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Abstract

Estimation of risk-neutral distributions is of major importance on security valu-

ation, risk management and asset allocation. Its forecasting ability has often been

proved to fail by the literature based on the results of Berkowitz test. But, can we

really discard forecasting ability of option implied risk-neutral distributions? This

paper compares the extraction of risk-neutral distributions from option prices using

a parametric model, mixture of two lognormal distributions and two non-parametric

models: kernel regression and spline methods. Non-parametric techniques are limited

within the range of the observed data, therefore we deal with the estimation of the

tails by extrapolating outside the available range of data as well as by appending tails

drawn from a generalized pareto distribution. In order to test whether the extracted

risk-neutral distributions are good forecasters of future movements of the underlying

block-bootstrap simulations are run, which conclude that Berkowitz test assumptions

do not hold, and so forecasting ability of such densities cannot be rejected as the test

would suggest, for any of the indexes and methodologies analyzed.

Keywords: Risk Neutral Density, Options, LogNormal Mixtures, Kernel Regression,

Splines
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1 Introduction

Risk-neutral distributions have become of major importance in different applications such

as risk management, asset allocation, pricing securities, forecasting, among others. Focus-

ing on the forecasting ability of such distributions, we analyze how reliable or accurate the

methodology used by the literature, that is Berkowitz test, is when concluding their lack

of predictability.

Regarding risk-neutral distributions, we first find in the literature the well-known

Black and Scholes pricing model which assumes that prices are defined on a Geometric

Brownian Motion, therefore the stock prices at a given expiration date follow a Log- Nor-

mal distribution. However, Jackwerth and Rubinstein (1996) documented that risk-neutral

distributions were in fact Log-Normal distributed before the crash in 1987 becoming skewed

and leptokurtic afterwards. Since the crash in 1987, researchers have noticed how theoret-

ical prices significantly differ from the observed prices.

It seems obvious that Black and Scholes model (heretofore referred to as BSM) do

not hold any longer in actual markets, since its main assumptions such as flat volatility

and lognormal returns have been proved to fail. Consequently, literature has turned its

focus on calculating the implied volatility from equilibrium market prices and inferring the

stochastic process of the underlying instead of assuming it as previously. Under complete

markets, the entire probability distribution can be extracted from security prices.

Arrow (1964) and Debreu (1959) introduced the well-known Arrow-Debreu securi-

ties which pay off only if a specific state realizes and nothing otherwise, which collectively

determine a state price density being each state one possible realization of the underlying

asset. As suggested by Ross (1976), Arrow-Debreu securities can be approximated us-

ing option securities which contain valuable information about investors’ preferences and

expectations.

In the wake of this approach, researchers have been inferring the risk-neutral distri-

bution (RND) from option market prices which has the advantage of resulting in forward-
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looking estimates, therefore these RNDs should be more responsive to changes in the

market as well as being model free.

Different approaches have been used in the literature to infer the RNDs from option

prices. A strand of the literature has used either polynomials or splines in order to have a

spectrum of strike prices. Representatives would include Bliss and Panigirtzoglou (2002)

who compared the spline method versus a mixture of two Log-Normal distributions as

a method to approximate the RNDs, and they found the first technique was better. In

the same line, Bu and Hadri (2007) compared the splines method versus a parametric

confluent hypergeometric density and concluded that the latter performed better. Later,

Alonso et al. (2005) used splines and a mixture of two Log-Normal distributions and found

that both methods produced very similar results. On the other hand, Aït-Sahalia and Lo

(1998) proposed a semi-parametric approach consisting in the use of the kernel regression

to smooth the data. Nevertheless, they assumed that distributions were time invariant.

Even though there is no consensus on which method to use, estimation of the RNDs

has been practiced for a long time now and one of the main purposes is to test its forecasting

ability, that is, how well they can predict future movements of the underlying. The work

of Lynch and Panigirtzoglou (2008) concluded that RNDs were not useful to predict future

realizations but markets did react to events such as crisis. Hamidieh (2010) found that

the left tail became thinner during the peak of the crash. A group of researchers such

as Anagnou et al. (2005) for the UK market, Craig et al. (2003) for the German market,

Bliss and Panigirtzoglou (2004) for the UK and US market and Alonso et al. (2005) for

the Spanish market, tested the predicting power of the RNDs and they all concluded that

implied RNDs do not produce accurate forecasts of actual probability density functions.

Alonso et al. (2005) could not reject the null hypothesis when they considered the whole

sample period, but they did reject it for the sub-periods considered. In general, the different

literature advocates that differences between the two exist due to the presence of risk

aversion of the representative agent, and so actual or real-world distributions would be

more appropriate because they do incorporate investor’s beliefs and preferences.
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In this study we aim to estimate daily risk-neutral distributions on 3 major indexes

which are Nasdaq100, Russell2000 and S&P500, and for time horizons of 15, 30, 45 and 60

days. As mentioned earlier, there is no consensus on the method to use in order to extract

the correct risk-neutral distributions, different literature has reached different conclusions,

however such literature has been using different data sets. We choose in this study a

parametric technique (mixture of two Log-Normal distributions) and two non-parametric

techniques (splines and kernel regressions), which will be applied to the same data set and

for the same period of time; therefore we can directly compare them and build conclusions

for each of the approaches. In order to check the forecasting ability of the distributions, we

use the Berkowitz test and also the probability mass in the tail through the Brier’s Score.

Our sample of data is of special interest because it is recent as well as one of the

longest ever tested in the literature; further more, it embraces two major crisis.

Berkowitz results show that in fact risk-neutral densities are rejected as being good

forecasters; however, this test is built on the assumption that observations are independent,

when in fact they are not. In order to capture the autocorrelation of the data we run block-

bootstrap simulations. Results of the latter show that we cannot reject the null hypothesis.

The paper is organized as follows: in Section 2 we present the different methodologies

used to extract the RNDs, Section 3 contains the tests applied, Section 4 presents the data,

in Section 5 we see the results and discussion, and finally in Section 6 we conclude.

2 Methodology

There exists a vast literature concerning the extraction of the RNDs. Much of these

methods have to do with two techniques: parametric methods, to which major contributors

would include Banz and Miller (1978) and Rubinstein (1994) among others; and non-

parametric methods, being Aït-Sahalia and Lo (1998) and Bliss and Panigirtzoglou (2002)

relevant references. In order to provide some robustness to our results we consider 3

different alternatives to extract the RNDs from option prices, being one parametric and
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two non-parametric.

Due to its simplicity, the most common method is the parametric approach, which

is based on choosing a certain option pricing model built on a flexible parametric return

distribution which allows for thick tails and skewed shapes. Then, RND parameters are

those that best fit the observed prices. This approach is fairly easy to implement and yields

to well-behaved distributions (non-negative RNDs). For the parametric methods we use

the well-known Log-Normal mixture distributions (heretofore LNM)1.

The non-parametric methods lie on the Breeden and Litzenberger (1978) result to

obtain the RNDs. These methods do not assume any specific form of the probability

distribution function and they are based on weaker assumptions. However, interpolation

of the data is needed in order to have a continuous range of option prices across moneyness.

Following the works of Aït-Sahalia and Lo (1998) and Bliss and Panigirtzoglou (2002), we

use the kernel regression and the spline approaches for interpolating and smoothing the

data before applying the Breeden-Litzenberger technique to finally obtain the RNDs.

2.1 Parametric RNDs

Mixture of Log-Normal distributions has been widely used in literature in different fields

such as the analysis of the interest rates, see Bahra (1997) and Söderlind and Sevensson

(1997), among others; Campa et al. (1998) and Jondeau and Rockinger (2000) who used it

on exchange rates; as well as Bliss and Panigirtzoglou (2002), Anagnou et al. (2002) and

Liu et al. (2007), who applied this technique to equity indexes. This approach consists

on a weighted average of Log-Normal distributions. The main advantage of the mixture

of Log-Normal distributions is that non-negativity of the distribution is ensured, as well

as being easy to implement and flexible enough to fit a broad range of different shapes,

allowing for bimodality.

1To implement this approach we follow the lines of Taylor (2005). We refer the reader to the book for
further details.
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2.2 Non-parametric RNDs

As per Breeden and Litzenberger (1978) the whole risk-neutral density can be extracted

by taking the second partial derivative of the option pricing function with respect to the

strike price. Hence, the risk-neutral density of the underlying asset at expiration f(ST ), is

given by

f (ST ) = er(τ)
∂2C (St, X, T, t)

∂X2
|X=ST

(1)

being r the risk-free rate, C (St, X, T, t) the European call price function, St the current

value of the underlying asset, X the strike price of the option, T the expiration date, t

the current date and τ = T − t the time to expiration. The corresponding cumulative

risk-neutral distribution function can be obtained as follows,

F (X) = erf τ
∂C

∂X
+ 1 (2)

However, non-parametric methods are challenged with two hurdles due to the nature and

availability of the data. To compute numerically equation (1) by finite-differences, a thin

grid of strike prices encompassing all possible future payoffs is needed. Nevertheless, avail-

able data is sparse in the strike domain, hence option prices must be interpolated. Further

more, option prices may be noisy, so a smoothing technique needs to be applied. To

overcome these drawbacks, we use both the kernel regression and the spline technique.

As proposed by Malz (1997) instead of interpolating on prices directly (volatility-

price space), it can be done on an implied volatility-delta space. The advantage of this

method is twofold: first, it groups away-from-the-money options more closely permitting

the data to have a more accurate shape at the center of the distribution where information

is more reliable; and second, call option delta is bounded between [0; 1], in contrast to the

strike price domain which is theoretically unbounded. In order to convert option prices

into implied volatilities (iv) and exercise prices into deltas , BSM formula is used. Once

ivs are fitted into the corresponding smoothing technique in order to get the continuum of
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data, they are converted back into option prices using the same formula. 2

2.2.1 Kernel Regression

We propose the kernel regression estimator of Nadaraya (1964) and Watson (1964) as our

first non-parametric method to smooth and interpolate the data, namely

m̂h(x) =
n−1

∑n
i=1Kh(x− xi)Yi

n−1
∑n

i=1Kh(x− xi)
; Khn(u) = h−1

n K

(

u

hn

)

being x and Yi the ∆ and iv of the observed options, respectively; Khn a kernel function

and h the bandwidth (smoothing) parameter.

We choose as Khn the gaussian kernel, however as mentioned in Aït-Sahalia and Lo

(1998) the choice of the kernel function has not as much influence on the result as the

choice of the bandwidth h, being the outcome very sensitive to this value. A wide range

of alternative approaches to calculate h have been studied in Silverman (1986) and Härdle

(1990). However, there is no consensus in the literature about the optimal h nor the best

method to use to calculate it. In this work, we choose among different values calculated

using both leave-one-out cross-validation and Silverman’s Rule-of-Thumb.

At this point we are faced with the limitation of being able to estimate only the part

of the RND corresponding to the observed range of strikes. Extreme strike observations

are scarce or even non-existent, being most of them illiquid and therefore the information

embedded in such prices may be misleading and unreliable. Not because extreme events,

which form the tails of the distribution, are rare means that they cannot occur; but the

contrary, the information contained in the tails is of major importance in risk management

to carry out value-at-risk analysis, as well as in asset allocation, among others.

We find a scarce literature exploring the issue of the tails which still remains a

2Note that, at this point the use of the Black-Scholes pricing formula does not presume that such
formula correctly prices the options, it is merely a tool to change from prices to iv and from X to ∆, being
reverted back in future steps into exercise price domain. In order to change from exercise price domain to
Black-and-Scholes-delta domain we use the same volatility for all observations, which is obtained from a
weighted average of the different implied volatilities.
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challenge for researchers. To make estimations beyond the range of observed values, we

need to extrapolate somehow the available data. One approach is to assume a parametric

probability distribution to approximate the tail zone. Birru and Figlewski (2012) state

that as per Fisher-Tippett Theorem, a large value drawn from an unknown distribution

will converge in distribution to one of the Generalized Extreme Value distributions (GEV)

family, so they propose the use of the Generalized Pareto distribution (GPD), which also

belongs to the extreme value distributions family. The attractiveness of this method is

that it has only two free parameters, which are η, the scale parameter and ξ, the shape

parameter. We follow this approach to complete the tails of the RND, and we append

GPD tails to our kernel-based RND. More details about this procedures is given in the

appendix. An illustrative example is depicted in figure 1.

2.2.2 Splines

Following Bliss and Panigirtzoglou (2004), we also consider to fit iv using cubic smooth-

ing splines (piece-wise polynomials). The smoothing spline is defined by the knots and

polynomial coefficients that minimize the following function,

Sλ =
n
∑

i=1

mi(Yi − g(∆i, θ))
2 + λ

∫ +∞

−∞

f ′′(x; θ)2dx (3)

where mi is a weighting value of the squared error, Yi is the implied volatility of the

ith option observation, g(∆i, θ) is the fitted iv which is a function of ∆i and a set of

spline parameters, θ; g(∆i, θ) is any curve which can have any form and whose coefficients

are estimated by least-squares. λ is the smoothing parameter, which following Bliss and

Panigirtzoglou (2004) takes value 0.99, and f ′′(x; θ)2 is the smoothing spline.

For the mi weight in equation 3, Bliss and Panigirtzoglou (2004) use the BSM vegas

of the observed options. However, we slightly modify this weighting scheme using square

vegas, which places more weight to those near-to-at-the-money observations and therefore

it performs better.
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Like in the kernel-based method, we are faced with the limitation of being able to

estimate only the part of the RND corresponding to the observed range of strikes, missing

some probability at the extremes. For the spline methodology we deal with the tails using

two different approached. First, we simply extrapolate the spline outside the observed ∆

domain; however this can cause implausible or negative ivs, as well as kinks at the ends of

the RNDs. Bliss and Panigirtzoglou (2004) propose to add two extra points at both ends

of the moneyness domain and assign them the iv value of the corresponding end point. We

follow this approach and get an extended moneyness range. The second approach is to fit

Pareto tails, the same way as it is done with the Kernel method.

To illustrate the different methodologies used in this paper, figure 2 exhibits the

extracted RNDs calculated for S&P500 index options with 30 days to maturity for two

different days: one RND is from 21 July 2005 (left hand side plots), just before the global

financial crisis, while the second RND is from 23 July 2009 (right hand side plots), just

after the crisis. The top plot represent the RNDs from our parametric method (Log-Normal

mixture), while the bottom plots depict the non-parametric ones (Kernel with Pareto tails,

Splines with extrapolation and Splines with Pareto tails). From this figure, two facts arise:

First, the different methodologies used in this paper seem capable to capture the main

features of option implied RNDs; second, comparing the x-axis of the pre and post crisis

RNDs, it is clear that the (moneyness) domain has spread out.

3 The tests

In order to verify whether RNDs accurately forecast realized ex-post returns, we rely on

two tests. First, we analyze the performance of the Berkowitz (2001) test that jointly tests

independence and uniformity and which has been used by Bliss and Panigirtzoglou (2004)

and Alonso et al. (2006), among others.3. Second, we focus on the tails using the Brier

Score, which is based on the realized frequency for a certain (extreme) quantile (i.e. 5%,

3According to Bliss and Panigirtzoglou (2004), this test performs better than several non-parametric
tests, such as, Kolmogorov-Smirnov, Chi-squared or Kupier tests.
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10%, 90%, 95%). Finally, in order to verify the reliability of these tests, we compute the

bootstrap distribution of the test statistics.

For the Berkowitz test, given a set of implied RNDs for each date ti with a specific

τ -horizon, f̂ti,τ (Sti+τ ), where Sti+τ are the values at expiration; the Berkowitz test first

transforms Sti+τ into a new variable zti using the probability integral transform,

zti,τ = Φ−1

(
∫ Sti+τ

−∞

f̂ti,τ (u) du

)

(4)

where Φ−1(. . .) stands for the inverse of the standard Normal distribution function.

Under the null hypothesis that f̂ti,τ (. . .) = fti,τ (. . .) and the assumption that Sti+τ

are independent, the new variable zti,τ ∼ iid N(0, 1). In this test, independence and

normality of zti,τ are tested by estimating by maximum likelihood the following AR(1)

model4,

zti,τ − µ = ρ (zti−1,τ − µ) + ǫti,τ , ǫti,τ iidN(0, σ2
ǫ ) (5)

Under the null hypothesis, the estimated parameters should be
[

µ, σ2
ǫ , ρ,

]

= [0, 1, 0].

Therefore, the likelihood ratio test

LR3 = −2
[

L (0, 1, 0)− L
(

µ̂, σ̂2
ǫ , ρ̂

)]

(6)

is asymptotically distributed as χ2 (3) under the null hypothesis.

The presence of overlapping or non-overlapping but serially correlated data may lead

to a false rejection of the null hypothesis. For that, Berkowitz (2001) suggests testing the

independence assumption separately as follows,

LR1 = −2
[

L
(

µ̂, σ̂2, 0
)

− L
(

µ̂, σ̂2, ρ̂
)]

(7)

which under the null hypothesis is asymptotically distributed as χ2 (1). As per the previous,

4Even though dependency can arise from a more complex structure than an AR(1), this dependence
structure is the most evident and intuitive, specially in overlapped data.
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LR3 results will be more reliable when LR1 fails to reject. Should LR1 reject, we cannot

ascertain whether the reason is lack of predictability of the RNDs or the presence of serial

correlation in the data.5

Following Anagnou et al. (2005) and Alonso et al. (2006), we also test the goodness

of fit of the tails separately. They proposed the statistic suggested by Seillier-Moiseiwisch

and Dawid (1993) to test whether Brier Score departs from its expected value. Brier Score

is defined as

B =
1

T

T
∑

t=1

2
(

F̂ tail
t,τ −Rt,τ

)2

and measures the accuracy of the probabilistic predictions based on the distance between

a selected probability mass in the tail, F̂ tail
t,τ , and a binary variable, Rt,τ , which takes value

1 if the true realization of the underlying falls into the tail being tested, or 0 otherwise.

Y =

∑T
t=1

(

1− 2F̂ tail
t,τ

)(

Rt,τ − F̂ tail
t,τ

)

[

∑T
t=1

(

1− 2F̂ tail
t,τ

)2
F̂ tail
t,τ

(

1− F̂ tail
t,τ

)

]

1

2

(8)

which is asymptotically distributed as a Standard Normal.

Due to the features of the data (short samples and dependence), the empirical dis-

tribution of the statistics in equation (6) may differ from the asymptotic ones, yielding to

different critical values, and thus wrong decisions about rejection of the null hypothesis may

be taken. To overcome this problem, we compute bootstrap-based critical values. Since it

is of interest to maintain the structure present in the data, we use block-bootstrap.6 This

method was first introduced by Künsch (1989) and it divides the sample into different

blocks (which may be overlapped) of b consecutive observations. Then, bootstrap samples

are built by randomly concatenating blocks to match the original sample size.7 Once m

5Note that failure to reject does not necessary imply that the null hypothesis is true.
6When re-sampling, note that the outcome will be only as good as the ability of the data generating

process (bootstrap simulations) to fairly mimic the actual data and their structure.
7Künsch (1989) proposed that a reasonable block length would be n1/3, where n is the length of the

original sample. We have also tried with n1/3
+ 3, n1/3

+ 8, n1/3
+ 13 and n1/3

− 1 observations. These
values generate blocks of length 10, 15, 20 and 6 observations, respectively, for the S&P500 case. In our
analysis, results are very similar and lead to the same conclusions regardless the length of the block.
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bootstrap samples have been generated, the statistics of interest are calculated for each

sample. Then, we can empirically approximate the desired percentile (critical value).

4 The Data

We have a set of European call and put options written on three of the major and widely

traded indexes, S&P500, Nasdaq100 and Russell2000, from the OptionMetrics database.

We have observations ranging from January 1996 until October 2015. We use daily closing

prices for all the indexes and calculate the mid-point of the bid and ask price of the options.

Because extreme observations are considered to be very-far-away-from-the-money

and therefore illiquid and fairly unreliable, following Panigirtzoglou and Skiadopoulos

(2004) we discard observations with delta, ∆, values beyond the range [0.01; 0.99].

We calculate a risk-neutral distribution for those days of the sample with options

maturing in 15, 30, 45 and 60 days. Nonetheless, the fit at time t may be discarded due

to the reasons exposed later in this section; being such the case, we try to fit the RND

from the previous day, t− 1 (in this case the options will mature in 16, 31, 46 or 61 days),

should this second fit be also discarded, we try to fit data from the following day, t+1 (in

this case the options will mature in 14, 29, 44, or 59 days). Therefore, for each maturity,

should the fit for the corresponding day be discarded, we allow to include the fit on the

previous or the following day. We proceed in this way in order to increase the sample size

to run the tests explained in section 3.

Data can present some anomalies, and therefore a filtering is required before the

implementation of the different models. Under the assumption of complete markets, those

options which do not satisfy the arbitrage conditions are discarded from the sample. Those

options which are very-far-away-from-the-money are also dropped from the sample since

they are poorly traded and thus illiquid, so the information embedded in their prices can

be unreliable and of no use. Therefore, following the literature, we keep only in the sample

those observations whose moneyness lies within 0.75 and 1.25. We also require a minimum
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of 8 observations to perform any estimation.

When working with options we need to deal with the presence of the dividends.

Such variables are unobservable and difficult to estimate. We will follow in this study

the approach proposed by Aït-Sahalia and Lo (2000), in which they work with forward

quotes of the underlying instead, therefore dividends go out from the formulas. Since

the assumption of complete markets holds, we can infer the forward prices, F , for the

underlying from the put-call parity formula,

F = (C − P ) erτ +X (9)

where C and P are the prices for the call and put options respectively, r is the risk-free

rate, τ is the time left to maturity of the option and X is the strike price

Given a certain day and maturity, there exist a call and a put option for each exercise

price. Following Aït-Sahalia and Lo (2000), we remove those call and put contracts that are

in-the-money (ITM), which are less liquid. Out-of-the-money put options are translated

to their counterpart ITM call options by using the put-call parity, being these put options

removed from the sample afterwards. By doing this, all the options kept in the sample are

OTM. We consider call options to be ITM when their moneyness ratio F/X is higher than

1.03, while puts are ITM when their F/X is below 0.97.

For the non-parametric cases, once RNDs have been estimated and before appending

tails, we discard those RNDs which account for less than the 70% of the probability mass.

In case no RND is successful in matching the above criteria, we try to fit the RND on the

previous or the following day instead as described above. Should the method fail to obtain

a successful distribution, then that specific day is discarded from the sample.

The risk-free rate used in our analysis is the zero-coupon yield provided by Option-

Metrics.8.

8Bliss and Panigirtzoglou studied the effect of the risk-free proxy and concluded that a change of 100
basis points in the risk-free rate leads to a two basis points change in the measured implied volatility for
a one-month horizon, and this change will be up to 5 basis points for the six-months horizon. Therefore,
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5 Results and discussion

Risk-neutral distributions have been estimated using different parametric and non-parametric

methods from options on 3 different indexes, S&P500, Nasdaq100 and Russell2000. Due

to space limitations, we present the results for the S&P500 index only. Nevertheless, the

findings are similar yielding to the same conclusions. 9

In figure 3 we plot the volatility, skewness and kurtosis implied for the estimated

RNDs for the S&P500 index options with 30 days to maturity. The figure compares the

different moments across methodologies. In general, we can appreciate that moments for

all methods yield to very similar results and that the estimated risk-neutral skewness is

negative and the kurtosis is higher than 3 for all methods, confirming that the RNDs are

not normal.

Once RNDs have been estimated under each of the different methods for the whole

sample period, both Berkowitz and Brier tests are performed on all of them. Note that

during this period financial markets have been hit by two major financial crisis, one in 2000,

and one in 2008. The fact that such periods present anomalies and extreme movements in

stock prices might have some impact and thus mislead the results of the tests. In order to

check that, both tests have been run on a restricted set of data which excludes the above

turmoil periods.

Both LR3 and LR1 Berkowitz statistics reject the null hypothesis. This is the case

for all the different RNDs, regardless the index, the maturity and the methodology used.

Because both statistics reject the null hypothesis, we cannot ascertain the reason of rejec-

tion. Table 1 shows the p-values of the Berkowitz test for the different indexes, maturities

and methodologies. Similarly, Table 2 shows the p-values for the Berkowitz test performed

on the restricted data set which does not contain those crisis periods. Both analysis yield

to the same conclusions about rejection of the null hypothesis therefore crisis are not

the proxy used will have little impact on the results
9Tables similar to those discussed in this section for options on Nasdaq100 and Russell2000 indexes are

available from the authors upon request.
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responsible for the rejection of the null hypothesis.

Brier Score test has been performed to test how accurate is the tail fitting based on a

given probability mass level which determines the beginning of the tail being tested. In this

analysis we test 5% and 10% probability mass levels in both left and right tails separately.

The test concludes good fitting of the right tail in general across methodologies, indexes

and maturities. However, the null hypothesis is mainly rejected for the left tail. Results of

Brier test are presented in table 3. In this table we can see a column which contains the

frequency in which the true realization of the underlying falls into the tail being tested.

We see that in general observed frequencies are lower than those predicted, which is due

to the volatility skew.

In general right tail is performing better than the left tail,. For the right tail, we

can also see that in general the 10% significance level performs slightly better than the

5%. One reason for this would be because 5% is more extreme and so statistically there

are fewer observations falling into this area. Therefore the indicator is more volatilte. One

more observation falling into this tail, can have a bigger impact.

Brier test is also performed on the restricted data set, that is that data without crisis

periods. Results are presented in table 4 where we can see that results barely change from

those calculated on the whole data set. Therefore, as before, we can conclude that the

crisis periods are not the cause of such results.

From Berkowitz results, we have seen that LR1 statistic reject the null hypothesis

of independence. Further more, due to the nature of the data, one may suspect that the

observations indeed present some kind of auto-correlation structure. Should this be the

case, then Berkowitz assumptions would not be accurate.

In order to check whether LR3 statistic is indeed distributed following a χ2
3 as as-

sumed by Berkowitz, we apply the block-bootstrap technique. Block-bootstrap is based on

5, 000 simulations of the actual data in blocks, over which we calculate the LR3 statistic as

in the Berkowitz test, obtaining a series of 5, 000 LR3 values which provide a distribution
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of the statistic itself.

Recall that Berkowitz test, under the assumption that it is distributed following

a χ2
3, rejects RNDs as good forecasters of future realizations; being this the case for all

indexes, methodologies and maturities used in this study. On the other hand, block-

bootstrap results suggest that Berkowitz LR3 is biased and that the distribution of the

statistic is not a χ2 with 3 degrees of freedom as previously assumed. We compute the

95th and 90th percentile of the empirical distribution of the statistic, which values will be

our threshold of reference when assessing the rejection of the null hypothesis. We observe

that for any methodology and time horizon studied, this value is higher than the Berkowitz

LR3 statistic. Therefore, block-bootstrap fails to reject the null hypothesis which states

that RNDs are good forecasters. A comparison of such values with the Berkowitz LR3

statistic is provided in table 5. The reported block-bootstrap of table 5 is based on blocks

of length n1/3 as per Künsch (1989), which in our data set is 6 to 7 observations per block.

10 Block-bootstrap has been also applied to the restricted data set which does not consider

the crisis periods, and the conclusions reached are exactly the same, proving once again

that crisis periods are not responsible for the obtained results.

6 Conclusions

Risk-neutral distributions are of great importance for portfolio and risk managers. Many

studies have focused on their ability of forecasting future underlying realizations. There

is a vast literature about risk-neutral distributions implied from option prices and they

mainly use parametric and non-parametric techniques. Although, most of the authors

have compared different methodologies, there is no consensus on which method is the best

to use.

In this paper we extract the RNDs using a parametric technique (Log-Normal mix-

10As we have mentioned earlier, this is a rather arbitrary choice. In order to provide more robustness to
the analysis, we have also tried different lengths, increasing it to 10, 15 and 20 observations per block; as
well as decreasing it to 6. Analysis yields to similar results.
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ture distribution) and two non-parametric (Kernel regression and Spline). With the non-

parametric methodologies we are faced with the issue of the tails. We do not have data, or

it is scarce, concerning the tails area and so we need to estimate them. Following Bliss and

Panigirtzoglou (2004), for the Spline methodology we extrapolate the spline outside the

available range of data in order to obtain the tails. Another approach proposed by Birru

and Figlewski (2012) is to append tails drawn from a Pareto Distribution. We also adopt

this approach in this analysis and append pareto tails to the kernel and spline RNDs.

Different to previous literature, we apply four different methodologies on the same

data set, which conatins data for a longer and more recent period of time (observations

range from 1996 until 2015). Based on the moments we see that they are similar across

methodologies presenting a negative skewness and kurtosis higher than 3, which demon-

strate that RNDs depart from normality.

In order to check the ability of RNDs to accurately forecast the future movements

of the underlying, previous literature has based their analysis on Berkowitz test and con-

cluded that RNDs do lack of such ability. In this paper we have run Berkowitz on the

different RNDs extracted using the different methodologies and for the different indexes

and maturities and we have also concluded rejection of the null hypothesis, which states

good forecasting ability. Nevertheless, Berkowitz test is based on the assumption that the

statistic is distributed as χ2 with 3 degrees of freedom and data is independent. But,

due to the nature of the data, observations can present autocorrelation, therefore: can we

really reject their lack of forecasting ability? Is Berkowitz test accurate when rejects the

null hypothesis? In this paper we propose to run block-bootstrap simulations in order to

check the empirical distribution of the Berkowitz LR3 statistic. Block-bootstrap captures

the auto-correlation that might be present in the data since it simulates blocks of consec-

utive observations instead of individual simulations, therefore the structure in the data is

maintained.

Block-bootstrap suggests that indeed Berkowitz assumption does not hold for our

data set since the statistic is not distributed following a χ2 with 3 degrees of freedom. Fur-
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thermore, block-bootstrap results fail to reject the null hypothesis, therefore the forecasting

ability of RNDs cannot be rejected, as suggested by the Berkowitz test. Block-bootstrap

has been applied to RNDs extracted using four different methodologies, being one of them

parametric and the rest non-parametric. The analysis has been run on four different ma-

jor indexes, S&P500, Nasdaq100 and Russell2000, and on RNDs with four different time

horizons, 15, 30, 45 and 60 days. Block-bootstrap has provided consistent results across

all methodologies, indexes and maturities; and even for different lengths of the blocks.

Further more, the analysis have been run on a data set which does not contain the crisis

periods, for which same results and conclusions have been reached, suggesting that crisis

are not responsible for the results obtained. Therefore, we can conclude that rejection of

the forecasting ability of the RNDs is not as obvious as Berkowitz test suggests.
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APPENDIX

Adding Generalized Pareto tails

GPD is the density of the observations beyond a specific threshold c which determines

the amount of probability contained in the missing tail; this is, in the case in which the

left 5th percentile of the distribution is to be fitted by the GPD, then c takes the value

0.05. The GPD is given by

F (ST |ST ≥ c) =



















1−

(

1 + ξ

(

ST − c

σ

))

−1/ξ

if ξ 6= 0

1− exp

(

−

(

ST − c

σ

))

if ξ = 0

(10)

The GPD is a density itself, therefore the area under the curve is 1. Because we

want to estimate the cth percentile, we need to multiply the whole density function by the

value of c%.

Following Birru and Figlewski (2012), we use the GPD to approximate the tails of

our kernel estimated distributions. As mentioned previously, with the kernel technique we

are only capable to estimate the central part of the distribution where all the available ob-

servations lay, being the probability at the extremes sometimes impossible to be explained

by the non-parametric methods and therefore we are left with an amount of probability

α which is missing from the analysis. With the GPD we try to fit this missing amount

of probability in order to complete our RNDs. We denote α0R and α0L the amount of

probability missing in the right and left tails respectively; and Xα0R and Xα0L those strike

prices which leave α0R and α0L probability at their right and left respectively. Being these

points where the pareto tails are to begin.

Following Figlewski (2008), we define an inner second point for each of the tails called

Xα1R and Xα1L , which are the strike prices that leave a probability α1R at the right and
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α1L at the left, where

α1R = α0R − p

α1L = α0L + p
(11)

being p some amount of probability. In our case p is set to be 2% probability, thus

the amount of probability to be fitted by the pareto tail will be the missing amount of

probability in each of the tails plus a 2% extra probability. However, to perform the

analysis we require at least a missing probability amount in each of the tails of 2%. In

case one or both α0R and α0L are smaller than 2%, we will manually set such α values to

be 2%, and therefore their corresponding α1R and α1L will be set to be 3%, which means

that the probability amount to be fitted by the tail in such particular cases will be 5%.

We denote fRND (Xα0R) (fRND (Xα0L)) and fRND (Xα1R) (fRND (Xα1L)) as those

values of the estimated RND at Xα0R (Xα0L) and Xα1R (Xα1L), respectively. Pareto tails

will be appended with some matching restrictions similar to Figlewski (2008). First we

require that the amount of probability contained in each of the GPD tails is the same as

the amount contained in the estimated RND tails. And second, we force the new GPD

distribution to pass through the exact fRND (Xα0R) (fRND (Xα0L)) and fRND (Xα1R)

(fRND (Xα1L)) points, thus matching the shape of the estimated RNDs. That is, we have

both distributions matching values at the following points,

fRND (Xα0R) = fGPD (Xα0R)

fRND (Xα0L) = fGPD (Xα0L)

fRND (Xα1R) = fGPD (Xα1R)

fRND (Xα1L) = fGPD (Xα1L)

(12)

However, between Xα0R and Xα1R , as well as between Xα0L and Xα1L , both the

estimated RND and the fitted GPD are overlapping, having different values for each strike

price contained within this overlapping zone. In order to approximate the distribution of

this overlapping zone and trying to avoid abrupt jumps next to the matching points so

to reach a smooth transition between both distributions, we define a weighting function
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which will give different weights to the strike prices based on their distance to Xα0R , Xα0L ,

Xα1R and Xα1L ,

w =
fRND (Xα0R)− fRND (Xi)

fRND (Xα0R)− fRND (Xα1R)
(13)

for those i observations which lay within Xα1R and Xα0R . The corresponding distribution

values for each i data point is then calculated by,

fnew
Xi

= wif
RND
Xi

+ (1− wi) f
GPD
Xi

The above calculations are for the overlapping zone at the right tail only. The

equivalent equations for the left overlapping zone are,

w =
fRND (Xα1L)− fRND (Xi)

fRND (Xα1L)− fRND (Xα0L)
(14)

and

fnew
Xi

= (1− wi) f
RND
Xi

+ wif
GPD
Xi

Once we have the extracted RNDs calculated by the kernel method, in order to

append tails we require to have a missing amount of probability in the tail to be fitted,

either the left, the right or both tails, of at least 0.25%; should we have a lesser amount

of missing probability, no estimation of the tails is required since almost all the density

is explained by the observed data. Therefore, for the right tail, the amount of α0R is the

probability value to the right corresponding to the most extreme observation in the right

end as long as such value is higher than 1%. In case this amount is lower than 1% we will

assign to α0R the value of 1%. In either case, the α1R value will be α0R+1% of probability.

For the left tail, the procedure is the same. We first assign to the value of α0L the

probability amount corresponding to the most extreme observation to the left, which is

required to leave a probability amount to the left higher than 1%. Should this observation
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have a probability amount lower than this 1%, we will assign to our α0L the value of 1%.

Consequently, the value of α1L will be equal to the value of α0L+1%.

Figure 1 shows the RND calculated on the S&P500 for a time horizon of 30 days.

In this figure we can appreciate the main body of the distribution in blue, which has

been calculated using kernel technique; red region which represents the pareto tails which

have been appended in each case; and finally the figure depicts in green what we call the

overlapping zone, that is the region between α0 and α1 which has been approximated using

a weighting scheme as per 13 and 14.

22



References

Alonso, F., Blanco, R., Rubio, G., 2005. Testing the forecasting performance of ibex 35

option-implied risk-neutral densities., working paper No. 0505, Banco de España.

Alonso, F., Blanco, R., Rubio, G., 2006. Option-implied preferences adjustments, density

forecasts, and the equity risk premium.

Anagnou, I., Bedendo, M., Hodges, S., Tompkins, R., 2002. The relationship between

implied and realised probability density functions, working paper, University of Warwick

and the University of Technology, Vienna.

Anagnou, I., Bedendo, M., Hodges, S., Tompkins, R., 2005. Forecasting accuracy of implied

and garch-based probability density functions. Review of Futures Markets 11, 41–66.

Arrow, K. J., 1964. The role of securities in the optimal allocation of risk-bearing. Review

of Economic Studies 31, 91–96.

Aït-Sahalia, Y., Lo, A. W., April 1998. Nonparametric estimation of state-price densities

implicit in financial asset prices. The Journal of Finance 53, 499–547.

Aït-Sahalia, Y., Lo, A. W., 2000. Nonparametric risk management and implied risk aver-

sion. Journal of Econometrics 94, 9–51.

Bahra, B., 1997. Implied risk-neutral probability density functions from option prices:

Theory and application., working paper, Bank of England.

Banz, R., Miller, M., 1978. Prices for state-contingent claims: Some estimates and appli-

cations. Journal of Business 51 (4), 653–672.

Berkowitz, J., 2001. Testing density forecasts with applications to risk management. Jour-

nal of Business and Economic Statistics 19, 465–474.

Birru, J., Figlewski, S., 2012. Anatomy of a meltdown: The risk neutral density for the

s&p500 in the fall of 2008. Journal of Financial Markets 15, 151–180.

Bliss, R. R., Panigirtzoglou, N., 2002. Testing the stability of implied probability density

functions. Journal of Banking and Finance 26, 381–422.

Bliss, R. R., Panigirtzoglou, N., 2004. Option-implied risk aversion estimates. Journal of

Finance 59, 407–446.

Breeden, D. T., Litzenberger, R. H., October 1978. Price of state-contingent claims implicit

in option prices. Journal of Business 51 (4), 621–651.

Bu, R., Hadri, K., 2007. Estimating option implied risk-neutral densities using spline and

hypergeometric functions. Econometrics Journal 10 (2), 216–244.

Campa, J., Chang, K., Reider, R., February 1998. Implied exchange rate distributions:

Evidence from otc option markets. Journal of International Money and Finance 17 (1),

117–160.

23



Craig, B., Glatzer, E., Keller, J., Scheicher, M., 2003. The forecasting performance of

the german stock option densities, discussion Paper 17, Studies of Economic Research

Centre, Deutsche Bundesbank.

Debreu, G., 1959. Theory of Value. Wiley.

Figlewski, S., 2008. Estimating the implied risk neutral density for the U.S. market port-

folio. Chapter in Volatility and Time Series Econometrics: Essays in Honor of Robert

F. Engle. Oxford University Press.

Hamidieh, K., 2010. Recovering the tail shape parameter of the risk neutral density from

option prices., working paper, Rice University.

Härdle, W., 1990. Applied Nonparametric Regression.

Jackwerth, J., Rubinstein, M., 1996. Recovering probability distributions from option

prices. Journal of Finance 51 (5), 1611–1631.

Jondeau, E., Rockinger, M., 2000. Reading the smile: the message conveyed by methods

which infer risk neutral densities. Journal of International Money and Finance 19 (6),

885–915.

Künsch, H. R., 1989. The jackknife and the bootstrap for general stationary observations.

The Annals of Statistics 17 (3), 1217–1241.

Liu, X., Shackleton, M. B., Taylor, S. J., Xu, X., 2007. Closed-form transformations from

risk-neutral to real-world distributions. Journal of Banking and Finance, 1501–1520.

Lynch, D., Panigirtzoglou, N., 2008. Summary statistics of option-implied probability den-

sity functions and their properties., working paper No. 345, Bank of England.

Malz, A., 1997. Estimating the probability distribution of the future exchange rate from

option prices. Journal of Derivatives 5 (2), 18–36.

Nadaraya, E. A., 1964. On estimating regression. Theory of Probability and its Applications

10, 186–190.

Panigirtzoglou, N., Skiadopoulos, G., 2004. A new approach to modeling the dynamics of

implied distributions: Theory and evidence from the s&p500 options. Journal of Banking

and Finance 28, 1499–1520.

Ross, S., February 1976. Options and efficiency. Quarterly Journal of Economics 90 (1),

75–89.

Rubinstein, M., July 1994. Implied binomial trees. Journal of Finance 49 (3), 771–818.

Söderlind, P., Sevensson, L., October 1997. New techniques to extract market expectations

from financial instruments. Journal of Monetary Economics 40 (2), 383–429.

Seillier-Moiseiwisch, F., Dawid, P., 1993. On testing the validity of sequential probability

forecasts. Journal of the American Statistical Association 88, 355–359.

24



Silverman, B. W., 1986. Density Estimation for Statistics and Data Analysis. Vol. 26.

Chapman & Hall, London.

Taylor, S. J., 2005. Asset Price Dynamics, Volatility, and Prediction. Princeton University

Press.

Watson, G. S., 1964. Smooth regression analysis. Shankya Series A 26, 359–372.

25



Table 1: Berkowitz test P-values

τ model S&P500 NASDAQ 100 RUSSELL 2000

LR3 LR1 LR3 LR1 LR3 LR1

15 days LNM 0.0000 0.0000 0.0018 0.0002 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0226 0.0000 0.0000

Spline 0.0000 0.0001 0.0000 0.0369 0.0000 0.0000

Sp+PT 0.0000 0.0001 0.0000 0.0399 0.0000 0.0000

30 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0027 0.0000 0.0001

Spline 0.0000 0.0000 0.0000 0.0024 0.0000 0.0002

Sp+PT 0.0000 0.0000 0.0000 0.0027 0.0000 0.0002

45 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

Spline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

Sp+PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

60 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Spline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The table shows the LR3 and LR1 Berkowitz test corresponding p-values. The test is run on the
RND implied from S&P500, Nasdaq 100 and Russell 2000 indexes for the different maturities (15,
30, 45 and 60 days and for the different methodologies used in the paper: Log-Normal Mixture
(LNM), Kernel with Pareto tails appended (Kernel), Splines with extrapolation (Spline) as well as
Splines with Pareto tails appended (Sp+PT). Results are run on the whole data set.
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Table 2: Berkowitz test P-values

τ model S&P500 NASDAQ 100 RUSSELL 2000

LR3 LR1 LR3 LR1 LR3 LR1

15 days LNM 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0073 0.0000 0.0000

Spline 0.0000 0.0000 0.0000 0.0148 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0165 0.0000 0.0000

30 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0071 0.0000 0.0001

Spline 0.0000 0.0000 0.0000 0.0066 0.0000 0.0001

Sp+PT 0.0000 0.0000 0.0000 0.0075 0.0000 0.0002

45 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0002 0.0000 0.0013

Spline 0.0000 0.0000 0.0000 0.0002 0.0000 0.0014

Sp+PT 0.0000 0.0000 0.0000 0.0001 0.0000 0.0011

60 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Spline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The table shows the LR3 and LR1 Berkowitz test corresponding p-values. The test is run on the
RND implied from S&P500, Nasdaq 100 and Russell 2000 indexes for the different maturities (15,
30, 45 and 60 days and for the different methodologies used in the paper: Log-Normal Mixture
(LNM), Kernel with Pareto tails appended (Kernel), Splines with extrapolation (Spline) as well
as Splines with Pareto tails appended (Sp+PT). Results are run on the restricted data set which
excludes those crisis periods.
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Table 3: Brier test results for the RNDs on S&P500

Left tail Right tail

5% 10% 5% 10%

τ Model N Freq. Stat. p-value Freq. Stat. p-value Freq. Stat. p-value Freq. Stat. p-value

15 days LNM 374 0.0080 -3.7249 0.0001 0.0722 -1.7926 0.0365 0.0294 -1.8269 0.0339 0.0936 -0.4137 0.3396

Kernel 374 0.0080 -3.7249 0.0001 0.0455 -3.5162 0.0002 0.0267 -2.0641 0.0195 0.0963 -0.2413 0.4047

Spline 374 0.0080 -3.7249 0.0001 0.0374 -4.0333 0.0000 0.0374 -1.1151 0.1324 0.0936 -0.4137 0.3396

Sp+PT 374 0.0080 -3.7249 0.0001 0.0374 -4.0333 0.0000 0.0374 -1.1151 0.1324 0.0936 -0.4137 0.3396

30 days LNM 375 0.0213 -2.5471 0.0054 0.0560 -2.8402 0.0023 0.0213 -2.5471 0.0054 0.0800 1.2910 0.0984

Kernel 375 0.0240 -2.3102 0.0104 0.0480 -3.3566 0.0004 0.0267 -2.0732 0.0191 0.0933 -0.4303 0.3335

Spline 375 0.0240 -2.3102 0.0104 0.0453 -3.5287 0.0002 0.0320 -1.5993 0.0549 0.0933 -0.4303 0.3335

Sp+PT 375 0.0213 -2.5471 0.0054 0.0453 -3.5287 0.0002 0.0320 -1.5993 0.0549 0.0933 -0.4303 0.3335

45 days LNM 319 0.0157 -2.8130 0.0025 0.0627 -2.2209 0.0132 0.0376 -1.0147 0.1551 0.0658 -2.0343 0.0210

Kernel 319 0.0219 -2.2992 0.0107 0.0408 -3.5273 0.0002 0.0376 -1.0147 0.1551 0.0846 -0.9145 0.1802

Spline 319 0.0188 -2.5561 0.0053 0.0251 -4.4605 0.0000 0.0408 -0.7578 0.2243 0.0878 -0.7279 0.2333

Sp+PT 319 0.0188 -2.5561 0.0053 0.0251 -4.4605 0.0000 0.0408 -0.7578 0.2243 0.0878 -0.7279 0.2333

60 days LNM 295 0.0136 -2.8718 0.0020 0.0475 -3.0081 0.0013 0.0203 -2.3375 0.0097 0.0881 -0.6793 0.2485

Kernel 295 0.0102 -3.1389 0.0008 0.0407 -3.3963 0.0003 0.0169 -2.6046 0.0046 0.0780 -1.2615 0.1036

Spline 295 0.0136 -2.8718 0.0020 0.0237 -4.3667 0.0000 0.0271 -1.8032 0.0357 0.0746 -1.4556 0.0728

Sp+PT 295 0.0102 -3.1389 0.0008 0.0237 -4.3667 0.0000 0.0237 -2.0704 0.0192 0.0746 -1.4556 0.0728

The table shows the frequency in which the actual value of the underlying falls into the specific tail area, the statistic for the Brier test as well as the p-value
(columns Freq., Stat. and p-value, respectively). All information is provided for a 5% and 10% probability mass levels for both left and right tails. Results provided
in this table are for the Brier test calculated on the RNDs calculated using the different methodologies and maturities analyzed in this paper for the S&P500 index
on the complete data set. Column N contains the number of days for which a RND has been implied.
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Table 4: Brier test results for the RNDs on S&P500, excluding crisis periods

Left tail Right tail

5% 10% 5% 10%

τ Model N Freq. Stat. p-value Freq. Stat. p-value Freq. Stat. p-value Freq. Stat. p-value

15 days LNM 322 0.0031 -3.8610 0.0001 0.0652 -2.0805 0.0187 0.0311 -1.5598 0.0594 0.1025 0.1486 0.5591

Kernel 322 0.0062 -3.6053 0.0002 0.0404 -3.5666 0.0002 0.0280 -1.8154 0.0347 0.1056 0.3344 0.6309

Spline 322 0.0031 -3.8610 0.0001 0.0342 -3.9381 0.0000 0.0404 -0.7927 0.2140 0.1025 0.1486 0.5591

Sp+PT 322 0.0031 -3.8610 0.0001 0.0342 -3.9381 0.0000 0.0404 -0.7927 0.2140 0.1025 0.1486 0.5591

30 days LNM 326 0.0092 -3.3798 0.0004 0.0429 -3.4339 0.0003 0.0245 -2.1092 0.0175 0.0828 -1.0339 0.1506

Kernel 326 0.0153 -2.8716 0.0020 0.0368 -3.8031 0.0001 0.0307 -1.6010 0.0547 0.0982 -0.1108 0.4559

Spline 326 0.0123 -3.1257 0.0009 0.0337 -3.9877 0.0000 0.0368 -1.0927 0.1373 0.0982 -0.1108 0.4559

Sp+PT 326 0.0092 -3.3798 0.0004 0.0337 -3.9877 0.0000 0.0368 -1.0927 0.1373 0.0982 -0.1108 0.4559

45 days LNM 267 0.0075 -3.1871 0.0007 0.0562 -2.3868 0.0085 0.0412 -0.6599 0.2547 0.0749 -1.3668 0.0858

Kernel 267 0.0150 -2.6255 0.0043 0.0375 -3.4067 0.0003 0.0412 -0.6599 0.2547 0.0936 -0.3468 0.3644

Spline 267 0.0112 -2.9063 0.0018 0.0187 -4.4267 0.0000 0.0449 -0.3791 0.3523 0.0974 -0.1428 0.4432

Sp+PT 267 0.0112 -2.9063 0.0018 0.0187 -4.4267 0.0000 0.0449 -0.3791 0.3523 0.0974 -0.1428 0.4432

60 days LNM 240 0.0083 -2.9617 0.0015 0.0333 -3.4427 0.0003 0.0250 -1.7770 0.0378 0.0958 -0.2152 0.4148

Kernel 240 0.0083 -2.9617 0.0015 0.0333 -3.4427 0.0003 0.0208 -2.0732 0.0191 0.0833 -0.8607 0.1947

Spline 240 0.0083 -2.9617 0.0015 0.0167 -4.3033 0.0000 0.0333 -1.1847 0.1181 0.0833 -0.8607 0.1947

Sp+PT 240 0.0083 -2.9617 0.0015 0.0167 -4.3033 0.0000 0.0292 -1.4809 0.0693 0.0833 -0.8607 0.1947

The table shows the frequency in which the actual value of the underlying falls into the specific tail area, the statistic for the Brier test as well as the p-value
(columns Freq., Stat. and p-value, respectively). All information is provided for a 5% and 10% probability mass levels for both left and right tails. Results
provided in this table are for the Brier test calculated on the RNDs calculated using the different methodologies and maturities analyzed in this paper for
the S&P500 index on the restricted data set (in which crisis periods have been removed). Column N contains the number of days for which a RND has
been implied.
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Table 5: Berkowitz test statistic and Block-Bootstrap 95th and 90th percentiles for the S&P500

τ Model S&P500 NASDAQ 100 RUSSELL 2000

χ2
3(95%) = 7.85 LR3 B-Boot.(95) B-Boot.(90) LR3 B-Boot. (95) B-Boot. (90) LR3 B-Boot. (95) B-Boot. (90)

15 days LMN 293.0455 325.4565 318.6257 185.4234 218.0242 211.8529 276.3819 314.0538 305.2469

Kernel 290.6029 319.2546 313.1809 186.3965 214.9305 209.0587 277.7435 320.6566 311.5598

Spline 280.7125 314.7229 307.8585 174.3888 207.4572 200.5460 270.1801 317.4453 308.0356

Sp+PT 280.7953 316.2132 308.8502 173.0493 206.2505 199.6106 264.1271 319.9015 309.4195

30 days LMN 330.6138 370.9677 361.6552 200.9971 236.9523 229.7752 257.6417 294.2178 286.0025

Kernel 323.5491 359.8013 350.1886 191.4513 232.6513 223.8547 259.1183 297.7887 289.5883

Spline 309.3494 351.3955 341.9296 187.2899 226.5716 218.5921 247.3581 290.1936 281.0755

Sp+PT 309.5835 352.5865 342.5027 183.2907 225.0551 216.6904 245.2189 291.2501 282.1556

45 days LMN 288.8683 325.4540 314.3464 179.6266 211.2872 204.2211 187.9370 217.9222 210.6144

Kernel 277.1626 309.6674 300.4922 172.5721 203.2612 196.3735 190.4343 220.6708 213.7647

Spline 270.1027 307.9507 296.5326 165.2227 196.6452 189.7925 182.6621 215.7416 208.0452

Sp+PT 270.5135 307.6347 296.8349 163.8697 195.8229 188.0309 181.5916 214.2552 206.6340

60 days LMN 270.1590 295.0415 285.9951 182.8043 197.2200 192.2441 205.3565 220.4922 213.6826

Kernel 276.2661 302.2074 293.3276 176.1827 191.5402 186.4697 205.7683 222.0206 215.4375

Spline 267.5461 297.8701 287.2185 171.7267 187.2500 181.8214 197.7991 215.6575 208.5868

Sp+PT 268.0386 297.1935 288.4383 166.7008 183.1990 177.5672 197.5185 214.0516 207.5829

The table shows the Berkowitz test LR3 statistic values for the different RNDs across maturities and indexes, as well as their corresponding block-bootstrap 95th
and 90th percentiles. The 95% critical value of the χ2 with 3 degrees of freedom is stated on the second row. Both the 95th and 90th percentiles are higher than
the Berkowitz LR3 statistic value, concluding that if the statistic is distributed as per block-bootstrap, both percentiles fail to reject the null hypothesis. The
table compares this results across the different methodologies, indexes and maturities studied in this paper. The complete data set has been used to produce
these results.
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Table 6: Berkowitz test statistic and Block-Bootstrap 95th and 90th percentiles for the S&P500, excluding crisis periods

τ Model S&P500 NASDAQ 100 RUSSELL 2000

χ2
3(95%) = 7.85 LR3 B-Boot.(95) B-Boot.(90) LR3 B-Boot.(95) B-Boot.(90) LR3 B-Boot.(95) B-Boot. (90)

15 days LMN 261.0704 289.0440 282.2690 159.2896 190.4702 184.8310 235.3139 269.9723 262.3063

Kernel 260.2260 281.8389 276.9479 160.9476 188.9350 183.2188 235.9622 276.5424 268.4681

Spline 249.2416 278.9527 271.5839 149.2765 180.9111 174.8985 227.6088 273.4686 264.7315

Sp+PT 249.3369 277.4157 271.3729 147.9143 179.8141 174.1139 221.7908 272.3620 263.4449

30 days LMN 281.1466 317.8839 309.0520 168.9042 202.5211 195.3909 217.5441 250.8509 244.1965

Kernel 276.0939 309.3409 301.3133 160.7445 199.9242 191.5948 218.8134 253.1017 245.6558

Spline 262.1469 300.7101 292.1207 156.7330 192.4020 185.2688 207.0850 245.9339 237.2866

Sp+PT 262.3871 301.5724 292.7567 153.2677 190.4625 183.1035 205.0723 244.2736 236.2414

45 days LMN 240.5731 277.2092 267.0114 152.3103 180.7984 174.6603 148.2819 171.1953 165.9782

Kernel 231.3595 264.9043 255.6758 147.9226 177.2156 170.8150 150.9166 175.2659 169.7407

Spline 224.1282 261.3162 250.9638 142.2700 170.0332 164.1404 143.8152 168.8273 163.0793

Sp+PT 224.5074 258.9355 250.1648 141.0963 169.4100 163.4882 142.9454 167.8381 162.4578

60 days LMN 216.0344 237.1528 229.8808 140.5529 155.5354 150.5096 156.0565 169.8769 164.4650

Kernel 221.0851 243.1724 235.5457 137.1190 152.6372 147.5020 156.7342 167.1324 162.1388

Spline 212.6918 237.9665 229.5559 133.5388 149.0193 143.8523 150.4351 160.8767 155.7161

Sp+PT 213.1123 239.1166 229.9197 130.0278 146.1716 141.4404 150.2366 160.9419 155.7264

The table shows the Berkowitz test LR3 statistic values for the different RNDs across maturities and indexes, as well as their corresponding block-bootstrap 95th
and 90th percentiles. The 95% critical value of the χ2 with 3 degrees of freedom is stated on the second row. Both the 95th and 90th percentiles are higher
than the Berkowitz LR3 statistic value, concluding that if the statistic is distributed as per block-bootstrap, both percentiles fail to reject the null hypothesis.
The table compares this results across the different methodologies, indexes and maturities studied in this paper. The restricted data set which excludes the crisis
periods has been used to produce these results.
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Figure 1: Kernel RND with pareto tails appended

The graph shows a RND calculated on the S&P500 for a 30 days time horizon using kernel technique with
pareto tails appended. In the figure we can distinguish the central part represented with a solid line which
is the main body of the distribution and it has been calculated using kernel method from the observed
range of data. The most extreme regions also depicted in solid line show the pareto tails appended to the
main body of the distribution. Finally the graph depicts with a dotted line the overlapping zone between
α0 and α1 which has been estimated using a weighting scheme. The RND is for 17

th December 2009.
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Figure 2: RNDs before and after the crisis

The figure compares a pre-crisis (21 July 2005) and a post-crisis (23 July 2009) RND for the S&P500
at 30 days maturity for each of the different methodologies proposed. Both top panels depict the RNDs
implied using the parametric Log-Normal mixture. The bottom plots show the non-parametric RNDs:
Kernel with pareto tails appended (solid line), Spline with extrapolation (dashed line) and Spline with
Pareto tails appended (dotted line).
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Figure 3: Standard deviation, Skewness and Kurtosis for the RNDs extracted using all
different methodologies

The figure compares the 2nd, 3rd and 4th moments of the RNDs calculated on the S&P500 for a 30 days
time horizon using all methodologies used in this study: Log-Normal mixture (dashed line), Kernel with
Pareto tails (dotted line), Spline with extrapolation (dash-dot line) and Splines with Pareto tails (solid line).
Standard deviation is depicted in panel 1, skewness in panel 2 and kurtosis in panel 3. They are represented
along the whole sample period, from 1996 until 2015. We can see that all different methodologies yield to
very similar results which confirm that RNDs are negatively skewed and present kurtosis higher than 3,
concluding that RNDs depart from normality.
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