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Abstract

We assess transmission channels of systemic risk and the effects of capital regulation in the
European Banking Union. Two interconnected channels of risk are analysed by employ-
ing a data-driven, heterogeneous network model. First, the risk from shocks to corporate,
sovereign and retail debt holdings of banks and second, the subsequent contagion effects
that spread through the interbank loan market. The effects of both channels are further
magnified by the inclusion of default costs. We provide measures and rankings that aim at
a realistic review of the resilience and contagion threat from banks, countries and different
assets. In addition, we draw policy implications from the effectiveness of regulatory capital
requirements by applying treatments to the CT1 capital of individual banks in the network.
Our findings suggest that the effect of micro prudential regulations, such as CRD IV, fall
short of their expected effectiveness. More specifically, the positive effects of stricter capital
regulation are largely compensated by contagion effects.
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1 Introduction

Stability in financial systems is a prime concern for regulators and policy makers. The assess-
ment of systemic risk is the basis for regulatory concepts that aim at a resilient-yet-efficient
banking network. In our sense, systemic risk is the risk of some market participant failing due
to an exogenous asset shock which subsequently leads to further defaults through contagion.1 A
landmark example of systemic risk is the default of Lehman Brothers in September 2008. The
resulting cascade of asset losses was evident worldwide and highlighted concerns about financial
network interconnectedness (De Haas and Van Horen, 2012; Acharya et al., 2014).

Market participants in financial networks consist of many types of institutions, e.g. banks,
insurance companies, hedge funds, pension funds or mutual funds. Of these, banks play a
key role in financial networks and hence attract special attention by regulators. Among other
regulatory efforts, stress tests have been conducted by the European Banking Authority (2011,
2014, 2016) in order to assess several risk scenarios. These stress tests provide a data source

∗Goethe University Frankfurt, woebbeking@finance.uni-frankfurt.de
1See Hurd (2015) for a discussion of systemic risk definitions.

1

mailto:woebbeking@finance.uni-frankfurt.de


of bank level exposures at a granularity that is unparalleled in publicly available data. Most
importantly, the reports provide data on banks sovereign, corporate, retail and interbank market
exposures. Hence, the reports offer a great platform to employ methods from network theory
to actual bank network data.

Despite the granularity of the data, direct links between banks are not observable via public
sources. To fill this information gap we utilize a Bayesian methodology in an attempt to model
a realistic representation of the European bank network. More specifically, conditional on
the observable total interbank liabilities and assets of each bank, a Gibbs-sampler is used, to
generate samples from the underlying conditional distribution. The resulting network model
represents up to 70% of all European bank assets (see Section 3.4). The model allows to analyse
losses and defaults that are caused by different combinations of exogenous shocks, as well as
default costs for interbank assets and external assets.

Turning to the regulatory aspects of financial networks, the Capital Requirements Regulation
and Directive (currently CRR/CRD IV) is the result of European efforts to implement buffers
for loss absorption. Such capital regulations render a primary tool for regulators that focus on
systemic stability. Motivated by the sparse empirical evidence that analyses the benefits from
capital regulation for systemic stability, we set out to quantify these effects by applying capital
treatments to the banks in our network model.

Our findings suggest that the systemic resilience is improving for shocks to retail and corpo-
rate assets, whereas shocks to sovereign assets appear as an increasing thereat. Resilience in this
sense is the ability of a network to withstand exogenous shocks without an increasing number
of nodes defaulting. Furthermore, a velocity measure is defined in order to capture the asset
shock sensitivity of the network, after an initial shock absorption threshold is breached. We
find that, from 2011 to 2016, this default velocity is decreasing for all transmission channels. In
order to assess the ”worst-case” scenario, we measure the percentage of defaulting banks in the
network, given a very large asset shock. This severity figure is decreasing over the years, where
the largest difference is observable for sovereign assets, after the beginning of the European
sovereign debt crisis in 2011.

After the initial assessment of the transmission channels for systemic risk, different core
tier one equity (CT1) treatments are applied to the networks. The results suggest that the
effect of capital regulation on systemic stability is small. More specifically, a treated network is
compared to its observed counterpart, revealing that an increasing CT1 ratio does not imply a
large reduction of systemic risk. The main effect of capital regulation appears to be on direct
defaults, which is nearly fully compensated by interbank network defaults. The clear policy
implication is that focus should be on regulatory efforts towards financial networks as a whole.
Network focused regulation might for example aim at a reduction of default costs, which would
decrease the number of contagion defaults.

On bank level, we provide ”first to default” rankings that are based on year and exposure
type. Owing to changes in the EBA sampling methods, the comparability of single bank rankings
over time is limited. Nevertheless, one finding is that a majority of the top 10 defaulting banks,
due to sovereign asset shocks, are consistently based in Germany. More specifically, German
state-owned banks, such as e.g. Deka Bank A.G., appear to be heavily exposed to sovereign
assets. More detailed scenarios are laid out in the results section.

The remainder of this paper is structured as follows: Section 2 provides a brief review of
the relevant literature. The methodology is laid out together with a description of the data in
Section 3. The results are presented in Section 4, followed by robustness checks in Section 5.
Section 6 concludes.
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2 Background and Literature

The 2008 global financial crisis catalysed academic research in systemic risk. Methods from
network theory, as a part of graph theory, have since been increasingly employed in financial
research to analyse the effects of interconnectedness and contagion in banking systems. The
European sovereign debt crisis, which emerged from late 2009 on, shed further light on the
interconnectedness of European banks and motivated related research.

The assessment of systemic risk is commonly based on network models,2 in which banks
are represented as nodes and their interbank liabilities as weighted direct edges. A network is
stressed by some initial asset shock and allows for a subsequent analysis of resulting contagion
effects. This is, nodes that are unaffected or survive the initial shock might still incur losses or
default due to other nodes not being able to honour their contractual obligations.

Pioneering the theoretical analysis of systemic risk in finance, Eisenberg and Noe (2001)
develop a model of financial institutions as nodes of a network, which are connected by edges
that represent their mutual obligations. Conditional on an asset shock to one or more nodes,
a vector of payments that clears the network is computed. A core result is that there always
exists a clearing payment vector for all participants and their obligations. This vector can then
be used to analyse the systemic risk faced by the individual nodes.

Specifying only the degree distribution of their random financial networks, Gai and Kapadia
(2010) follow the methodology laid out by Newman (2003) to study contagion effects in arbi-
trarily structured networks. They find that financial systems tend to be ”robust-yet-fragile”:
Being connected to a high degree results in a low probability of contagion, but once contagion
does occur in these networks it is likely to be very severe. A similar assessment is reached by
Acemoglu et al. (2015), but within a very different framework. Employing equilibrium theory
to set up a network of financial institutions, they show that a highly connected network is ro-
bust against negative shocks of limited magnitude/frequency, while sparsely connected networks
are very vulnerable. On the contrary, in the presence of large shocks, the sparsely connected
ones are the least likely to exhibit systemic failure, while a higher connectivity increases the
likelihood of widespread defaults.

Krause and Giansante (2012) also generate random interbank networks, utilizing a Barabási
and Albert (1999) scale-free framework, in which crises are triggered by endogenous bank fail-
ures. The resulting analysis of contagion effects allows them to draw conclusions on contagion
probability as well as post contagion effects. This includes the finding that networks with nodes
of homogeneous size are more prone to contagion and highly interconnected networks reduce
contagion risk, as losses are spread evenly. On the other hand, highly interconnected networks
increase the effects of contagion, similarly to the earlier mentioned results.

Of the more recent contributions, Glasserman and Young (2015) use a methodology that is
based on Eisenberg and Noe (2001) to compute expected loss comparisons for different shock
distributions as well as losses from network contagion. Their findings suggest that heterogeneous
networks have a high likelihood of contagion through spillover effects, particularly when the
primary shock hits a large node, a node with high leverage or a node whose majority of liabilities
are held by other financial institutions. Anand et al. (2015) employ a minimum density network
modelling approach, as opposed to the common maximum entropy method. According to
their research, maximum entropy underestimates contagion whereas maximum density is prone
to overestimation. Acharya et al. (2014) develop alternative systemic risk measures that are
solely based on readily available public information. Their estimated capital shortfall measure
(SRISK) is a function of size, market leverage and stock returns under stress that are modeled

2See Elsinger et al. (2013) for a technical overview of network models. See Hüser (2015) for an elaborate
overview of the literature on interbank networks.

3



by a Long-Run Marginal Expected Shortfall (LRMES).
Alternative theoretical models investigate the impact of reduced market liquidity on bank

failures, where the principal idea is that the liquidation of assets from failing banks depresses the
assets of other banks. The asset reduction might subsequently force other banks into default,
which gives rise to the idea of contagion through ”fire sales”, as in Allen and Gale (2000),
Diamond and Rajan (2005) along with Upper (2011) and Hurd (2015).

Furthermore, there exists literature on interbank networks with a more data-driven or em-
pirical focus. Paltalidis et al. (2015) base their research on quarterly cross-border interbank
exposure data from the Bank of International Settlements, which is fed into a maximum entropy
network model. Their findings include that sovereign debt is a dominant factor for determining
systemic risk. In addition, the authors find large differences between systemic risk exposure
for northern (lower) and southern (higher) European Union countries. Cont and Schaanning
(2017) consider another relevant channel of systemic risk, namely, fire-sales that are triggered
by banks that de-leverage in order to maintain capital ratios, after an initial asset shock. The
authors find that the diversified asset portfolios of large banks increase interconnectedness and
thus the impact of fire-sales. Furthermore, this channel exposes banks to assets that are not
necessarily part of their own balance sheet; implying that this assets are not considered by the
individual bank risk management or RWAs.

Engle et al. (2015) apply SKRISK and LRMES, as discussed in Acharya et al. (2014), to
data of the 196 largest European financial firms from 2000 to 2012. They suggest that the
taxpayers cost to rescue some domestic banks are so high that some banks might be considered
”too big to be saved”. According to this research, the countries with the highest exposure to
systemic risk are France and the UK, whereas the institutions with the highest exposure are
Deutsche Bank, Credit Agricole, Barclays, Royal Bank of Scotland and BNP Paribas.

As this overview of the theoretical and empirical developments suggest, the research on
systemic risk in financial networks is far from settling on a final consensus. Motivated especially
by the sparse evidence from network models that are calibrated to actual real-world data, we
aim at contributing to the literature by applying the laid-out methods to the novel and unique
EBA dataset. In particular, to the best of our knowledge, there exists no research that tries to
link capital regulation tools to bank exposure data and hence systemic risk.

3 Methodology

3.1 General Model Setup

Let us consider a network of N ∈ N banks with indices I = {1, ..., N}. Figure 1 shows the
consolidated balance sheet that describes a bank i ∈ I. Hence, a bank is described by assets
ai ∈ [0,∞)N and liabilities li ∈ [0,∞)N that are held within the interbank network, as well as

external assets a
(e)
i ∈ [0,∞)N and external liabilities l

(e)
i ∈ [0,∞)N that refer to entities outside

the interbank network. The net worth wi of bank i for i ∈ I is equal to the book value of equity
if wi ≥ 0. In the case of wi < 0, the bank is in fundamental default.

External assets a
(e)
i comprise all non-interbank exposures and can be dissected into granular

exposures. In our set-up we consider a
(e)
i = a

(sov)
i + a

(crl)
i + a

(rtl)
i + a

(o)
i as the sum of sovereign

exposure a
(sov)
i , corporate loan exposure a

(crl)
i , retail exposure a

(rtl)
i and other external exposures

a
(o)
i .

The net worth wi of a bank i is the difference of total assets and total liabilities, hence,

wi = (a
(e)
i + ai) − (l

(e)
i + li). A shock might transmit to wi by a direct exposure in a

(e)
i or

indirect exposure through ai. A fundamental default of bank i, where wi < 0, could therefore
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Figure 1: Consolidated balance sheet for bank i. Assets and liabilities that are held within the interbank

market are denoted as ai and li. External assets and liabilities are denoted as a
(e)
i and l

(e)
i , while equity

is the residual wi.

be a result from direct asset exposure or interbank exposure. In case of a default, the loss can
spread to other banks according to their interbank market exposure to li. On the interbank side
the effect of interconnectedness repeats until the system is cleared, hence, no further defaults
or all banks in the system defaulted.

In this set-up we are able to shock external assets of one or more banks in the network.
Based on our data, the shocks can be applied to different asset classes from different countries
of origin, denoted as C ∈ N countries with indices Ic = {1, ..., C}. We denote the proportional
loss on total assets by s ∈ [0, 1]N . For any bank i ∈ I, the remaining external assets after a
shock si are

sia
(e)
i =

C∑
c=1

s(sov)
c a(sov)

c + s(crl)
c a(crl)

c + s(rtl)
c a(rtl)

c + a(o)
c ∀i ∈ I. (1)

Hence, we are able to analyse shocks s
(·)
c and shock combinations on country level for sovereign

exposures (sov), corporate loans (crl) and retail assets (rtl). After the shock, the net worth of

bank i for i ∈ I is wi(si) := (sia
(e)
i + ai) − (l

(e)
i + li). The set of all fundamentally insolvent

banks after the shock, in other words, the set of immediate defaults, is denoted by

D0 := {i ∈ I|wi(si) < 0} (2)

Spanning the network of interbank assets and liabilities is more involved and will be discussed
in Section 3.2. Ultimately the model will enable us to review the direct impact of asset shocks
and, in particular, shocks on sovereign, corporate and retail debt exposure. The immediate
shock can trigger contagion effects through the interbank network that are also observable
through the model. Hence, we will be able to draw an integrated picture on contagion and risk
concentration within the considered bank network.

3.2 Network Model for Interbank Liabilities

The links between banks are described by the nominal liabilities xij , ij ∈ I of bank i to bank j.
X = (xij) ∈ RN×N is defined as the liabilities matrix if xij ≥ 0 ∀ i, j ∈ I and xii = 0 ∀ i ∈ I,
i.e. the adjacency matrix of the weighted interbank network. Hence, in the case of xij > 0,
there exists a direct edge from node i to node j.
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X =


x11 · · · x1j · · · x1N

...
. . .

...
. . .

...
xi1 · · · xij · · · xiN
...

. . .
...

. . .
...

xN1 · · · xNj · · · xNN


For any given liabilities matrix X, the column sums denote the total nominal interbank

liabilities lj for bank j,

lj =

N∑
i=1

xij , j ∈ I (3)

and the row sums denote the total nominal interbank assets ai of bank i.

ai =
N∑
j=1

xij , i ∈ I (4)

The total nominal interbank liabilities are equal to the total nominal interbank assets and are
given by L =

∑N
j=1 lj =

∑N
i=1 ai.

From the data sources described in Section 3.4, we are able to obtain ai, lj ∀ i, j ∈ I as well
as L. The interbank liabilities xij are in general not known and have to be estimated. With
zeros on the diagonal of X, the problem extends to N2 − N unknowns and cannot be solved
analytically for N > 2. Since

∑N
j=1 lj =

∑N
i=1 ai, where all lj and ai ∈ I are known, there are

a total of N2 − 3N + 1 degrees of freedom available for the estimation of X.
To solve the estimation problem, we follow the Bayesian approach of Gandy and Veraart

(2015). In their paper the authors use a Gibbs-sampler to sample from the conditional distri-
bution of X, given its row and column sums. More specifically, first, a generalised version of
the Erdős and Rényi (1959) model is used to generate an adjacency matrix Y = (yij) ∈ RN×N .
This adjacency matrix is defined by yij = 1 if xij ≥ 0 and yij = 0 otherwise. Independent
Bernoulli trials generate the directed edges in Y , with probabilities pij ∈ [0, 1] ∀ i 6= j ∈ I and
pii = 0 ∀ i ∈ I. Second, the existing edges are populated with liabilities, which are assumed to
follow an exponential distribution. Hence, the model:

P(yij = 1) = pij ∀ i ∈ I
xi,j | {yij = 1} ∼ Exponential(ϕij) ∀ i ∈ I

(5)

The model is constructed in a way such that the samples maintain the originally observable
row and column sums for X. The parameters for the model consist of two matrices, namely,
P ∈ [0, 1]N×N , where the probability of the existence of a direct edge between i and j is denoted
by pij ; and ϕ ∈ (0,∞)N×N , which describes the distribution of liabilities given that an edge
exists.

Under the assumption that all pij are identical for all i 6= j, the network corresponds to the
classical Erdős-Rényi model. For our analysis, we calculate the linkage probabilities in a way
that reassembles the observable interbank linkages on a country aggregate level. The remaining
assumption is that a bank would evenly spread its exposure between available banks from a
given country.3

3A similar assumption is found in e.g. Gai and Kapadia (2010).
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The linkage probabilities for our model set-up are derived from the relative weight of in-

terbank exposures, on country aggregate level. Hence, with a
(cj)
i the exposure of bank i to all

banks in the country of residency cj of bank j and N (cj) the total number of banks in that
country, we have,

pij =
a

(cj)
i

(N (cj) − 1{ci=cj})L
∀i, j ∈ I, ∀i 6= j

and at the same time

ϕ = ϕij =

∑N
i=1

∑N
j=1 pij

L
∀i 6= j (6)

to ensure that

E

 N∑
i=1

N∑
j=1

xij

 =
N∑
i=1

N∑
j=1

pij
ϕij

= L (7)

With this parametrization we utilize the Gibbs sampling method from Gandy and Veraart
(2015) to produce 20.000 samples of liability matrix X. More specifically, through the chain
of the Gibbs sampler, we disregard the first 10.000 steps as burn-in and afterwards retain one
sample every 10.000 steps until a sample size of 20.000 is reached.

Later on, the assumption on equally weighted exposures within a given country will be
relaxed by weighting the exposure probability of banks based on their respective interbank
assets. Interbank assets in this sense aid as an indicator for interbank market activity. Hence,
we postulate that a large fraction of e.g. HSBC’s German interbank liabilities come from the
bank with the largest amount of interbank assets in Germany.

3.3 Shock Propagation

The literature follows two common approaches to model the shocks that run through the net-
work. Sequential default algorithms, assume that the bank pays (1−Recoveryj)lj in case it is in
fundamental default, which is if the net worth wj < 0. After a given asset shock, the algorithm
runs for a maximum of n − 1 iterations until no further interbank market contagion defaults
occur, see e.g. Anand et al. (2015), Mistrulli (2011), Amini et al. (2016) and references therein.
In this set-up, the recovery rate would have to be assumed, while it does not incorporate the
possibility that the default of a bank could impact the losses of another defaulting bank during
its insolvency phase. Eisenberg and Noe (2001) discuss a modified version of the sequential
default algorithm, where the recovery rate is endogenous.

Alternatively, a clearing mechanism can be utilized to directly model payments in the inter-
bank market without any exogenous assumptions on recovery. Originally discussed by Eisenberg
and Noe (2001), the core idea is that banks, once defaulted, use all available assets to repay their
liabilities proportional to their original debt distribution. A generalization to this approach that
allows to incorporate default costs was proposed by Rogers and Veraart (2013). More specifi-
cally, the authors define, for a shock realisation s = (s1, ..., sN )> ∈ [0, 1]N , the clearing vector

c∗(s) ∈ [0, l
(e)
i + li]

N as a solution to c∗(s) = Φ(c(s)), where

Φ(c(s))i =

{
l
(e)
i + li , if l

(e)
i + li ≤

∑N
j=1

∏
ij cj(s) + sia

(e)
i

(1− β)
∑N

j=1

∏
ij cj(s) + (1− α)sia

e
i , else.

(8)
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The constants α, β ∈ [0, 1] model default costs. The special case of α = β = 0 yields the
classical clearing vector approach as introduced by Eisenberg and Noe (2001). A formal proof
on the existence of a (greatest) clearing vector is provided in Rogers and Veraart (2013), which
relies on the limiting assumption that all liabilities can be cleared at the same time.

To find α, β we turn to the academic literature that aims at analysing the asset loss that is a
result of the default of a company. Early work in this direction was published by Andrade and
Kaplan (1998) who find asset losses of 10% to 25% on highly leveraged transactions. Davydenko
et al. (2012) provide empirical evidence on default costs, depending on the rating, of 19.9% to
31%. A recent simulation study by Glover (2015), analysing firms from all sectors, found asset
losses in the range of 35% to 53.2%. Empirical evidence on the default costs of banks is presented
by Kang and Maziad (2012), the authors find default related asset losses of around 30%.

In the following section, we analyse transmission channels of systemic risk for the European
banking union as a whole as well as countries and single banks. For our base model, we
assume default costs of 30%. This is within the range of overall empirical evidence and the
mean result of Kang and Maziad (2012) who were focusing on banks in particular. In addition
to default frequencies and losses, measures for systemic resilience, default velocity, and crash
severity are presented. Later on, we will run robustness tests with a focus on potential model
miss-specification issues.

3.4 Data

Data is collected primarily from the European Banking Authorities’ (EBA) stress test reports
for 2011, 2014 and 2016, which shed light on bank level exposures at an unparalleled granularity
for publicly available data.

Bank coverage is driven by the sample selection mechanisms of EBA. In European Banking
Authority (2011) the criterion was to cover at least 50 percent of each national banking sector
in terms of total consolidated assets (as of end 2010), covering in total 65 percent of the EU
banking system total assets. The European Banking Authority (2014) criterion was to cover
at least 50 percent of each national banking sector in terms of total consolidated assets (as of
end of 2013), while additional banks could be added by authorities such as the ECB if deemed
necessary. The 2014 sample covers more than 70 percent of the total banking assets in the EU.
European Banking Authority (2016) includes banks with a minimum of EUR 30 bln in assets,
which results in a sample covering approximately 70 percent of each national banking sector in
the Eurozone, each non-Eurozone EU member, and Norway.

Table 1: Sample Overview. Based on EBA stress test banks from 2011, 2014 and 2016.

2011 2014 2016

EBA Banks 91 123 51
Countries 21 22 15

For interbank network exposures, the EBA data is granular to the country-of-exposure level
for every considered bank. For instance, we are able to observe the interbank market exposure
of Deutsche Bank against the country-level aggregate of banks in up to 22 European countries.

As transmission channels for systemic risk, we consider exposures with respect to sovereign
debt, corporate debt (exclusive of real estate) and retail debt. Analogue to the interbank
network exposures, this data is available as exposure against a country of origin. The remaining
data is collected from Bankscope, OECD, SNL and Bloomberg, including GDP, tier one capital,
risk-weighted assets and other balance sheet items.
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4 Results

For our bank networks as of 2011, 2014 and 2016 we simulate shocks as a reduction of 1)
sovereign assets, 2) corporate assets and 3) retail assets. Following mark-to-market accounting
standards, losses are deducted from asset values and possibly reduce capital buffers until a
default occurs. The clearing vector mechanism from Section 3.3 is used to compute contagion
losses and defaults. The goal is to analyse losses and the paths that spread contagion; hence,
we do not model any form of government or central bank intervention.4 This is, the tools and
information that are provided in this paper aim at assessing the market situation and scenarios
free of countermeasures.

In the first part of this section presents a review of the European bank network as a whole.
Results are compared by measures of systemic resilience, default velocity as well as contagion
severity. In the following part, the focus is on single countries and banks. Countries that pose
the biggest threat to the European bank network are presented together with countries that
incur the largest impacts from contagion. After reviewing the observable networks, the last
part of this section presents results that are derived from simulating the systemic risk profile of
networks under different regulatory capital treatments.

4.1 Transmission Channels of Systemic Risk

Figure 2 shows the core-periphery network structure of European interbank liabilities as of
2011. Multiple, color-coded layers of arrows represent weighted ties and exposure direction
between nodes. Nodes are grouped based on the strength of their ties. This automatically
results in most nodes being grouped by countries. Additionally, the United Kingdom (London),
being the largest financial hub in Europe, is placed in the middle of the graph. An exception
to the heavily interconnected European market is Spain. The Spanish savings bank ’Caja’
system shows weaker interconnectedness with banks outside the local market, of which most
run through Banco Santander (ES05).5

To analyse the transmission channels of systemic risk we, ceteris paribus, apply Europe-wide
shocks s(·) ∈ [0, 0.5] with 0.5 being a 50% loss in the respective asset (sovereign, corporate and
retail). Figure 3 shows the relative number of defaults (percentage of banks in the network).
Intuitively, defaults as a function of asset shock follow a sigmoid shape. This is, after some
initial interval of shock resistance is breached, the number of losses increases until some upper
level is reached. The upper boundary might simply be a total wipe-out of the network.

Based on the observation that defaults, as a function of the initial percentage shock to an
external asset s(·) ∈ [0, 0.5], have a sigmoid shape, we fit:

Dγ,λ,δ(s
(·)) =

γ

1 + exp(λ− δs(·))
(9)

When comparing networks, the fitted parameters of this function allow for the following in-
terpretations; λ provides an indication on the shock that the network can resist without an
accelerating number of defaults. Default velocity is captured by δ as some form of steepness.
Resistance and velocity can be combined to a resilience index, given by the fraction λ/δ, where a
higher number indicates a higher systemic risk. The limiting number of defaults in the network

4The history of financial markets provides several occasions, e.g. the recent 2008 financial crisis or 2011
government debt crisis, that allow us to observe these actions in the form of e.g. bail-out programs, liquidity
facilities or forced mergers.

5Banco Santander S.A. is the largest Spanish bank with total assets amounting to 1,223.267 bln as of 2011.
In contrast to the locally focused savings banks, Santander has a large international presence.
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Figure 2: Network representation of the European interbank market as of 2014. Linkage probabilities
for a given country are weighted based on the interbank market assets of each bank. The data shows
the intuitive result that some countries (e.g. United Kingdom) act as a hub and hence occupy a central
position in the system, whereas other local banking systems (e.g. Spain) show weaker links to the overall
European system. Banks are represented by the ISO3 code and asset size rank of their country of
residency. The following banks have a rank of 1 in their respective country of residency: Erste Group
(AUT1), Dexia (BEL1), Bank of Cyprus (CYP1), Deutsche Bank (DEU1), Danske Bank (DNK1), Banco
Santander (ESP1), BNP Paribas (FRA1), HSBC (GBR1), Bank of Ireland (IRL1), UniCredit (ITA1),
Banque de l’Etat (LUX1), ABLV (LVA1), ING (NLD1), DNB (NOR1), Getin Noble (POL1), Caixa
Geral de Depositos (PRT1), Nova Ljubljanska (SVN1), Nordea (SWE1).
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Figure 3: Percentage of defaulting banks in the network as a result of asset shocks s(·) ∈ [0, 0.5].
Direct defaults result from the shock itself, total defaults include additional defaults that are caused by
contagion through the network.
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in percent is captured by γ. This measures help to compare networks through time and between
risk transmission channels.

Table 2 shows the fitted parameters from Equation (9). In 2011, the network appears most
resilient to shocks in sovereign assets, followed by corporate and retail assets. Between 2011
and 2014, the systemic risk from corporate and retail assets is decreasing whereas the risk from
shocks to sovereign assets is increasing. This is likely the result of banks shifting their exposure
to European sovereign assets6, as a result of stricter capital regulation for non-sovereign assets.

The worst case impact, as measured by γ, of sovereign asset write-downs decreases from
2011 onwards. On the other hand, the resistance of the network is decreasing as well. The
largest change, especially for corporate and retail exposure, is their reduced default velocity.
The 2016 sample of large banks probably results in a naturally reduced retail exposure, relative
to other balance sheet items. Hence, a seemingly reduced impact from retail assets.

Table 2: Fitted parameters from Equation (9). The ability to resist asset shocks is measured by λ,
the velocity of defaults by δ and γ is a measure of severity. For this analysis, the network is shocked by
s(·) ∈ [0, 0.5] with default costs of 30% (see Section 3.2).

2011 2014 2016

Paramter Estimate SE Estimate SE Estimate SE

Sovereign exposure
Resistance (λ) 3.7998 0.1560 2.5709 0.1276 2.6681 0.2230
Velocity (δ) 0.1406 0.0071 0.1131 0.0075 0.1179 0.0128
Severity (γ) 71.1764 1.5366 57.9938 1.6603 64.9655 2.9245
Resilience (δ/λ) 0.0370 0.0440 0.0442
R2 0.9979 0.9969 0.9915

Corporate exposure
Resistance (λ) 4.1391 0.2316 4.4655 0.2401 2.3395 0.1477
Velocity (δ) 0.2740 0.0155 0.2369 0.0131 0.1390 0.0098
Severity (γ) 92.4019 0.8903 90.7940 1.0297 75.4984 1.5157
Resilience (δ/λ) 0.0662 0.0530 0.0594
R2 0.9985 0.9982 0.9968

Retail exposure
Resistance (λ) 7.4849 0.7147 5.1056 0.1407 1.8320 0.1849
Velocity (δ) 0.6830 0.0650 0.3552 0.0098 0.1533 0.0155
Severity (γ) 93.7118 0.8306 95.6304 0.3776 75.5145 1.6710
Resilience (δ/λ) 0.0912 0.0696 0.0837
R2 0.9984 0.9997 0.9949

6For the entire sample period, sovereign assets in the European Union are treated with a risk weight of 0%,
regardless of their individual credit rating (European Comission, 2015).
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4.2 Country Level Contagion

In this section, we focus on contagion effects for European countries as well as individual banks.
On one hand, the loss impact for countries in Europe, from shocks to banking assets and
contagion, is analysed. On the other hand, we rank banks by their network resilience; hence,
ability to withstand shocks from different transmission channels.

For the 21 (2011), 22 (2014) and 15 (2016) countries in the sample, the following analysis
is conducted, in order to compare contagion threats from single countries. First, all assets that
origin in one single country are shocked by 60%.7 Second, we record the total asset loss that
subsequently occurs in the remaining countries. The results are used to rank countries according
to their contagion thread towards other EU countries.

Figure 4 shows the results as a ranking of European countries. A darker colouring depicts a
larger contagion impact. It is clear and well researched that the relative size of a network node
or group of nodes (i.e. country) has a major impact on systemic stability. Besides the absolute
impact, the relative impact could be considered. In our sense, relative impact is the severity of
contagion relative to the economic output of the country. Hence, the second row of graphics in
Figure 4 shows the results relative to the GDP of the shocked country. Despite the size, the
primary factors that drive country contagion are debt-holdings from foreign banks and network
connectedness.
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2016
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to
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D
P

2011 2014 2016

Figure 4: Contagion threat from countries in the EU. A darker colouring indicates a larger contagion
threat to other countries. The ranking is based on total losses (first row) and losses relative to GDP
(second row). Maps from left to right display results for 2011, 2014 and 2016. Countries that are not
represented in the dataset are left blank (white).

To assess how individual countries are affected by incoming contagion from the European
bank network, the following analysis is conducted. First, all assets that origin in one single
country are shocked by 60%. Second, the subsequent losses in the other, non-shocked, countries
are recorded relative to their GDP. In contrast to the previous analysis, the incoming losses are

7The choice of a 60% asset loss, i.e. 40% recovery, is somewhat arbitrary. However, the resulting numbers are
used in a ranking, which relativises the precise asset shock.
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accumulated on a country level. The results are presented relative to GDP, which aids as an
indicator of an economies ability to sustain losses in the banking system. Hence, we provide an
indication of how severely a given country is affected. This process is repeated for all countries
in the network. The results are shown in Figure 5.

2011

2011

2014

2014

2016

2016

Figure 5: Impact severity from contagion in Europe. A darker colouring indicates a larger incoming
contagion effect relative to GDP. Maps from left to right display results for 2011, 2014 and 2016. Countries
that are not represented in the dataset are left blank (white).

The 2011 and 2014 sample is comparable with regards to sample size as well as sample
selection mechanism. For 2016, comparability is limited, which is owed to the exclusion of
several banks from the dataset, see Section 3.4. When comparing the outgoing contagion threat
from a country to the incoming thread it is worth mentioning that the losses can only spread
through the banking system. For example, Banks in 2011 had Norwegian asset exposure but
the sample did not include Norwegian banks. Thus, Norway has a risk contribution but appears
to be unaffected by incoming contagion.

4.3 Single Bank Defaults and Systemically Relevant Institutions

This section (4.3) will be restructured. We are currently working on a different implemen-
tation of the single bank default mechanism. One goal is to use our network model to identify
critical institutions and compare the results to banks that are identified as systemically relevant
by regulatory authorities.

Table 3 shows a fraction of a single bank default resilience ranking. More specifically, the
first 10 banks to default from a Europe-wide asset shock are displayed. For sovereign exposures,
the top 10 is dominated by medium-sized German state-owned banks (”Landesbank”). On one
hand, these banks have a comparatively strong exposure to sovereign debt; on the other hand,
they appear to be closely interconnected through the interbank market.

It is important to note that these rankings are based on current market data and severe
loss scenarios. For example, among the first to default from shocks to retail assets are several
covered bond banks. This is not surprising as retail exposure consists largely of mortgages.
Hence, our retail shocks imply a shock to the covering mortgage asset values. Nevertheless, in
lieu of the 2008 financial crisis, such shocks might not be completely unrealistic.

The large international banks appear less severely impacted, simply because their assets
pools spread to regions that are not considered in our analysis. When stressing European
sovereign, corporate and retail assets simultaneously, we find these large international institu-
tions such as HSCB, Barclays, Societe Generale, Commerzbank, Banco Santander, RBS and
Deutsche Bank among the most resilient network nodes.
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4.4 Capital Regulation and Systemic Stability

In this section we asses the ceteris paribus impact of capital regulation on systemic stabil-
ity. More specifically, the CT1 capital ratios of banks in the network are elevated by injecting
additional CT1 capital, while the network topology and remaining asset exposures remain un-
changed. This allows to compare the different networks through time on the basis of equal CT1
capital. The actual effect of increased capital ratios is driven by several choices regarding the
implementation of higher capital requirements8. Owing to their preferential regulatory treat-
ment, it is likely that some fraction of assets will be shifted into sovereign assets instead of
plain cash holdings, this is currently not considered by this simulation study. In this sense, the
presented figures can be seen as best-case scenarios from a regulatory perspective.

Before proceeding with the analysis, a concise overview of the discussion on capital regulation
as of 2017 is presented. The Capital Requirements Regulation and Directive (CRR/CRD IV)
implements a set of capital regulations for European banks. A central part of this regulation
is the definition of capital buffer requirements. Figure 6 provides an overview of currently
implemented and discussed capital buffers. The top layer of capital requirements is the attempt
to specifically target systemically relevant banks in order to reduce the risk from central network
nodes. Hence, capital regulation is evidently used as a tool for systemic bank regulation.
Therefore, the focus of this section is on assessing the theoretical and actual impact of such
regulatory efforts. The average CT1/RWA capital ratios that are observed in the data for all
banks in the sample are presented in Figure 7 together with the related milestones from the
adoption of the Basel regulatory Framework.
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Figure 6: Overview of implemented and discussed regulatory capital buffers. G-SRI refers to global
systemically relevant institutions, O-SRI to other systemically relevant institutions and SRB to systemic
risk buffer. Source: BIS (2016).

Let us begin with the network as of 2011 and increase CT1 capital to match the 2014
average ratio. Therefore assessing the systemic risk profile of the 2011 network with the capital
requirements of 20149. The capital injection is implemented as a floor on CT1 capital. Hence,

8In practise, banks can reduce risk-weighted assets (RWA) or increase CT1 capital through e.g. issuing
additional equity or contingent convertible bonds. Especially the reduction of RWA might change the asset
exposure in the system. For most banks, shifting assets into sovereigns would decrease RWA; however, this
preferential regulatory treatment of sovereign exposure is currently under review (Weidmann, 2013).

9This is repeated for any combination of 2011, 2014 and 2016 data. The results are similar, however, the
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Figure 7: Risk based capital and liquidity standards related adoption of the Basel regulatory framework
(BIS, 2016). The average CT1/RWA ratio for banks in our sample is depicted in blue.

all individual banks receive additional CT1 capital until they obey the desired ratio. In practise,
a bank would aim at increasing its capital ratio to a slightly higher value than the regulatory
threshold. Assumptions on this additional buffer are avoided by using the actually observed
capital ratios.

The results for ’11/’14 are shown in Figure 11. The first column of graphs shows direct
defaults and total defaults as a function of a Europe-wide shock in sovereign, corporate and
retail assets. The second column shows the same 2011 network with a capital treatment to match
the 2014 CT1 ratio. The third column shows the actually observed network as of 2014. The idea
of capital regulation is to provide a larger buffer for asset losses before defaults occur. Thus,
we would expect that the networks in column 2 and 3 are more resilient, due to theoretically
and actually increasing capital requirements.

In Figure 11, the top row of figures shows the effects of shocks to sovereign assets. The 2011
network with treated capital appears to be more resilient. Hence, the tipping point, where bank
defaults start to accelerate, moved right on the x-axis. In contrast to this simulated result,
the actual observed network in 2014 appears nearly identical to the original 2011 network.
Furthermore, the network appears slightly less resilient on the short end, when considering
the tipping point. This is not surprising as the 0% risk-weight for European sovereign bonds
provides a strong incentive to shift assets into this class. Thus, the increase in regulatory capital
requirements, among other factors, might have triggered an actual increase in risk from this
transmission channel.

In the second row, shocks to corporate assets are simulated. As expected, the treated
network shows greater resilience. However, despite an actual change in CT1 ratio from 9.22%
to 12.89%, the default profile does not show any noteworthy changes for total defaults. It
appears that the lower defaults from direct exposure are fully compensated by network defaults
through the interbank market.

The results for retail assets in row three are similar. Most notably, the direct defaults from
retail asset losses decrease from 2011 to 2014. However, that reduction is fully compensated
by network defaults. This result is clearly affected by our assumptions on default costs (see
Section 3.2), we address this issue of robustness in Section 5.

On paper, increased capital requirements and hence larger buffers for shock absolution should
yield a more resilient financial network. According to our analysis, the theoretical benefits from
increased capital requirements are higher than the actually observed effects. For all three
considered transmission channels, the simulated networks are more resilient than the network
under the actual capital regulation. The lag of effectiveness in a systemic risk sense is likely
due to the actual implementation of capital regulation.

changes to the dataset between 2014 and 2016 reduce the informative value of combinations that include 2016
data (see Section 3.4 for a detailed description of the data). Results are presented in Appendix A.
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Figure 8: Percentage of defaulting banks in the network as a result of asset shocks s(·) ∈ [0, 0.5]
to CT1 treated and untreated networks. Direct defaults result from the shock itself, total defaults
include additional defaults that are caused by contagion through the interbank network. Top to bottom:
sovereign, corporate, retail asset shocks.
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The finding that a reduction of direct defaults is compensated by network effects is par-
ticularly relevant. In this paper we only focus on one network contagion channel, namely, the
interbank market. Another relevant channel can be identified as fire-sales that are triggered
by banks that de-leverage in order to maintain capital ratios, after an initial asset shock. The
diversified asset portfolios of large banks increase interconnectedness and thus the impact of
fire-sales. Cont and Schaanning (2017) show that this channel exposes banks to assets that are
not necessarily part of their own balance sheet; implying that this assets are not considered by
an individual banks risk management or RWAs. Hence, the network risk in this paper is likely to
be underestimated and the actual effect should be much higher. Together this creates a strong
argument in favour of comprehensive network regulation over individual bank regulation.

5 Robustness

This paper aims at drawing a realistic picture of systemic risk in the European bank network.
Most results are based on comparisons of outputs from models that are created under the same
set of assumptions. This includes in particular assumptions on linkage probabilities and default
costs, as explained in Section 3.2.

To understand the impact of default costs on systemic stability we repeat the network
analysis with default costs of 15% and 45%. The results are shown in figure Figure 9. Contagion
defaults play an important role for shocks in the range of 0% to 30%, afterwards most nodes
would simply default on their direct (non-interbank) asset exposure, see Figure 11. Hence, it is
not surprising that a reduction in default costs leads to a more shock resistant bank network.

This is relevant from a regulatory perspective when considering the previous result that cap-
ital regulation appears to have an impact on direct defaults, which is compensated by network
defaults. Thus, regulatory efforts towards the reduction of bank default costs would help to
create more resilient financial networks.
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Figure 9: Percentage of defaulting banks in the network as a result of asset shocks. Direct defaults result
from the shock itself, total defaults include additional defaults that are caused by contagion through the
network. The default costs are 15% for the first row of graphics and 45% for the second row.

6 Concluding Remarks

We endeavoured into the analysis of systemic risk with the particular aim of measuring the
impact of capital based regulation. This research is based on a data-driven, heterogeneous
network model that represents up to 70% of European bank assets. A Gibbs-sampling method
is used to fill the missing links in the data and provide an accurate yet computationally efficient
representation of the network. This set-up can be adjusted to shed light on several aspects
that affect systemic stability. As presented, we start from a highly granular representation of
the whole network before analysing country level aggregates and finally single banks. Capital
treatments are applied to banks in the system in order to assess the impact of capital regulation.

Our findings suggest that systemic resilience is improving for shocks to retail and corporate
assets, whereas shocks to sovereign assets appear as an increasing thereat. This observation is
likely owed to the preferential treatment of European sovereign assets, which as of 2017 carry
a risk weight of 0%. Some results from the previous literature can be confirmed, this includes
the identification of France, the UK and Germany as the nodes that would generate the largest
contagion impact. Largely due to their size and the number of links to other economies.

After an initial assessment of the European bank network, we applied different treatments
to CT1 capital. The findings from this analysis suggest that the effect of capital regulation on
systemic stability is comparably small. More specifically, we compare a treated network to its
observed counterpart and find that an increasing CT1 ratio does not necessarily yield a large
reduction of systemic risk. The main effect of capital regulation appears to be on direct defaults,
which is almost fully compensated by interbank network defaults. The clear policy implication
is that a strong focus should be on regulatory efforts towards financial networks as a whole.
The literature is in agreement that network structure has a significant impact on systemic risk.
In addition, we find that a reduction of default costs would likely increase the effectiveness of
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capital regulation.
On country level, we find that the impact of contagion is particularly high for central and

southern European countries when ranking the impact relative to GDP. On bank level, we
provide ”first to default” rankings that are based on year and exposure type. Owing to changes
in the sampling methods of EBA, the comparability of single bank rankings over time is limited.
Nevertheless, one finding is that a majority of the top 10 defaulting banks, due to sovereign asset
shocks, are consistently based in Germany. More specifically, German state-owned banks, e.g.
Deka Bank A.G., appear to be heavily exposed to sovereign assets. It is, however, important to
note that for this ranking we applied an even shock to all sovereign assets in the network.

Several aspects of the analysis can be refined. Relaxing the assumption of evenly spread
exposure within a given country would result in a more realistic representation of the network.
The simple capital treatments can be refined to include more details from CRD IV, including
special capital rules for systemically relevant banks, as laid out in Figure 6. Additionally,
there exists a certain degree of freedom around the implementation of capital rules. Some of
this implementation choices could be captured by a modified version of the presented method.
Finally, including additional channels of network risk such as fire-sales or bank runs, would
likely amplify the results that are presented in this paper.
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A Capital Regulation and Systemic Stability cont’d
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Figure 10: Percentage of defaulting banks in the network as a result of asset shocks s(·) ∈ [0, 0.5] to
CT1 treated and untreated networks. Banks in the 2014 treated network are endowed with additional
CT1 capital in order to match the average 2016 CT1 capital ratio of 14.47%. Direct defaults result
from the shock itself, total defaults include additional defaults that are caused by contagion through the
interbank network. Top to bottom: sovereign, corporate, retail asset shocks.
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A.2 2011 vs 2016

S
ov

er
ei

g
n

Actual 2011
0

20
40

60
80

10
0

asset shock in %

pe
rc

en
ta

ge
 o

f d
ef

au
lte

d 
ba

nk
s 

in
 th

e 
ne

tw
or

k

● ● ● ●
● ● ● ●

● ●

● ● ●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

total defaults
direct defaults

0 4 8 12 16 20 24 28 32 36 40 44 48

Treated 2011

0
20

40
60

80
10

0

asset shock in %

pe
rc

en
ta

ge
 o

f d
ef

au
lte

d 
ba

nk
s 

in
 th

e 
ne

tw
or

k

● ● ● ● ● ● ● ●
● ● ● ●

● ●
● ● ●

● ● ● ●
●

●

●

● ●

●

total defaults
direct defaults

0 4 8 12 16 20 24 28 32 36 40 44 48

Actual 2016

0
20

40
60

80
10

0

asset shock in %

pe
rc

en
ta

ge
 o

f d
ef

au
lte

d 
ba

nk
s 

in
 th

e 
ne

tw
or

k

● ●

● ●

● ●

●

●

● ●

● ● ●

●

●

●

●

● ●

● ● ●

● ● ●

●

●

total defaults
direct defaults

0 4 8 12 16 20 24 28 32 36 40 44 48

C
o
rp

o
ra

te

0
20

40
60

80
10

0

asset shock in %

pe
rc

en
ta

ge
 o

f d
ef

au
lte

d 
ba

nk
s 

in
 th

e 
ne

tw
or

k

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

● ● ● ●

●

total defaults
direct defaults

0 4 8 12 16 20 24 28 32 36 40 44 48

0
20

40
60

80
10

0

asset shock in %

pe
rc

en
ta

ge
 o

f d
ef

au
lte

d 
ba

nk
s 

in
 th

e 
ne

tw
or

k

● ● ● ● ● ● ● ● ● ●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

total defaults
direct defaults

0 4 8 12 16 20 24 28 32 36 40 44 48

0
20

40
60

80
10

0

asset shock in %

pe
rc

en
ta

ge
 o

f d
ef

au
lte

d 
ba

nk
s 

in
 th

e 
ne

tw
or

k

● ●

● ●

● ●

●

●

● ●

● ● ●

●

●

●

●

● ●

● ● ●

● ● ●

●

●

total defaults
direct defaults

0 4 8 12 16 20 24 28 32 36 40 44 48

R
et

a
il

0
20

40
60

80
10

0

asset shock in %

pe
rc

en
ta

ge
 o

f d
ef

au
lte

d 
ba

nk
s 

in
 th

e 
ne

tw
or

k

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

● ● ●
● ●

●
●

●

total defaults
direct defaults

0 4 8 12 16 20 24 28 32 36 40 44 48

0
20

40
60

80
10

0

asset shock in %

pe
rc

en
ta

ge
 o

f d
ef

au
lte

d 
ba

nk
s 

in
 th

e 
ne

tw
or

k

● ● ● ●
● ●

●

●
●

●

●

● ●

●

●

●

●

● ●

● ●

●

● ●

●
●

●

total defaults
direct defaults

0 4 8 12 16 20 24 28 32 36 40 44 48

0
20

40
60

80
10

0

asset shock in %

pe
rc

en
ta

ge
 o

f d
ef

au
lte

d 
ba

nk
s 

in
 th

e 
ne

tw
or

k

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ● ●

● ●

● ● ● ●

●

total defaults
direct defaults

0 4 8 12 16 20 24 28 32 36 40 44 48

Figure 11: Percentage of defaulting banks in the network as a result of asset shocks s(·) ∈ [0, 0.5] to
CT1 treated and untreated networks. Banks in the 2011 treaded network are endowed with additional
CT1 capital in order to match the average 2016 CT1 capital ratio of 14.47%. Direct defaults result
from the shock itself, total defaults include additional defaults that are caused by contagion through the
interbank network. Top to bottom: sovereign, corporate, retail asset shocks.
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