 and v′ denotes the transpose
of vector v. The sequence X can be expressed in vector notation as x =
(X1, X2, . . . , XN ). The empirical probability p is the ratio n/N .

4.3 Maximum Likelihood Estimate of p = P (Ct,H |St) and Like-
lihood Ratio Test

The likelihood function L associated with the observations sequence X is

L(p|X) :=

N∏
i=1

pXi(1− p)1−Xi
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and the log likelihood function L is

L(p|X) := lnL(p|X) =
N∑
i=1

Xi ln p+

(
N −

N∑
i=1

Xi

)
ln(1− p)

This function is maximized for p̂ :=
∑N
i=1Xi
N so the maximum likelihood es-

timate of the probability p = P (Ct,H |St), is in fact the historical proportion
of correct predictions.

We apply a likelihood ratio test to test the null hypothesis H0 : p = p0

against the alternative hypothesis HA : p 6= p0. The null hypothesis re-
flects the idea that the probability of a random, uninformed signal correctly
predicting crashes is p0. A significant departure above this level indicates
that the measure we are considering contains some information about future
equity market corrections. The likelihood ratio test is:

Λ =
L(p = p0|X)

maxp∈(0,1) L(p|X)
=
L(p = p0|X)

L(p = p̂|X)
. (4.2)

The statistic Y := −2 ln Λ is asymptotically χ2-distributed with ν = 1 de-
gree of freedom. We reject the null hypothesis H0 : p = p0 and accept that
the model has some predictive power if Y > c, where c is the critical value
chosen for the test.

We perform the test for the three critical values 2.71, 3.84, and 6.63
corresponding respectively to a 90%, 95% and 99% confidence level.

The probability p0 is the probability to identify an equity market down-
turn within 252 days of a randomly selected period. To compute p0 empiri-
cally, we tally the number of days that are at most 252 days before a crash
identification date and divide by the total number of days in the sample.

4.4 Monte Carlo Study for Small Sample Bias

A limitation of this likelihood ratio test is that the χ2 distribution is only
valid asymptotically. In our case, the number of correct predictions follows
a binomial distribution with an estimated probability of success p̂ and N
trials. However, “only” 18 crashes occurred during the period considered in
this study: the continuous χ2 distribution might not provide an adequate
approximation for this discrete distribution. This difficulty is an example
of small sample bias. We use Monte Carlo methods to obtain the empirical
distribution of test statistics and address this bias.

The Monte Carlo algorithm is as follows. Generate K = 10, 000 paths.
For each path k = 1, . . . ,K, simulate N Bernoulli random variables with
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probability p0 of obtaining a “success.”

Denote by Xk :=
{
Xk
i , i = 1, . . . , N

}
the realization sequence where

xki = 1 if the ith Bernoulli variable produces a “success” and 0 otherwise.

Next, compute the maximum likelihood estimate for the probability of

success given the realization sequence Xk as p̂ :=
∑N
i=1X

k
i

N , and the test
statistic for the path as

Yk = −2 ln Λk = −2 ln
L(p = p0|Xk)

maxp∈(0,1) L(pk|Xk)
= −2 ln

L(p = p0|Xk)

L(p = p̂k|Xk)
.

Once all the paths have been simulated, we use all K test statistics Yk, k =
1, . . . ,K to produce an empirical distributions for the test statistic Y .

From the empirical distribution, we obtain critical values at the 90%,
95% and 99% confidence level, against which we assess the crash predic-
tion test statistic Y . The empirical distribution also enables us to compute
a p-value for the crash prediction test statistics. Finally, we compare the
results obtained with the empirical distribution to those derived using the
asymptotic χ2 distribution.

4.5 Optimal Parameter Choice and Parameter Robustness

At a first glance, the statistical validity of the model seems to depend cru-
cially on the signal construction, and therefore on two parameters: the con-
fidence level α and the forecasting horizon H. The confidence level affects
directly the number of signals that the model generates, and indirectly the
accuracy of the model. The forecasting horizon influences the number of
correct signals, as well as the uninformed probability p0 used in the signifi-
cance test, but it does change the number of signals generated. It is easier
to produce an accurate forecast if we have a longer horizon to prove us right
than a shorter one. In this section, we set up a plan to test the sensitivity
or robustness of the model to these two parameters.

First, we compute the optimal value for the confidence level α. We hold
the time horizon H constant at 252 days, and seek the range of confidence
levels α ∈ [0.9, 1] that maximizes the empirical accuracy p̂:

A = argmaxα∈[0.9,1)p̂(α;H)

We are actually interested in the lowest confidence interval for which we
p̂ = 100%, as well as in the general evolution of the number of predications
as the confidence level increases. We expect the accuracy of the measure to
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increase with the confidence level.

We are also interested in whether the model remains significantly better
than a random guess if we chose a confidence level at the lower end of the
confidence range. Answering this question will give us an indication on the
robustness of the model in relation to a change or misspecification in the
confidence level. This approach is an application of the robust likelihood
statistics proposed by Lleo and Ziemba (2017) to a case where we test the
robustness with respect to a single parameter.

Next, we look for the optimal value for the forecasting horizon H. We
hold the confidence level α constant at 95% and look for the range of time
horizons H that maximizes the empirical accuracy p̂:

H = argmaxH∈{63,126,189,252}p̂(H;α)

We limit the range of our analysis to up to 252 days after the signal. Note
the we cannot test the robustness of the model with respect to a change in
forecasting horizon using the robust likelihood statistics proposed by Lleo
and Ziemba (2017) because changing the forecasting horizon will affect the
uninformed probability p0.

5 The Price-to-Earnings Ratio

Practitioners have used the price-to-earnings (P/E) ratio to gauge the rel-
ative valuation of stocks and stock markets since at least the 1930s (for
example, Graham and Dodd, 1934, discuss the use of the P/E ratio in secu-
rities analysis and valuation).

In this section, we analyze the predictive ability of the P/E ratio cal-
culated using current earnings. The advantage of this definition for the
SHCOMP is that it is available over the entire period from December 12,
1990 to June 30, 2016, a total of 6243 daily observations. The same is not
true for the SZECOMP. earnings and therefore P/E are only available start-
ing July 2, 2001, a total of 3,640 daily observations.

5.1 Shanghai

Table 11 shows that the P/E and logarithm of the P/E generated a total of
18 signals (based on normally distributed confidence intervals) and 19 sig-
nals (based on Cantellis inequality) on the SHCOMP. The number of correct
predictions across models reaches 16 to 17. The accuracy of the models is in
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the narrow range from 88.89% to 89.47%. The type of confidence interval -
normal distribution or Cantellis inequality - only have a minor influence on
the end result.

Next, we test the accuracy of the prediction statistically. To apply the
likelihood ratio test, we need to compute the uninformed prior probability
p0 that a day picked at random will precede a crash identification date by
252 days or less. We find that this probability is very high, at p0 = 69.57%.
This finding is consistent with the stylized facts discussed in Section 2. The
Likelihood ratio test indicates that both the P/E ratio and the logarithm
of the P/E ratio are significant predictors of equity market downturns mar-
kets at the 90% confidence level. Moreover, the P/E ratio, computed using
a standard confidence interval, and the log P/E ratio, based on Cantelli’s
inequality, are significant at the 95% confidence level. Thus, we cannot rule
out that the P/E and log P/E/ have helped predict equity market down-
turns over the period.

[Place Table 11 here]

We continue our analysis with a Monte Carlo test for small sample bias,
presented in Table 12. We compute the critical values at the 90%, 95% and
99% confidence level for the empirical distribution. Because we only have
a limited number of signals, the distribution is lumpy, making it difficult
to obtain meaningful p-values. Still, we find that the Monte Carlo analysis
is in broad agreement with our earlier conclusions about significance of the
P/E ratio and its logarithm, as both measures are significant at the 90%
confidence level. We conclude that small sample bias only has a very small
effect on these measures and on their statistical significance.

[Place Table 12 here]

We follow up with analysis of the sensitivity of the measures to a change
of confidence level α and forecasting horizon H. We focus here on mea-
sures computed using a standard confidence interval for clarity as we would
obtain similar results for measures computed using Cantelli’s inequality. Ta-
ble 13 reports the key statistics of the measure for various confidence levels.
Picking a confidence level at the low end of our range, α = 90%, the P/E
ratio generates 22 signal while the log P/E produces 21 signals. With an
accuracy of 81.82%, the P/E ratio is no longer significant at the 90% confi-
dence level. On the other hand, the log P/E is 85.71% accurate, maintaining
itself above the critical value corresponding to a 90% confidence level. Ex-
panding the scope of our investigation outside of the initial [0.9,1) range to
consider a broader confidence range of [0.8, 1), we find that the accuracy
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and significance of the P/E ratio and log P/E ratio broadly increase with
the confidence level, while the number of signals decreases monotonically, as
expected. In fact, the accuracy of the models reaches 100% at α = 0.99 for
the P/E ratio and α = 0.97 for the log of the P/E, but with only 14 to 15
predictions out of 22 crashes.

The increase in the accuracy and significance is not monotonic because
of the limited number of predictions: adding one correct prediction or one
incorrect predictions tends to have a noticeable impact on the accuracy of
the measure. This makes the transitions lumpy rather than smooth. Still,
we observe that both the P/E ratio and the log P/E ratio remain signifi-
cant at the 90% confidence level in the range [0.925, 1), suggesting that the
two measures are not overly sensitive to a small change in the confidence
parameter α.

[Place Table 13 here]

We conclude our analysis of the P/E and log P/E by investigating the
sensitivity of these measures to a change in horizon H. Table 14 reports the
key statistics for H = 63, 126, 189 and 252 days, corresponding to 3 months,
6 months, 9 months and 1 year. The accuracy of the signals decreases as
we we shorten the time horizon, and so does the uninformed probability p0.
Overall, the P/E and log P/E become significant when the horizon reaches 9
months to 1 year, and their test statistics reaches its maximum at 9 months.

[Place Table 14 here]

5.2 Shenzhen

Table 15 shows that the P/E and logarithm of the P/E generated a total
of 8 to 9 signals, with 7 to 8 correct signals. The accuracy of the models
is in the narrow range from 87.50% to 88.89%. Here as well, the type of
confidence interval - normal distribution or Cantellis inequality - only have
a minor influence on the end result.

The uninformed prior probability p0 that a day picked at random will
precede a crash identified date by 252 days or less is 58.49%. The Likeli-
hood ratio test indicates that both P/E ratio measures and the logarithm of
the P/E ratio calculated using a standard confidence interval are significant
predictors of equity market downturns markets at the 95% confidence. The
remaining measure, the logarithm of the P/E ratio calculated with Can-
telli’s inequality is significant at the 90% confidence level. The results of
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the Monte Carlo analysis, presented in Table 16, indicate that small sample
bias only has a minor effect on the statistical significance of the measures.
All the measures are still significant at the 90% confidence level.

[Place Table 15 here]

[Place Table 16 here]

An analysis of the sensitivity of the measure to a change in the confi-
dence parameter α produces a surprising outcome. Contrary to what we
observed with the SHCOMP, the results for the SZECOMP, presented in
Table 17, show that the accuracy of the measures, and therefore their sta-
tistical significance, declines overall as the α increases. The accuracy of the
models decline from 91.67% at α = 80% to 85.71% at α = 99%. This is
enough to push the p-value up from 0.98% to 11.73%. This counterintuitive
outcome is a result of the fact that the total number of signals generally
decrease, as α increases. This is what we observe here: the models generate
11 to 12 signals at α = 80% but only 6 to 7 at α = 99%. Since the models
are already particularly accurate, an erroneous signal therefore results in a
larger loss of accuracy at α = 99% than at α = 80%.

[Place Table 17 here]

The measures do not exhibit a high sensitivity to a change in the time
horizon H. The results of the analysis, summarised in Table 18, show that
the models remain significant at the 90% confidence level across all four time
horizons: 63 days, 126 days, 189 days and 252 days.

[Place Table 18 here]

6 The Cyclically-Adjusted Price-to-Earnings Ra-
tio and the Bond-Stocks Earnings Yield Differ-
ential Model

The drawback of the P/E ratio calculated using current earnings is that it
might be overly sensitive to current economic and market conditions. Gra-
ham and Dodd (1934) warned against this risk and advocated the use of a
P/E ratio based on average earnings over ten years. In their landmark sur-
vey, Campbell and Shiller (1988) performed a regression of the log returns on
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the S&P 500 at 1 year, 3 year and 10 year horizons against the log dividend-
price ratio, lagged dividend growth rate, average annual earnings over the
previous 30 years, and against the average annual earnings over the previous
10 years. They found that the R2 of a regression of log returns on the S&P
500 with a 10 year horizon against the log of the price-earnings ratio com-
puted using average earnings over the previous 10 and 30 years equals 0.566
and 0.401 respectively. This is higher than the R2 of regressions against
the log dividend-price ratio and lagged dividend growth rate (see Lleo and
Ziemba, 2017, for a review of the literature and a discussion of the key
results.). This led Shiller to suggest the use of a Cyclically Adjusted Price-
to-Earnings ratio (CAPE), or a price-to-earnings ratio using 10-year average
earnings, to forecast the evolution of the equity risk premium (Shiller, 2005).

The BSEYD, the second model we test, relates the yield on stocks (mea-
sured by the earnings yield, which is also the inverse of the P/E ratio) to
that on nominal Government bonds.

BSEYD(t) = r(t)− ρ(t) = r(t)− E(t)

P (t)
, (6.1)

where ρ(t) is the earnings yield at time t and r(t) is the current 10-year
government bond yield r(t). The BSEYD was initially developed for the
Japanese market in 1988, shortly before the stock market crash of 1990,
based on the 1987 stock market in the US (Ziemba and Schwartz, 1991).
The BSEYD has since been used successfully on a number of international
markets (see the review article Lleo and Ziemba, 2015b), and the 2007-2008
SHCOMP meltdown (Lleo and Ziemba, 2012).

We tested the forecasting ability of four measures:

1. PE0: P/E ratio based on current earnings. This is the measure we
tested in Section 5;

2. CAPE10: CAPE, which is a P/E ratio computed using average earn-
ings over the previous 10-years;

3. BSEYD0: BSEYD based on current earnings;

4. BSEYD10: BSEYD using average earnings over the previous 10-
years.

We also tested the logarithm of these measures: logPE0, logCAPE10,
logBSEYD0 and logBSEYD10.

Because the CAPE10 and BSEYD10 require 10 years of earnings data,
and the Bloomberg data series for 10-year government bonds only starts
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on October 31, 2006, we cannot use the full range of stock market data.
The analysis in this section covers the period between October 31, 2006 and
September 30, 2015. Over this period, the SHCOMP experienced seven de-
clines of more than 10%, while the SZECOMP had nine.

We omit from the discussion results related to Cantelli’s inequality be-
cause of space constraints. Theses results are nearly identical to the results
we obtain for measures based on a standard confidence interval.

6.1 Shanghai

Table 19 displays the results for the eight measures, calculated with a con-
fidence interval based on a normal distribution. First, none of the measure
produced moe than 5 signals. The CAPE, logCAPE and BSEYD10 gen-
erated 3 signals each. The accuracy of the measures reaches a low of 40%
for logBSEYD0 and a high of 100% for CAPE10 and logCAPE10. Only
five of the eight measures are 75% accurate or better. By comparison, the
uninformed prior probability that a day picked at random will precede a
crash identification date by 252 days or less is p0 = 70.99%. Because of the
relatively short period and small number of downturns, only CAPE10 and
logCAPE10 appear significant. However, these two models only predicted
three of the six crashes.

Overall, none of the models perform convincingly. The PE0 and logPE0
ratio, which we found to be significant predictors over the entire dataset
in the previous section, are not significant over this restricted time period.
With a 75% accuracy, they are have an edge over the uniformed prior p0.
But we simply do not have enough crashes and prediction to tilt the statis-
tical scales in their favor: the p-value remains around 40%. The results of
the Monte Carlo analysis for small sample bias, presented in table 20, do
not give us additional information.

[Place Table 19 here]

[Place Table 20 here]

What’s more, the BSEYD-based models do not perform as well as the
P/E-based models. This is a puzzle, because the BSEYD model contains
additional information that is not in the P/E, namely government bond
yields.The BSEYD and logBSEYD models have been shown to perform
better than the P/E ratio and CAPE on the American market (Lleo and
Ziemba, 2017) and has performed well on most international markets (Lleo
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and Ziemba, 2015b). There are there possible explanations. The first possi-
bility is that the sample we are studying is simply too limited. Seven crash
and between three and five predictions is not enough to get reliable statis-
tics, and leaves our conclusions vulnerable to the ”law of small numbers”.
This is undoubtedly a main concern, which the results of our Monte Carlo
analysis for small sample bias cannot dispel.

A second explanation relates to the choice of forecasting horizon. If the
forecasting BSEYD-based measures generates a signal with at a shorter hori-
zon, than the forecasting horizon H = 252, then the measure will appear
inaccurate. This is very similar to judging the quality of a camera by first
blocking its depth-of-field at 6 meters, but taking a picture of a flower just
centimes away. The camera might be excellent, but the picture will appear
hopelessly out-of-focus. We will be able to examine this hypothesis later, by
analyzing the sensitivity of the measures to a change of horizon.

Another possible hypothesis, which we cannot test directly in the con-
text of this study, is that the market microstructure of the SHCOMP and of
the Chinese bond market makes the supply and demand for securities less
sensitive to the prevailing government bond rate. If the problem is related
to the definition of the interest rate, in particular if the government bond
rate is not representative of the financing rate for stock traders and portfo-
lio managers, we can expect to make similar observation on the SZECOMP.
On the other hand, if the problem is linked to the microstructure of the
SHCOMP, we might see BSEYD-based measures perform relatively better
than P/E-based measures on the SZECOMP.

Table 21 reports the results of an analysis of the measures’ sensitivity to a
change in the confidence parameter α. To the exception of the logBSEYD0,
the accuracy of the measures increase as α increases. Five measures out of
eight reach a 100% accuracy at α = 97.5%, over two or three signals. The
logBSEYD0 and logBSEYD10 remain the worst performing measures. On
aggregate the measures behave as expected: their accuracy increases as α in-
creases, but they are not particularly sensitive to our initial choice α = 0.95.

[Place Table 21 here]

Finally, we explore the sensitivity of the measures to a change in the
forecasting horizon H. The results in Table 22 indicate that BSEYD0,
PE0, logPE0, BSEYD10 and logBSEYD10 perform best at H = 126, while
CAPE10 and logCAPE10 reach 100% accuracy at H = 126. In fact, all the
measures except logBSEYD0 and logBSEYD10 are significant at the 90%
confidence with the choice H = 126. We conclude that the measures are
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sensitive to the forecasting horizon, and that the standard choice H = 252 is
suboptimal on this dataset. This conclusion comes in support of the second
hypothesis we suggested to explain the relatively poor performance of the
BSEYD models. It does not, however, fully explain this relative underper-
formance.

[Place Table 22 here]

6.2 Shenzhen

The situation on the SZECOMP is markedly different: all the measures
display a remarkable accuracy. The results in Table 23 show that alls the
measures, but one, have a 100% accuracy on the six to seven signals that
they generated. The remaining measure, logBSEYD10, had six correct pre-
dictions out of seven signals, which implies a 85.71% accuracy. Although
this is much higher than the uniformed prior p0 at about 67%, the sample
is to small for the difference in accuracy to be statistically significant. The
Monte Carlo analysis for small bias, reported in Table 24 is not informative
in this case, because most measure have an infinite test statistic.

[Place Table 23 here]

[Place Table 24 here]

Overall, the measures are resilient to a change in the accuracy parameter
α, as shown in Table 25. The logBSEYD0, PE0, CAPE10 and logCAPE10
maintain a 100% accuracy over the entire range of accuracy parameters.
BSEYD0 and logPE0 have a 100% accuracy on the range [0.85, 0.99], while
BSEYD10 and logBSEYD10 are 100% accurate over most of the range. None
of the measures is less than 83.33% accurate.

[Place Table 25 here]

Seven measures have a 100% accuracy at H = 189 and H = 252. At a
horizon H = 126 days, the accuracy of five of the measures is statistically
significant at the 95% confidence level. At this horizon, the accuracy of
the worst performing measures is 71.43%, far above the prior probability
p0 = 44%. Further reducing the time horizon to H = 63 days, reduces the
accuracy of the measures. Still, three of the eight measure are statistically
significant at the 90% confidence level.
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[Place Table 26 here]

7 Conclusion And Summary of the Main Results

The Chinese stock market is certainly one of the most interesting and most
complex equity markets in the world. Its size, scope, structure and the the
rapidity of its evolution make it unique. These characteristics inevitably
affect its behavior and returns. Although the Shanghai Stock Exchange and
the Shenzhen Stock Echange are among the largest stock exchanges in the
world, their behavior is much more volatile than that of more mature eq-
uity markets in Europe, and North America. The market is so volatile that
the following straddle strategy is widely recommended by brokerage firms:
buy at-the-money puts and calls. The idea is that market volatility raises
the probability that either the call or the put will move deep in-the-money,
making the strategy profitable (Ziemba, 2015).

Overall, this study shows clearly that crash prediction models can be
applied directly to the Chinese market, and reveals potential areas for fur-
ther research both on the behaviors of Chinese equity markets and on crash
prediction models.

Our investigation of fundamental crash predictors reveals that the P/E
and its logarithm have successfully predicted crashes on both the Shanghai
Composite Index and the Shenzhen Composite index over the entire length
of the study. These results are relatively robust to changes in the two key pa-
rameters of the model: the confidence level α and the forecasting horizon H.

A comparison of the BSEYD, PE and CAPE and their logarithm over
a shorter 9-year period, is less conclusive. Measures based on the BSEYD
do not perform as well as measures based on the P/E and in particular, the
CAPE. This is a puzzle because the BSEYD contains more information than
the P/E and has been more successful in other markets since 1988. However,
all measures perform surprisingly well on the SZECOMP. Two possible ex-
planations for this situation are that (i) the sample is small so any correct or
incorrect prediction has a large impact on the accuracy of the measure and
its statistical test, and (ii) the market microstructure of the SHCOMP and
SZECOMP differ because the Shanghai and Shenzhen stock exchanges were
created for two different types of companies: public companies in Shanghai
and privately-owned companies in Shenzhen. Exploring this hypothesis is a
possible question for future research.
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A Appendix: An Overview of Hidden Markov Mod-
els

A.1 Basic Structure

We start from the assumption that at any point in time t, the financial in-
dex, whether the SHCOMP or the SZECOMP, can be in any of N distinct
states S1, S2, . . . , Sn. Denote by qt the actual state of the system at time
t = 1, 2, . . ., and by {qt = Si} the event ‘being in state i at time t’.

On any day, the index may change state with probability

P [qt = Sj |qt−1 = Si, qt−2 = Sk, . . .]

We further assume that the state transitions satisfy the Markov property,
which implies that

P [qt = Sj |qt−1 = Si, qt−2 = Sk, . . .] = P [qt = Sj |qt−1 = Si]

we model this as a discrete (first order) Markov Chain with a transition
probability matrix A = (aij), i, j = 1, . . . , N of the form

aij = P [qt = Sj |qt−1 = Si] (A.1)

where the state transition coefficients aij satisfy

aij ≥ 0

N∑
j=1

aij = 1

Next, denote the initial state probabilities by

πi = P [q1 = Si] , i = 1, . . . , N

The observation sequence O = {O1, O2 . . . OT } records the actual states
that have occurred from time 1 to time T . We allow O1, O2, . . . to be the
vector of returns on the index.

In simple cases, we could read the state directly (as an example, we
could think about weather condition outside our window). If we have ob-
served state S1 at time 1, S3 at time 2, S1 at time 3 and S2 at time 4, then
the observation sequence is O = {S1, S3, S1, S2}. Often, the current state
of the system is not directly observable. In this sense the actual sate of the
Markov chain is ‘hidden’. As a result, we need to rely on observations to
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infer the current state of the market. For example, the current state of the
a financial market is not directly observable: we need to infer it from the
returns we observe.

The theory of HMM was originally built around the idea of discrete
observation symbols associated with each states. These observation symbols
form an alphabet of size M . We denote by V the set of all observation
symbols, i.e.

V = {v1, v2, . . . , vk, . . . vM}

Think of V as a set of letters or sounds (music notes, syllables...)

The probability of the observation symbol given that the system is in
state j is

bj(k) = P [vk at t|qt = Sj ] , 1 ≤ j ≤ N, 1 ≤ k ≤M (A.2)

The probability distribution of the observation symbol is the matrix B =
(bj(k)), 1 ≤ j ≤ N, 1 ≤ k ≤M .

The idea of a discrete observation set does work for simple coin toss or
ball-and-urn experiments as well as for some data processing applications,
but it has severe limitations for financial markets where the observation se-
quence is represented by asset returns.

As a result, we need to change the standard model to allow continuous
observation sets and continuous probability distributions.

To that effect, we model the returns in each state as a M -component
Gaussian mixture. The mathematical specification of this model is:

bj(O) =
M∑
m=1

cjmN (O, µjm,Σjm) , 1 ≤ j ≤ N (A.3)

where

• O is a d-dimensional observation vector;

• N is the Gaussian pdf4.

• cjm is the mixture coefficient for the j-th state and m-th mixture;

• µjm is the mean vector for the j-th state and m-th mixture;

4Any log-concave or elliptically-symmetric probability would work, although in reality
most people will use Gaussian distributions
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• Σjm is the covariance matrix for the j-th state and m-th mixture.

The mixture coefficient cjm satisfies the following constraints:

cjm ≥ 0

M∑
m=1

cjm = 1 (A.4)

Moreover, for b to be a properly defined pdf we need to have∫ +∞

−∞
bj(x)dx = 1, 1 ≤ j ≤ N (A.5)

When M = 1, we revert to the case where the returns in each state are
conditionally jointly-Normally distributed.

To sum things up, our HMM model is comprised of:

1. N unobervable states S1, S2, . . . , SN ;

2. a N ×N transition probability matrix A = (aij) where

aij = P [qt = Sj |qt−1 = Si] (A.6)

3. initial state probabilities

πi = P [q1 = Si] , i = 1, . . . , N

4. a sequence of d-dimensional vectors {Ot}t=1,... with observation prob-
ability given by a M -dimensional Gaussian mixture:

bj(O) =

M∑
m=1

cjmN (O, µjm,Σjm) , 1 ≤ j ≤ N (A.7)

We denote by B(O) the N -dimensional pdf vector.

A.2 The Three (Basic) Problems for HMMs And How to
Solve Them

We express the set of model parameters λ as λ = (A,B, π). Rabiner (1989,
p. 261)) summarizes the three ‘basic’ problems for HMMs:

1. Given an observation sequence O = O1O2 . . . OT and a model λ =
(A,B, π), how do we compute efficiently the probability of the obser-
vation sequence P (O|λ)?
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2. Given an observation sequence O = O1O2 . . . OT and the model λ, how
do we choose a corresponding state sequence Q = q1q2 . . . qT which is
optimal in some meaningful sense (i.e. best “explains” the observa-
tions?

3. How do we adjust the model parameters λ = (A,B, π) to maximise
P (O|λ)?

Solving the first problem requires a forward-backward numerical proce-
dure. The Viterbi algorithm (Vitterbi, 1967) solves the second problem. In
terms of structure, the Viterbi algorithm is similar to a forward procedure
developed to solve the first problem, but it also includes a maximization at
each node and a backtracking step.

The third problem is the most difficult of the three. The standard way of
solving it is due to Baum and his coauthors and is known as the Baum-Welch
algorithm (Baum et al., 1970, and references within). The Baum-Welch al-
gorithm is in fact a special case of another celebrated algorithm: the EM or
Expectation-Maximization algorithm (Dempster et al., 1977).

The Baum-Welch algorithm works by iteratively choosing a set of pa-
rameters λ = (A,B, π) to maximise P (O|λ). The iterative reestimation
procedure is shown to converge monotonically to a local maximum. Like
the EM algorithm, the Baum-Welch algorithm only identifies local maxima.
From a practical perspective, this means that it is important to run the
algorithm multiple times with different starting values to ensure that the
solution obtained is the global maximum and not just a local one.

A.3 Model Selection

One of the difficulties with HMM models is to select the optimal number of
states. We cannot use the Likelihood or the Loglikelihood directly, because
the likelihood will increase as we increase the number of states. One way of
addressing this problem is by selecting the model that optimzes one of the
following information criteria:

1. The Akaika information criterion (AIC) is

AIC = −2 lnL+ 2p (A.8)

where L denotes the likelihood of the model and p is the number of
parameters.
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2. Schwartz’ Bayesian information criterion (BIC) is

SBIC = −2 lnL+ 2p lnT (A.9)

where T is the number of observations.

3. The Hannan-Quinn criterion (HQIC) is

HQIC = −2 lnL+ 2p ln(ln(T )) (A.10)

where T is the number of observations.

All three information criteria maximize the log likelihood of the model
penalized by the number of parameters. The key difference between the
three criteria relates to the treatment of the number of observations. While
the Akaika information criterion ignores the number of observations, the
Bayesian information criterion penalises by the log of the number of obser-
vations. The Hannan-Quinn cirterion is in between: the penalty is linked to
the number of observations, but it is less stiff than the Bayesian information
criterion.

In this paper, we consider both the AIC and BIC to determine the op-
timal number of states.
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Figure 1: Evolution of the SHCOMP Index and empirical distribution of
the daily log return (December 19, 1990 - June 30, 2016).
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Descriptive Statistics Frequency
Daily Weekly Monthly

Number of observations 6,242 1,318 308

Mean 0.0541% 0.2497% 1.0326%
Median 0.0693% 0.0652% 0.7122%

Minimum -17.9051% -22.6293% -37.3283%
Maximum 71.9152% 90.0825% 101.9664%

Standard deviation 2.3848% 5.5872% 12.8898%
Variance 0.000569 0.000031 0.000166

Skewness 5.1837 5.3543 2.3414
Kurtosis 148.5003 78.5864 20.7742

Jarque-Bera statistics 5,534,005 320,053 4,336
(p-value) (< 2.2e− 16) (< 2.2e− 16) (< 2.2e− 16)

Table 1: Descriptive statistics for daily, weekly and monthly log
returns on the SHCOMP
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Figure 2: Evolution of the SZECOMP Index and empirical distribution of
the daily log return (December 19, 1990 - June 30, 2016).
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Descriptive Statistics Frequency
Daily Weekly Monthly

Number of observations 6,235 1,291 302

Mean 0.04784% 0.2345% 1.0644%
Median 0.05933% 0.1938% 0.8864%

Minimum -23.3607% -33.5690% -31.2383%
Maximum 27.2210% 51.9035% 60.9060%

Standard deviation 2.2808% 5.1795% 11.5411%
Variance 0.000520 0.002683 0.013320

Skewness 0.3517 1.2229 0.8724
Kurtosis 17.2496 17.2522 6.6661

Jarque-Bera statistics 52,879.47 11,248.32 207.43
(p-value) (< 2.2e− 16) (< 2.2e− 16) (< 2.2e− 16)

Table 2: Descriptive statistics for daily, weekly and monthly log
returns on the SZECOMP
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Figure 3: Joint behaviour of the SHCOMP and SZECOMP (April 3, 1991 -
June 30, 2016).
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−∞ 0% 1% 2% 5% 7% 8% 9% 10%

SHCOMP 6,242 2,851 1,429 716 128 48 30 16 12
SZECOMP 6,235 1,461 734 134 52 32 16 12

Table 3: Number of observations exceeding a threshold u. Selecting −∞ as
a threshold produces the total number of observations for the index.

(a)

(b)

Figure 4: Sample mean excess loss against the threshold for the SHCOMP
and SZCOMP.
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SHCOMP SZCOMP

Threshold 4 6
Number of observations 211 85
Scale parameter (standard error) 1.8214 (0.1821) 1.7141 (0.2829)
Shape parameter (standard error) 0.1292 (0.0731) 0.2176 (0.1266)
AIC 733.56 302.59
BIC 740.26 307.4779

Table 4: Parameters of the Generalized Pareto distribution fitted to the tail
of the SHCOMp and SZCOMP. The estimation is performed via maximum
likelihood against 100× the loss to improve numerical stability.
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Figure 5: Autocorrelation and partial autocorrelation of the daily log returns
on the SHCOMP
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Figure 6: Autocorrelation and partial autocorrelation of the daily log returns
on the SZECOMP
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Criterion 1 2 3 4 4 6 7

LogLikelihood 14,463.88 16,513.68 16,826.51 16,887.18 16,895.43 17,183.46 17,194.39
AIC -28,923.76 -33,013.36 -33,625.02 -33,728.36 -33,722.85 -34,272.92 -34,264.78
BIC -28,910.28 -32,966.18 -33,530.67 -33,573.36 -33,493.73 -33,956.19 -33,846.96
Number of parameters 2 7 14 23 34 47 62

Table 5: Hidden Markov Model fitting for the daily log returns on the
SHCOMP

State Initial Probability Mean Standard Deviation

1 0.00 -1.0996% 1.4419%
2 0.00 1.6517% 9.5992%
3 0.00 0.3433% 1.0724%
4 0.00 0.2015% 2.0513%
5 1.00 -0.1354% 0.7037%
6 0.00 0.1464% 3.6882%

Table 6: Initial probability and parameters of the Gaussian distributions for
each state of the HMM
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Criterion 1 2 3 4 4 6 7

LogLikelihood 14,725.65 16,052.61 16,225.11 16,297.95 16,330.57 16,346.03 16,388.55
AIC -29,447.29 -32,091.21 -32,422.22 -32,549.90 -32,593.14 -32,598.06 -32,653.1
BIC -29,433.82 -32,044.05 -32,327.89 -32,394.92 -32,364.05 -32,281.38 -32,235.34
Number of parameters 2 7 14 23 34 47 62

Table 7: Hidden Markov Model fitting for the daily log returns on the
SZECOMP

State Initial Probability Mean Standard Deviation

1 0.00 -1.2627% 1.5456%
2 1.00 -0.0750% 0.7600%
3 0.00 0.1433% 7.1826%
4 0.00 0.3734% 1.2108%
5 0.00 0.1057% 2.7757%

Table 8: Initial probability and parameters of the Gaussian distributions for
each state of the HMM
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Crash
Identification
Date

Peak Date SHCOMP
Index at Peak

Trough date SHCOMP
Level at trough

Peak-to-trough
decline (%)

Peak-to-trough
duration
(in days)

1 1992-05-27 1992-05-25 1421.57 1992-11-17 393.52 72.3% 176
2 1993-02-23 1993-02-15 1536.82 1993-03-31 925.91 39.8% 44
3 1994-09-19 1994-09-13 1033.47 1995-02-7 532.49 48.5% 147
4 1996-08-26 1996-07-24 887.6 1996-09-12 757.09 14.7% 50
5 1996-11-6 1996-10-28 1022.86 1996-12-24 865.58 15.4% 57
6 1997-05-16 1997-05-12 1500.4 1997-09-23 1041.97 30.6% 134
7 1998-08-7 1998-06-3 1420 1998-08-17 1070.41 24.6% 75
8 1999-07-1 1999-06-29 1739.21 1999-12-27 1345.35 22.6% 181
9 2000-09-22 2000-08-21 2108.69 2000-09-25 1875.91 11% 35
10 2001-02-21 2001-01-10 2125.62 2001-02-22 1907.26 10.3% 43
11 2001-07-30 2001-06-13 2242.42 2002-01-22 1358.69 39.4% 223
12 2003-04-23 2002-07-8 1732.93 2003-11-18 1316.56 24% 498
13 2004-04-29 2004-04-6 1777.52 2004-09-13 1260.32 29.1% 160
14 2006-08-4 2006-07-11 1745.81 2006-08-7 1547.44 11.4% 27
15 2007-02-2 2007-01-24 2975.13 2007-02-5 2612.54 12.2% 12
16 2007-06-4 2007-05-29 4334.92 2007-07-5 3615.87 16.6% 37
17 2007-11-8 2007-10-16 6092.06 2008-11-4 1706.7 72% 385
18 2009-08-12 2009-08-4 3471.44 2009-08-31 2667.75 23.2% 27
19 2010-10-27 2009-11-23 3338.66 2011-01-25 2677.43 19.8% 428
20 2012-12-27 2012-03-2 2460.69 2013-06-27 1950.01 20.8% 482
21 2014-06-25 2013-09-12 2255.6 2014-06-25 2025.5 10.2% 286
22 2015-06-19 2015-06-12 5166.35 2015-08-26 2927.29 43.3% 75

Table 9: The SHCOMP Index experienced 22 crashes between December
19, 1990 and June 30, 2016.

Crash
Identification
Date

Peak Date SZECOMP In-
dex at Peak

Trough date SZECOMP
Level at trough

Peak-to-trough
decline (%)

Peak-to-trough
duration
(in days)

1 1992-06-3 1992-05-26 312.21 1992-06-16 233.73 25.1% 21
2 1993-03-5 1993-02-22 359.44 1993-07-21 203.91 43.3% 149
3 1996-05-10 1995-05-22 169.66 1996-08-26 152.55 10.1% 462
4 1996-09-10 1996-09-4 274.56 1996-12-24 242.01 11.9% 111
5 1997-05-16 1997-05-12 517.91 1997-09-23 312.73 39.6% 134
6 1998-07-6 1998-06-3 441.04 1998-08-18 317.1 28.1% 76
7 1999-07-1 1999-06-29 525.14 1999-12-27 395.69 24.7% 181
8 2000-09-25 2000-08-21 643.77 2000-09-25 578.76 10.1% 35
9 2001-02-8 2000-11-23 654.37 2001-02-22 568.26 13.2% 91
10 2001-07-30 2001-06-13 664.85 2002-01-22 371.79 44.1% 223
11 2004-04-26 2004-04-7 470.55 2004-09-13 315.17 33% 159
12 2006-08-2 2006-07-12 446.61 2006-08-7 380.26 14.9% 26
13 2007-06-1 2007-05-29 1292.44 2007-07-5 1015.85 21.4% 37
14 2007-10-25 2007-10-9 1551.19 2007-11-28 1219.98 21.4% 50
15 2008-01-22 2008-01-15 1576.5 2008-11-4 456.97 71% 294
16 2009-08-14 2009-08-4 1149.27 2009-09-1 900.53 21.6% 28
17 2009-12-22 2009-12-3 1234.17 2010-07-5 921.34 25.3% 214
18 2010-11-17 2010-11-10 1389.54 2011-01-25 1136.58 18.2% 76
19 2013-06-24 2013-05-30 1043.47 2013-06-25 879.93 15.7% 26
20 2014-03-28 2014-02-17 1160.39 2014-04-28 1007.27 13.2% 70
21 2015-06-19 2015-06-12 3140.66 2015-09-15 1580.26 49.7% 95

Table 10: The SZECOMP Index experienced 21 crashes between March
25, 1992 and June 30, 2016.
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Signal Model Total number
of signals

Number of
correct
predictions

ML Estimate p̂ L(p̂) Likelihood
ratio Λ

Test statistics
−2 ln Λ

p-value

PE (confidence) 19 17 89.47% 1.67E-03 0.1159 4.3100* 3.79%
PE (Cantelli) 18 16 88.89% 1.88E-03 0.1486 3.8131† 5.09%

logPE (confi-
dence)

18 16 88.89% 1.88E-03 0.1486 3.8131† 5.09%

logPE (Cantelli) 19 17 89.47% 1.67E-03 0.1159 4.31* 3.79%

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 11: SHCOMP: Maximum likelihood estimate and likelihood
ratio test for the PE and logPE

Signal Model Total number of signals ML Estimate p̂ Critical Value Test statistics −2 ln Λ(p0)
90% confidence 95% confidence 99% confidence

PE (confidence) 19 89.47% 2.38 4.31 7.61 4.3100† 5.4%
PE (Cantelli) 18 88.89% 2.38 4.31 7.61 3.8131† 7.61%

logPE (confidence) 18 88.89% 2.99 3.81 6.99 3.8131† 7.84%

logPE (Cantelli) 19 89.47% 2.99 3.81 6.99 4.3100* 3.8%

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 12: SHCOMP: Monte Carlo likelihood ratio test for the PE
and logPE
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Confidence 0.8 0.85 0.9 0.925 0.95 0.975 0.99

P/E ratio

Number of signals 21 21 22 22 19 16 15
Number of correct signals 15 18 18 19 17 15 15
Proportion of correct signals 71.43% 85.71% 81.82% 86.36% 89.47% 93.75% 100%

Test statistics 0.0348 2.9770† 1.7190 3.4022† 4.3100* 5.7847* -
p-value 85.2% 8.45% 18.98% 6.51% 3.79% 1.62% -

logP/E ratio

Number of signals 21 21 21 19 18 14 11
Number of correct signals 15 17 18 17 16 14 11
Proportion of correct signals 71.43% 80.95% 85.71% 89.47% 88.89% 100% 100%

Test statistics 0.0348 1.4050 2.9770† 4.3100* 3.8131† - -
p-value 85.2% 23.59% 8.45% 3.79% 5.09% - -
† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 13: SHCOMP: Accuracy and statistical significance of the
P/E ratio and logP/E ratio as a function of the confidence level
α. The numbers presented in this table are based on a forecasting horizon
H = 252 days. With this choice, the uninformed probability that a random
guess would correctly identify an equity market downturn is p0 = 67.64%
Row 1,2 and 3 respectively report the total number of signals generated by
the P/E ratio, the number of correct signals, and the proportion of correct
signals computed as the ratio of the number of correct signals to the total
number of signals. Rows 4 and 5 respectively report the test statistics and p-
value for the P/E ratio. The subsequent rows present the same information
for the log P/E ratio.
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Horizon (days) 63 126 189 252

Uninformed probability p0 50.99% 59.59% 66.41% 69.57%

P/E ratio

Number of correct signals 18 18 18 18
Proportion of correct signals 57.89% 73.68% 89.47% 89.47%

Test statistics 0.3648 1.6561 5.4937* 4.31*

p-value 54.58% 19.81% 1.91% 3.79%

logP/E ratio

Number of correct signals 19 19 19 19
Proportion of correct signals 66.67% 77.78% 88.89% 88.89%

Test statistics 1.8093 2.6753 4.904* 3.8131†

p-value 17.86% 10.19% 2.68% 5.09%
† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 14: SHCOMP: Accuracy and statistical significance of the
P/E ratio and log P/E ratio as a function of the forecasting hori-
zon H. The numbers presented in this table are based on a confidence
parameter α = 0.95. With this choice, both the P/E ratio generated 19
signals, and the log P/E ratio produced 18 signals. Row 1 presents the
uninformed probability p0 that a random guess would correctly identify an
equity market downturn. Row 3 reports the number of correct signals, row 4,
the proportion of correct signals as the ratio of the number of correct signals
to the total number of signals for the P/E ratio. Rows 5 and 6 respectively
report the test statistics and p-value.The subsequent rows present the same
information for the log P/E ratio.
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Signal Model Total number
of signals

Number of
correct
predictions

ML Estimate p̂ L(p̂) Likelihood
ratio Λ

Test statistics
−2 ln Λ

p-value

PE (confidence) 9 8 88.89% 4.33E-02 0.1313 4.0607* 4.39%

PE (Cantelli) 9 8 88.89% 4.33E-02 0.1313 4.0607* 4.39%

logPE (confi-
dence)

9 8 88.89% 4.33E-02 0.1313 4.0607* 4.39%

logPE (Cantelli) 8 7 87.5% 4.91E-02 0.1980 3.2387† 7.19%

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 15: SZECOMP: Maximum likelihood estimate and likelihood
ratio test for the PE and logPE

Signal Model Total number of signals ML Estimate p̂ Critical Value Test statistics −2 ln Λ(p0)
90% confidence 95% confidence 99% confidence

PE (confidence) 9 88.89% 2.31 4.06 4.92 4.0607†

PE (Cantelli) 9 88.89% 2.31 4.06 4.92 4.0607†

logPE (confidence) 9 88.89% 2.31 4.06 8.86 4.0607†

logPE (Cantelli) 8 87.50% 2.31 4.06 8.86 3.2387†

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 16: SZECOMP:Monte Carlo likelihood ratio test for the PE
and logPE
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Confidence 0.8 0.85 0.9 0.925 0.95 0.975 0.99

P/E ratio

Number of signals 12 12 9 11 9 7 7
Number of correct signals 11 11 8 10 8 6 6
Proportion of correct signals 91.67% 91.67% 88.89% 90.91% 88.89% 85.71% 85.71%

Test statistics 6.6736** 6.6736** 4.0607* 5.7831* 4.0607* 2.4528 2.4528
p-value 0.98% 0.98% 4.39% 1.62% 4.39% 11.73% 11.73%

logP/E ratio

Number of signals 11 10 9 10 9 8 6
Number of correct signals 10 9 8 9 8 7 5
Proportion of correct signals 90.91% 90.00% 88.89% 90.00% 88.89% 87.50% 83.33%

Test statistics 5.7831** 4.9107* 4.0607* 4.9107* 4.0607* 3.2387† 1.7150
p-value 1.62% 2.67% 4.39% 2.67% 4.39% 7.19% 19.03%
† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 17: SZECOMP: Accuracy and statistical significance of the
P/E ratio and logP/E ratio as a function of the confidence level
α. The numbers presented in this table are based on a forecasting horizon
H = 252 days. With this choice, the uninformed probability that a random
guess would correctly identify an equity market downturn is p0 = 58.49%
Row 1,2 and 3 respectively report the total number of signals generated by
the P/E ratio, the number of correct signals, and the proportion of correct
signals computed as the ratio of the number of correct signals to the total
number of signals. Rows 4 and 5 respectively report the test statistics and p-
value for the P/E ratio. The subsequent rows present the same information
for the log P/E ratio.
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Horizon (days) 63 126 189 252

Uninformed probability p0 19.56% 35.03% 48.79% 58.49%

P/E ratio

Number of correct signals 9 9 9 9
Proportion of correct signals 44.44% 66.67% 77.78% 88.89%

Test statistics 2.8646† 3.7184† 3.189† 4.0607*

p-value 9.05% 5.38% 7.41% 4.39%

logP/E ratio

Number of correct signals 8 8 8 8
Proportion of correct signals 44.44% 66.67% 77.78% 88.89%

Test statistics 2.8646† 3.7184† 3.189† 4.0607*

p-value 9.05% 5.38% 7.41% 4.39%
† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 18: SZECOMP: Accuracy and statistical significance of the
P/E ratio and log P/E ratio as a function of the forecasting hori-
zon H. The numbers presented in this table are based on a confidence
parameter α = 0.95. With this choice, both the P/E ratio generated 19
signals, and the log P/E ratio produced 18 signals. Row 1 presents the
uninformed probability p0 that a random guess would correctly identify an
equity market downturn. Row 3 reports the number of correct signals, row 4,
the proportion of correct signals as the ratio of the number of correct signals
to the total number of signals for the P/E ratio. Rows 5 and 6 respectively
report the test statistics and p-value.The subsequent rows present the same
information for the log P/E ratio.
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Signal Model Total number
of signals

Number of
correct
predictions

ML Estimate p̂ L(p̂) Likelihood
ratio Λ

Test statistics
−2 ln Λ

p-value

BSEYD0 4 3 75% 1.05E-01 0.717 0.6654 41.47%
logBSEYD0 5 2 40% 3.46E-02 0.7901 0.4713 49.24%

PE0 4 3 75% 1.05E-01 0.717 0.6654 41.47%
logPE0 4 3 75% 1.05E-01 0.717 0.6654 41.47%

BSEYD10 3 2 66.67% 1.48E-01 0.9228 0.1606 68.86%
logBSEYD10 5 3 60% 3.46E-02 0.9778 0.0449 83.23%

CAPE10 3 3 100.00% - - - -
logCAPE10 3 3 100.00% - - - -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 19: SHCOMP: Maximum likelihood estimate and likelihood
ratio test for the BSEYD0, PE0, BSEYD10 and CAPE10 and their
logarithm

Signal Model Total number of signals ML Estimate p̂ Critical Value Test statistics −2 ln Λ(p0)
90% confidence 95% confidence 99% confidence

BSEYD0 4 75% 4.74 4.74 6.44 0.6654
logBSEYD0 5 40% 2.62 5.92 8.05 0.4713

PE0 4 75% 4.74 4.74 6.44 0.6654
logPE0 4 75% 4.74 4.74 6.44 0.6654

BSEYD10 3 66.67% 3.55 4.83 4.83 0.1606
logBSEYD10 5 60% 2.62 5.92 8.05 0.0449

CAPE10 3 100.00% 3.55 4.83 4.83 -
logCAPE10 3 100% 3.55 4.83 4.83 -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 20: SHCOMP: Monte Carlo likelihood ratio test for the
BSEYD0, PE0, BSEYD10 and CAPE10 and their logarithm
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0.8 0.85 0.9 0.925 0.95 0.975 0.99 0.8 0.85 0.9 0.925 0.95 0.975 0.99

BSEYD0 logBSEYD0

Number of signals 7 6 6 4 4 2 2 6 5 5 5 5 4 4
Number of correct signals 4 3 3 3 3 2 2 3 2 2 2 2 2 2
Proportion of correct signals 57.14% 50% 50% 75% 75% 100% 100% 50% 40% 40% 40% 40% 50% 50%
Test statistics 0.0095 0.0681 0.0681 0.6654 0.6654 - - 0.0681 0.4713 0.4713 0.4713 0.4713 0.0454 0.0454
p-value 92.22% 79.42% 79.42% 41.47% 41.47% - - 79.42% 49.24% 49.24% 49.24% 49.24% 83.13% 83.13%

PE0 logPE0

Number of signals 5 5 4 4 4 3 3 5 5 4 4 4 3 2
Number of correct signals 3 4 3 3 3 3 3 3 4 3 3 3 3 2
Proportion of correct signals 60% 80% 75% 75% 75% 100% 100% 60% 80% 75% 75% 75% 100% 100%
Test statistics 0.0449 1.3445 0.6654 0.6654 0.6654 - - 0.0449 1.3445 0.6654 0.6654 0.6654 - -
p-value 83.23% 24.62% 41.47% 41.47% 41.47% - - 83.23% 24.62% 41.47% 41.47% 41.47% - -

BSEYD10 logBSEYD10

Number of signals 7 7 6 4 3 4 3 7 4 5 6 5 4 4
Number of correct signals 3 3 2 3 2 3 3 3 3 3 4 3 3 3
Proportion of correct signals 42.86% 42.86% 33.33% 75% 66.67% 75% 100% 42.86% 75% 60% 66.67% 60% 75% 75%
Test statistics 0.436 0.436 1.1741 0.6654 0.1606 0.6654 - 0.436 0.6654 0.0449 0.3212 0.0449 0.6654 0.6654
p-value 50.91% 50.91% 27.86% 41.47% 68.86% 41.47% - 50.91% 41.47% 83.23% 57.09% 83.23% 41.47% 41.47%

CAPE10 logCAPE10

Number of signals 4 3 4 4 3 3 3 4 3 4 3 3 3 2
Number of correct signals 3 3 4 4 3 3 3 3 3 4 3 3 3 2
Proportion of correct signals 75% 100% 100% 100% 100% 100% 100% 75% 100% 100% 100% 100% 100% 100%
Test statistics 0.6654 - - - - - - 0.6654 - - - - - -
p-value 41.47% - - - - - - 41.47% - - - - - -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 21: SHCOMP: Accuracy and statistical significance of the prediction models

as a function of the confidence level α. The numbers presented in this table are based

on a forecasting horizon H = 252 days. With this choice, the uninformed probability that a

random guess would correctly identify an equity market downturn is p0 = 55.31% Row 1,2 and 3

respectively report the total number of signals generated by the P/E ratio, the number of correct

signals, and the proportion of correct signals computed as the ratio of the number of correct signals

to the total number of signals. Rows 4 and 5 respectively report the test statistics and p-value for

the P/E ratio. The subsequent rows present the same information for the log P/E ratio.
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63 126 189 252 63 126 189 252

Uninformed probability p0 22.21% 33.1% 44.2% 55.31% 22.21% 33.1% 44.2% 55.31%

BSEYD0 logBSEYD0

Number of signals 4 4 4 4 5 5 5 5
Number of correct signals 2 3 3 3 1 2 2 2
Proportion of correct signals 50% 75% 75% 75% 20% 40% 40% 40%
Test statistics 1.4776 2.9393 1.5663 0.6654 0.0145 0.1043 0.0361 0.4713
p-value 22.41% 8.64%† 21.07% 41.47% 90.41% 74.67% 84.93% 49.24%

PE0 logPE0

Number of signals 4 4 4 4 4 4 4 4
Number of correct signals 1 3 3 3 2 3 3 3
Proportion of correct signals 25% 75% 75% 75% 50% 75% 75% 75%
Test statistics 0.0175 2.9393 1.5663 0.6654 1.4776 2.9393 1.5663 0.6654
p-value 89.48% 8.64%† 21.07% 41.47% 22.41% 8.64%† 21.07% 41.47%

BSEYD10 logBSEYD10

Number of signals 3 3 3 3 5 5 5 5
Number of correct signals 1 2 2 2 2 3 3 3
Proportion of correct signals 33.33% 66.67% 66.67% 66.67% 40% 60% 60% 60%
Test statistics 0.1947 1.4076 0.6132 0.1606 0.7951 1.5118 0.5019 0.0449
p-value 65.90% 23.55% 43.36% 68.86% 37.26% 21.89% 47.87% 83.23%

CAPE10 logCAPE10

Number of signals 3 3 3 3 3 3 3 3
Number of correct signals 2 3 3 3 2 3 3 3
Proportion of correct signals 66.67% 100% 100% 100% 66.67% 100% 100% 100%
Test statistics 2.7014 - - - 2.7014 - - -
p-value 10.03% - - - 10.03% - - -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 22: SHCOMP: Accuracy and statistical significance of the BSEYD and log

BSEYD as a function of the forecasting horizon H. The numbers presented in this table

are based on a confidence parameter α = 0.95. With this choice, the BSEYD ratio generated 4

signals, and the log BSEYD ratio produced 18 signals. Row 1 presents the uninformed probability

p0 that a random guess would correctly identify an equity market downturn. Row 3 reports the

number of correct signals, row 4, the proportion of correct signals as the ratio of the number of

correct signals to the total number of signals for the P/E ratio. Rows 5 and 6 respectively report

the test statistics and p-value.The subsequent rows present the same information for the log P/E

ratio.
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Signal Model Total number
of signals

Number of
correct
predictions

ML Estimate p̂ L(p̂) Likelihood
ratio Λ

Test statistics
−2 ln Λ

p-value

BSEYD0 6 6 100.00% - - - -
logBSEYD0 7 7 100.00% - - - -

PE0 6 6 100.00% - - - -
logPE0 6 6 100.00% - - - -

BSEYD10 7 6 85.71% 5.67E-02 0.5266 1.2826 25.74%
logBSEYD10 7 7 100.00% - - - -

CAPE10 6 6 100.00% - - - -
logCAPE10 5 5 100.00% - - - -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 23: SZECOMP: Maximum likelihood estimate and likelihood
ratio test for the BSEYD0, PE0, BSEYD10 and CAPE10 and their
logarithm

Signal Model Total number of signals ML Estimate p̂ Critical Value Test statistics −2 ln Λ(p0)
90% confidence 95% confidence 99% confidence

BSEYD0 6 100.00% 4.81 4.81 6.48 -
logBSEYD0 5 100.00% 4.31 5.61 5.61 -

PE0 6 100.00% 4.81 4.81 6.48 -
logPE0 6 100.00% 4.81 4.81 6.48 -

BSEYD10 7 85.71% 4.31 5.61 5.61 1.2826
logBSEYD10 7 100.00% 4.31 5.61 5.61 -

CAPE10 6 100.00% 4.81 4.81 6.48 -
logCAPE10 5 100.00% 4.01 4.01 4.66 -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 24: SZECOMP: Monte Carlo likelihood ratio test for the
BSEYD0, PE0, BSEYD10 and CAPE10 and their logarithm
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0.8 0.85 0.9 0.925 0.95 0.975 0.99 0.8 0.85 0.9 0.925 0.95 0.975 0.99

BSEYD0 logBSEYD0

Number of signals 8 6 7 6 6 5 4 5 6 7 8 7 4 4
Number of correct signals 7 6 7 6 6 5 4 5 6 7 8 7 4 4
Proportion of correct signals 87.5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Test statistics 1.7971 - - - - - - - - - - - - -
p-value 18.01% - - - - - - - - - - - - -

PE0 logPE0

Number of signals 8 9 6 7 6 6 6 8 8 6 6 6 7 4
Number of correct signals 8 9 6 7 6 6 6 7 8 6 6 6 7 4
Proportion of correct signals 100% 100% 100% 100% 100% 100% 100% 87.5% 100% 100% 100% 100% 100% 100%
Test statistics - - - - - - - 1.7971 - - - - - -
p-value - - - - - - - 18.01% - - - - - -

BSEYD10 logBSEYD10

Number of signals 7 6 5 6 7 4 3 10 9 7 8 7 3 3
Number of correct signals 7 6 5 5 6 4 3 10 8 7 8 7 3 3
Proportion of correct signals 100% 100% 100% 83.33% 85.71% 100% 100% 100% 88.89% 100% 100% 100% 100% 100%
Test statistics - - - 0.8162 1.2826 - - - 2.3477 - - - - -
p-value - - - 36.63% 25.74% - - - 12.55% - - - - -

CAPE10 logCAPE10

Number of signals 8 9 8 9 6 5 4 8 9 6 6 5 4 3
Number of correct signals 8 9 8 9 6 5 4 8 9 6 6 5 4 3
Proportion of correct signals 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Test statistics - - - - - - - - - - - - - -
p-value - - - - - - - - - - - - - -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 25: SZECOMP: Accuracy and statistical significance of the prediction models

as a function of the confidence level α. The numbers presented in this table are based

on a forecasting horizon H = 252 days. With this choice, the uninformed probability that a

random guess would correctly identify an equity market downturn is p0 = 66.99% Row 1,2 and 3

respectively report the total number of signals generated by the P/E ratio, the number of correct

signals, and the proportion of correct signals computed as the ratio of the number of correct signals

to the total number of signals. Rows 4 and 5 respectively report the test statistics and p-value for

the P/E ratio. The subsequent rows present the same information for the log P/E ratio.
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63 126 189 252 63 126 189 252

Uninformed probability p0 24.93% 44.22% 58.47% 66.99% 24.93% 44.22% 58.47% 66.99%

BSEYD0 logBSEYD0

Number of signals 6 6 6 6 7 7 7 7
Number of correct signals 3 5 6 6 4 6 7 7
Proportion of correct signals 50% 83.33% 100% 100% 57.14% 85.71% 100% 100%
Test statistics 1.7367 3.9209 - - 3.2717 5.2181 - -

p-value 18.76% 4.77%* - - 7.05%† 2.24%* - -

PE0 logPE0

Number of signals 6 6 6 6 6 6 6 6
Number of correct signals 2 5 6 6 2 5 6 6
Proportion of correct signals 33.33% 83.33% 100% 100% 33.33% 83.33% 100% 100%
Test statistics 0.212 3.9209 - - 0.212 3.9209 - -

p-value 64.52% 4.77%* - - 64.52% 4.77%* - -

BSEYD10 logBSEYD10

Number of signals 7 7 7 7 7 7 7 7
Number of correct signals 4 5 6 6 4 5 7 7
Proportion of correct signals 57.14% 71.43% 85.71% 85.71% 57.14% 71.43% 100% 100%
Test statistics 3.2717 2.1193 2.4553 1.2826 3.2717 2.1193 - -
p-value 7.05%† 14.54% 11.71% 25.74% 7.05%† 14.54% - -

CAPE10 logCAPE10

Number of signals 6 6 6 6 5 5 5 5
Number of correct signals 3 5 6 6 2 4 5 5
Proportion of correct signals 50% 83.33% 100% 100% 40% 80% 100% 100%
Test statistics 1.7367 3.9209 - - 0.5465 2.6916 - -

p-value 18.76% 4.77%* - - 45.98% 10.09% - -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 26: SZECOMP: Accuracy and statistical significance of the BSEYD and log

BSEYD as a function of the forecasting horizon H. The numbers presented in this table

are based on a confidence parameter α = 0.95. With this choice, the BSEYD ratio generated 4

signals, and the log BSEYD ratio produced 18 signals. Row 1 presents the uninformed probability

p0 that a random guess would correctly identify an equity market downturn. Row 3 reports the

number of correct signals, row 4, the proportion of correct signals as the ratio of the number of

correct signals to the total number of signals for the P/E ratio. Rows 5 and 6 respectively report

the test statistics and p-value.The subsequent rows present the same information for the log P/E

ratio.
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