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Abstract

Zero Lower Bound (ZLB) and even negative values for the interest rates have been

present in markets since the 2008 �nancial crisis. This situation has caused troubles on

available well-established �nancial theory and tools (as common pricers) leading various

authors to explore suitable term structures suitable for the ZLB setting.

Though having a bond price is highly desirable, from the perspective of position and

risk managements, it is also of paramount importance to have the corresponding parameter

sensitivities. As this aspect does not seem to be covered by the recent literature, then we

aim here to contribute in this direction.

Therefore we �rst derive analytic approximations of the yield-rate level sensitivities,

with respect to the shock a�ecting the underlying shadow rate. This �nding is then used

to provide high order sensitivities of any Zero-Coupon-Bond (ZCB) price. Our results

may be applied to perform the hedging of bond portfolio by a portfolio linked to interest

rates, as is very often required in practice.

Keywords: Bond sensitivities, Zero Lower Bound, shadow rate, Vasicek Model
JEL Classi�cation: G12, G17.
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1 Introduction

1.1 Context and motivation

Zero Lower Bound (ZLB) and even negative values for the interest rates have been present in
markets since the 2008 �nancial crisis. This situation has caused troubles on available well-
established �nancial theory and tools (as common pricers), leading various authors [CR15],
[FFLL15], [FLT16], [Kri15], [ML16], [MPRR15], [Wu13] to explore suitable term structures.
Subsequently, interest rate models and related bond valuation suitable for the ZLB setting
have emerged.

Though having a bond price is highly desirable, from the perspective of position and risk
managements, it is also of paramount importance to have the corresponding parameter sensi-
tivities. As this aspect does not seem to be covered by the recent literature, then we aim here
to contribute in this direction with the intention to provide practical tools.

1.2 Literature and issue

In the classical, moderated and high interest rate regime levels, the bond sensitivities are
�rst caught by the notion of (Fisher) duration and convexity, which underlies a restrictive
assumption of parallel shift of the whole term structure. This is a more-and-less satisfactory
approach if the intention is to manage risk in a conservative way. Duration and convexity,
under the ZLB context, appear to be unsustainable when the interest rate levels are already
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near zero since a down parallel shift, with 10 bps for example, would lead to negative rates for
too many maturities.

On the other hand, taking into account any arbitrary deformation of the curve is useful for
the hedging perspective. The notion of stochastic duration and convexity has not appeared to
provide a fully satisfactory solution to a bond sensitivity parameters and its related hedging
[Wu00]. In contrast with an equity option, where the notion of delta and gamma are uniquely
de�ned and well established, for a coupon-bearing-bond (linked to interest rates with various
time-to-maturities) there are many possible ways to de�ne the notion of sensitivity. It is
common among practitioners to de�ne the sensitivities of a given position (taken individually
or at a portfolio level) as the resulting change value following changes of values of �nancial
instruments or indexes contributing to the curve of interest rates used to value the considered
position. From a theoretical consistency and perspective of portfolio management, it makes
more sense to de�ne the sensitivities directly with respect to the underlying risk(s) factor(s)
governing the whole term structure.

As the deterministic duration and convexity have to be discarded under the ZLB framework,
it remains for us to explore the deformation of the curve of interest rates based on one among
the recent models proposed by the above mentioned authors. This is however challenging as
each yield-rate is in general not analytically known and is at best approximately given by a
highly nonlinear function of the underlying shadow rate.

1.3 Our Conceptual contribution

Our work is based on the ZLB interest rate modeling and bond pricing introduced by Krippner
[Kri15], where the short rate is de�ned by means of an underlying state variable named as
shadow rate. This last is assumed here to be governed by the celebrated one-factor Vasicek
model for short rates, though the Krippner's approach remains to be valid for any Gaussian
model.

First, we have derived analytic approximations of the sensitivities of any yield-rate (with
a given maturity) with respect to the shock a�ecting the underlying shadow rate. Among
motivations on such exploration is that under the ZLB model, the yield-rate appears to be
a nonlinear function of the unobservable shadow rate, which consequently has to be �ltered.
Then these sensitivities allow to better grasp the error e�ect resulting from the yield-rate
�ltering. Moreover, they are also useful in the derivation of sensitivities related to prices or
values of �nancial products linked to interest rates. It should be emphasized that actually we
have obtained high order sensitivities, but not only the restricted �rst and second orders as
for the well-established duration and convexity. As a striking fact here is that the sensitivities
we introduce are devoted to represent the sensitivities of the yield rate at a given horizon
�xed by the user herself. Both the usual delta/gamma for equity options and the classical
duration/convexity for bonds do not incorporate the time-passage in their feature, as it would
be if they are mainly intended for the hedging purpose.

Next, using these yield sensitivities, we are able to provide analytic approximations of high
order sensitivities of any Zero-Coupon-Bond (ZCB) price with respect to the shock a�ecting
the underlying shadow rate at a given time-horizon. We will put the emphasis on the fact that
the ZCB price change during a given period of time has to be approximated by a one-variable
polynomial function having these sensitivities as coe�cients and the Gaussian shock a�ecting
the shadow rate at the considered horizon as the underlying variable. It is also important to
note that no assumption is used related to the size of this shock. This is in contrast with the
common in�nitesimal size implicitly assumed for the interest rate parallel shift related to the
classical duration and convexity.
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ZCBs are of paramount importance as they are involved in various �nancial instruments
linked to interest rates, as Coupon-Bearing-Bond (CBB), Interest Rate Swap (IRS), Cap/Floor,
Swaption . . .. High order sensitivities for the CBB prices are also provided here as a by-product
of our result on yield-rate and ZCB.

Our interest on the derivation of high order sensitivities with respect to the underlying
shadow rate relies on the willing to apply our �nding in the hedging of a portfolio linked to
interest rates by another portfolio also interest rates sensitive. This is indeed the need in prac-
tice, though in the literature very often the analyses are limited to the hedge of one individual
position by another one single or sometime more instruments. Therefore the interplay between
the change of the position to hedge and the change of the hedging instrument, in term of our
introduced high order sensitivities, is considered and formulated in our work at least for the
case of portfolios made by CBBs.

The key point in our derivation of the yield-rate sensitivities relies on a discretization of the
integral form approximation as previously established in [Kri15]. Though the idea is simply on
performing iterative derivations of the resulting suitable function, we are face with technical
and lengthy calculations arising from the fact that this function is compounded by other highly
nonlinear functions of the shadow rate. It should be noted that a direct derivation of ZCB
sensitivities is more challenging than for the yield-rates.

1.4 Our empirical �ndings

In our numerical illustrations, we will show that the sensitivity value appears to be a de-
creasing quantity with respect to the order under consideration. Moreover, for the polynomial
approximation of the yield-rate or zero-coupon price change, the shock power terms are coun-
terbalanced by the factorial term in denominator, so preventing things to explode.

Even our development allows the shock to be of any arbitrary size, it is empirically clear that
the quality of the change approximation (by the polynomial function involving sensitivities)
depends on the order used and shock size. As expected, large shocks should require the need of
high order sensitivities. Depending on the model parameters, we numerically show that shocks
between −3 and 3 would be su�cient to consider when only relative changes of yield-rates
between −20% and 20% are allowed to be happened at the time-horizon.

Though the hedger has a view of moderated shock sizes at the considered horizon, the
requirement of high order sensitivities appears to be useful in connection of the complexity of
the instrument at hand. Precisely it may be empirically observed that portfolio value change
is better approximated by using high order sensitivities, while up to two order ones would be
su�cient for a single ZCB.

Though our sensitivities are built with the intention to have applications on hedging under
moderated shocks, it would be easy to extend our analyses in order to carry stressed situations
characterized by large shocks.

1.5 Outline

Subsection 2.1 is �rst devoted to recall some known notions as the: shadow rate, Zero-coupon
price, instantaneous forward rate and yield-rate. Also main facts related to the one-factor
Vasicek (1-Vas) are recalled in Subsection 2.2. This is very useful as the 1-Vas is the main
reference for our approach either as the underlying shadow rate or for comparison when the
interest rate is in a high regime level. Next the integral expression of the yield-rate, based on
the Krippner's forward approximation is presented in 2.3.
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As the Krippner's approximation only leads to an integral expression of the yield rate,
then with our �rst result in Theorem 1, we provide the discretization of this integral by using
the Gauss-Legendre framework. Therefore from here one has an approximated closed formula
allowing to get the yield-rate. This yield-rate appears to be a smooth function of the shock
a�ecting the shadow rate at the considered time-valuation. It means that the computation of
the sensitivities is mathematically reduced to perform the resulting derivatives. Though this
is conceptually clear and simple, the detail computations appear to be challenging as actually
one has to deal here with a highly nonlinear function of the underlying shock. Therefore we
provide in our Theorem 2 the solution to the approximation of the yield-rate change based on
the sensitivities introduced.

Once the sensitivities related to the yield-rate are obtained, then the next step which
is carried in Subsection 3.4 is about the analogue quantities in the case of the zero-coupon
bond price. A direct computations as performed in the case of yield rates seems not feasible.
Therefore we have chosen in our main third result in Theorem 3 to derive the zero-coupon
bond price sensitivities by exploring the sensitivities for the yield rates and using suitable
truncations.

We apply our main results related to the zero-coupon bond prices in Subsections 3.5 and
3.6 to also derive sensitivities and change approximations for the coupon bearing bond and
related portfolio.

Though our numerical experiments are commented in Section 4, the corresponding Tables
and Plots are postponed in the Appendix part in Section 7.

Limit and further perspectives related to this work are presented in the conclusion part in
Section 5.

2 Background

2.1 Shadow and instantaneous rates

According to Black [Bla95]

It is because currency is an option: when an instrument has a negative short rate,
we can choose currency instead. Thus, we can treat the short rate itself as an
option: we can choose a process that allows negative rates and can simply replace
all the negative rates with zeros. We still have a process with a single number
describing the state of the world: either the short rate (when it is positive or zero)
or what the short rate would be without the currency option (when it is negative).
We can call this number the "shadow short rate�.

Therefore it is now common to de�ne the stochastic process(
ru(·)

)
u≥0

associated with the instantaneous interest rate as

ru(·) ≡ max
{

0;xu(·)
}

(1)

where (
xu(·)

)
u≥0
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is an universal risk-driver which applies for both high-rates and low-rates environments. The
instantaneous rate ru in (1), is constrained to be positive in contrast with the shadow rate xu
which can take any real number value.

As followed in various [CR15], [CR16], [Kri13a], [MPRR15], the key point with (1) is that,
instead of modeling the short rate evolution to be restricted to take only positive values, which
in general leads to complex model, it seems more natural to directly model the shadow rate
by any unrestricted process as the Ornstein Uhlenbeck one for example.

In this paper, we will focus on a shadow rate
(
xt(·)

)
t≥0

governed by the famous one-factor

Vasicek (1-Vas) model whose the dynamic is driven by the Stochastic Di�erential Equation
(SDE)

dxt(·) = κ
(
θ − xt

)
dt+ σdW

(Q)
t (·). (2)

Here the real numbers κ, θ and σ represent respectively a mean reversion factor, a long run
equilibrium and a volatility term. At least κ and σ are nonnegative constants. The dynamic
in (2) is given under some risk neutral probability measure Q assumed to exist.
The dot notation as y(·) is used to emphasize on the uncertainty related to the quantity y. So
dxt(·) is suitable since, when being at the current time t, intuitively this quantity represents
the di�erence xt+4(·)− xt, for some short time-step 4.

Though it is possible to consider more general and valuable models for the shadow rate,
as the G2++ [BM06] and AFDNS's models [Ch-Di-Ru; 2011], we prefer in this paper to stick
on an underlying rates driven by the famous Vasicek model (2). Among the reasons to deal
with this benchmark model, is that it would allow to get easily a �rst insight of the complexity
spanned by the nonlinearity arising with the use of a call-option transform as (1).

For t and τ , with
0 ≤ t and 0 < τ

let us denote by
P(t, t+ τ)

the time-t price of the Zero-Coupon Bond (ZCB) having T = t + τ as a maturity. Said
di�erently, P(t, t + τ) represents the value of one currency unit paid at T as seen from t. By
the fundamental theorem of asset pricing, one has

P(t, t+ τ) ≡ EQ

[
exp

(
−
∫ t+τ

t

ru(·)du
)∣∣∣Ft] (3)

where the expectation is with respect to the risk-neutral probability measure Q and conditioned
by the whole informations Ft available up to time-t.

Though the time-t price of the ZCB with the time-to-maturity τ is theoretically de�ned as
in (3), for the practical point of view it is linked with the yield-rate y(t, t+ τ) according to

P(t, t+ τ) = exp
[
−y(t, t+ τ)τ

]
(4)

or
y(t, t+ τ) = −1

τ
ln
[
P(t, t+ τ)

]
. (5)

Alternatively to dealing with the expectation operator as in (3), the ZCB price is also seen as
closely linked to the instantaneous forward rate f(t, t+ u) according to

P(t, t+ τ) = exp

(
−
∫ t+τ

t

f(t, t+ u)du

)
(6)
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such that

f(t, t+ u) = − ∂

∂τ
ln
[
P(t, t+ τ)

]∣∣∣
τ=u

. (7)

In contrast with the yield-rates with various time-to-maturities which are very often quoted in
market and consequently assumed to be observables, the instantaneous forward rates remain
to be unobservables. However these last are introduced as useful objects to derive, at least
theoretically, the yield rates. Indeed according to (5) and (6), the yield-rate may be obtained
from the forward rate as

y(t, t+ τ) =
1

τ

∫ t+τ

t

f(t, t+ u)du. (8)

In spite of the simplicity of the shadow rate dynamic (2), due to the non-linearity linked
to the instantaneous short rate in (1), the computation of the zero-coupon price P(t, t+ τ) is
challenging. We will come back on this aspect below.

2.2 Zero-coupon price under the 1-Vas model

In order to appreciate and compare our results with classical ones, we recall in this Subsection
known results [Vas77] related to the zero-coupon price under the one-factor Vasicek (1-Vas)
model.

Using the well-known Itô's lemma to the process in (2) one has

xu(·) = exp
[
−κ(u− t)

]
xt + κθb

(
u− t;κ

)
+ σb

1
2

(
u− t; 2κ

)
Zu(·|t) for t < u (9)

where
b
(
u;κ
)
≡
(1

κ

)(
1− exp

[
−κu

])
(10)

and

Zu(·|t) ≡ Zu(·;κ|t) = b−
1
2

(
u− t; 2κ

)
exp
[
−κu

] ∫ u

t

exp
[
κv
]
dW (Q)

v (·). (11)

The random variable Zu(·|t) is conditionally a standard Gaussian such that

EQ

[
Zu(·|t)

∣∣∣Ft] = 0 and VQ

[
Zu(·|t)

∣∣∣Ft] = 1.

Moreover the time-t Vasicek zero-coupon price

P (V as)(t, t+ τ) ≡ EQ

[
exp

(
−
∫ t+τ

t

xu(·)du
)∣∣∣Ft],

based on the (shadow) rate xu, is explicitly given by

P (V as)(t, t+ τ) = exp

[
−b
(
τ ;κ
)
xt −

σ2

4κ
b2
(
τ ;κ
)
−
(
θ − σ2

2κ2

)(
τ − b

(
τ ;κ
))]

. (12)

A �rst main point for the derivation of (12) is that∫ t+τ

t

xu(·)du = b
(
τ ;κ
)
xt + θ

(
τ − b

(
τ ;κ
))

+ σ

∫ t+τ

t

b
(
t+ τ − u;κ

)
dW (Q)

u (·), (13)

which results directly when integrating the expressions in (9). This last identity (13) shows

that
∫ t+τ

t

xu(·)du is a Gaussian random random variable. Then the second point to get (12)

is the well-known property

EQ

[
exp
(
X(·)

)]
= exp

(
EQ

[
X(·)

]
+

1

2
VQ

[
X(·)

])
7



which remains valid for any Gaussian random variable X(·).
Under the 1-Vas, it is well-established that the time-t forward rate with the time-to-maturity

τ is given by

f (V as)(t, t+ u) = exp[−κu]xt + κθb(u;κ)− 1

2
σ2b2(u;κ). (14)

2.3 Zero-coupon price under the Krippner approach

Computation of the zero-coupon price P(t, t+ τ), as de�ned in (3), associated with an instan-
taneous rate rt even driven by an underlying shadow rate xt following the 1-Vas model as in
(2) is challenging.

As mentioned by Krippner [Kri15] and according to the �nancial theory, the bound price
is the solution to the PDE

max{0;xt}P (t, t+ τ) =
∂P

∂τ
(t, t+ τ) + κ

(
θ − xt

)∂P
∂xt

(t, t+ τ) +
1

2
σ2∂

2P

∂x2t
(t, t+ τ) (15)

with the boundary condition P (t, t) = 0. Several approximations can be found in the literature.
Firstly, a Monte-Carlo and/or the control-variate approach has been used by Krippner [Kri13b].
Gorovoi and Linetsky [GL04] proposed an analytic expansion that involves the computation
of special functions. Consequently, this solution may not be used on all numerical softwares.
In [Kri13b] and [Kri15], Krippner has introduced an approximation of the forward rate which,
according to (8), leads to the yield-rate and the ZCB values approximation. His approach
provides a formula for the Zero Lower Bound instantaneous forward rate that applies to any
Gaussian model but not only for the 1-Vas model.

Our derivation of the bond sensitivities relies on this mentioned result by Krippner (2013).
As highlighted by Christensen and Rudebusch (2015), this Krippner (2013) framework should
be viewed as not fully internally consistent and should be considered as simply an approxima-
tion to an arbitrage-free model. Of course, away from the ZLB with a negligible call option,
the model will match the standard arbitrage-free term structure representation. It means that
the tractability bene�t with the Krippner's approach fully justi�ed our willing to stick with
this Krippner result which can be stated as follows.

Proposition 1 (Krippner)
Let us assume the shadow-rate to follow the 1-Vas model. Then the time-t yield rate for

the time-to-maturity τ is (approximately) given by

y(t, t+ τ) ≈ y(t, t+ τ) ≡ 1

τ

∫ τ

0

G
(
u;xt; Θ

)
du, τ > 0 (16)

where

G
(
u;xt; Θ

)
= F

(
u;xt; Θ

)
Φ

(
F
(
u;xt; Θ

)
V(u; Θ)

)
+ V(u; Θ)ϕ

(
F
(
u;xt; Θ

)
V(u; Θ)

)
(17)

F
(
u;xt; Θ

)
= exp

[
−κu

]
xt + κθb

(
u;κ
)
− 1

2
σ2b2

(
u;κ
)

(18)

V(u; Θ) = σb
1
2

(
u; 2κ

)
(19)

and
Θ = (κ, θ, σ) (20)

Here Φ and ϕ are used to denote the CDF and PDF of the standard normal Gaussian random
variable.
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For convenience in the sequel we will always deal with the approximated yield rate y(t, t+τ)
rather than with the (unattainable) exact value y(t, t+ τ).

The main key in the derivation (16) relies on the above mentioned Krippner's approximation
for the instantaneous forward rate which, in the particular case of an underlying shadow rate
xt following the 1-Vas model, takes the form

f(t, t+ u) ≈ f (V as)(t, t+ u) + ψ(t, t+ u) (21)

where

ψ(t, t+ u) = −f (V as)(t, t+ u)

+f (V as)(t, t+ u)Φ

(
f (V as)(t, t+ u)

σb
1
2

(
u; 2κ

) )+ σb
1
2

(
u; 2κ

)
ϕ

(
f (V as)(t, t+ u)

σb
1
2

(
u; 2κ

) ). (22)

When inserting this value of f(t, t+u) inside (8) then the approximation (16) arises immediately.
With (16), it appears that the time-t yield for the maturity τ is given by a term integral

involving a highly nonlinear function such that there is no hope that it can be explicitly calcu-
lated. Therefore to derive numerical result, we propose here the use of the Legendre quadrature
approach.

3 Main results

3.1 Closed form approximation for the yield-rate

Instead of considering a yield rate for a �xed time-to-maturity, in practical applications, there
is the need to consider a whole yield-curve made by increasing maturities. In any case, the
integrals (16) for various maturities leads to redundant part calculations so it is a good idea
to try to optimize the approach by considering once a time main terms and then to derive the
willing quantities from these previous terms.

Our �rst result is devoted to the derivation of the whole interest rate curve based on the
discretization of the expression integral stated in (16).

Theorem 1 Let τ be a nonnegative time-to-maturity such that

0 ≡ τ0 < τ1 < . . . < τk < . . . < τ ≡ τm

for some nonnegative integer m. Let us assume the shadow-rate to follow the 1-VM. Then the
time-t yield for the maturity τ is approximately given by

y(t, t+ τ) =
1

τ

m∑
k=1

I∑
i=1

θkG
(
ui,k;xt; Θ

)
wi (23)

where

θk ≡
1

2

(
τk − τk−1

)
(24)

and
ui,k ≡ θk

(
1 + ai

)
+ τk−1. (25)

The yield-rate expression (23) implicitly involves the use of the abscissas
(
ai
)
i∈{1,...,I} and

weights
(
wi
)
i∈{1,...,I} associated to a setting of Legendre Gaussian quadrature integration as-

sumed to be chosen in advance.
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In practical implementation, when focusing on some standard maturities (as for examples, 3
months, 9 months, 1 years and so on) it may be assumed that (τk − τk−1) ≤ 1.

Our result in Theorem 1 is written with the intention to compute the curve of interest rates

y(t, t+ τ1), . . . ,y(t, t+ τm), . . . ,y(t, t+ τM) (26)

such that for each m ∈ {1, . . . ,M} ones has

Y(t, t+ τm) ≡ y(t, t+ τm)τm =
m∑
k=1

θk

( I∑
i=1

G
(
ui,k;xt

)
wi

)
(27)

To derive the yield curve in (26), the implementation may start by the computation of the
I ×M -dimensional matrix made by the(

ui,m

)
i∈{1,...,I};m∈{1,...,M}

(28)

which allows to get the matrix (
G
(
ui,m;xt

))
i∈{1,...,I};m∈{1,...,M}

. (29)

3.2 The yield-rate at a future horizon

Our purpose in this Subsection is to motivate to what extend we can focus on some levels of
the Gaussian shocks in the sequel when considering the sensitivities.

As already mentioned in (9), under the 1-Vas model it is well-known that the shadow-rate
at any horizon t, with 0 < t, is given by

xt(·) = exp
[
−κt

]
x0 + κθb

(
t;κ
)

+ σb
1
2

(
t; 2κ

)
εt(·) (30)

where εt(·) is the standard Gaussian normal random variable. The shadow rate xt is not an
observed variable. Very often it is common to take as a proxy for it the available yield-rate
with the shortest time-to-maturity. It implies that a view on the shortest yield-rate evolution
may roughly considered as a view on the unobserved short rate. Then a translation in term of
shock is possible. Indeed, when using 30, the shock at a future horizon t corresponding to the
state relative realization

ρt(·) =
xt(·)− x0

x0

is given by

εt(·) =
1

σb
1
2

(
t; 2κ

)(ρt(·)x0 − κb(t;κ)(θ − x0)). (31)

To better grasp the meaning of this last relation and calibrate the domain of the shock ε
let us consider four di�erent cases for the 1-Vas model parameters

• Case 1 : US IR obtained from 1952 to 2004 ontained by using 3 months maturity such
that

x0 = 2.5%, κ = 18.171718%, θ = 5.215587%, σ = 1.7599183%
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• Case 2 : EUR IR obtained from 1999 to 2007 obtained by using 3 months period daily
Euro Interbank O�ered Rate such that

x0 = 2.5%, κ = 5.0692963%, θ = 4.7513%, σ = 0.3891468%

• Case 3 : US IR from Federal Resrve Bank at 31/12/2013 such that

x0 = 2.5%, κ = 13.2103%, θ = 6.8720%, σ = 2.3520%

• Case 4 : EUR IR from ECB at 31/12/2013 such that

x0 = 0.0001%, κ = 16.8991%, θ = 4.1046%, σ = 1.2546%

.

Note that the case 1 and case 2 correspond to the situation before the 2007 �ncancial crisis
and thus do not correspond to lower interest rates. The lasts ones correspond to low regime
rates, in this paper we are working with the third case.

We are interested in the study of the function which associate the shock ε to the state
relative variation given by

ε 7→ rt(.)− r0
r0

= v

where rt(.) is the instantaneous interest rate which can be approximate by

rt = max{0, xt(.)} ≈ y(t, t+ τ ∗)

with τ ∗ = 6 months.
Then, we can rewrite v such that

v =
y(t, t+ τ ∗)− y(t0, t0 + τ ∗)

y(t0, t0 + τ ∗)

with

y(t, t+ τ ∗) =
1

τ ∗

m∑
k=1

I∑
i=1

θkG
(
ui,k; exp

[
−κt

]
x0 + κθb

(
t;κ
)

+ σb
1
2

(
t; 2κ

)
εt(·); Θ

)
wi

We can now plot the function h : ε 7→ v for the four di�erent cases presented above, which
give us the following graphic

11



First, one can notice the function h is always bijective(regardless of the paremeters choosen)
which allows us to have the domain of the shock given the level of the state variation. We
choose to consider a state variation v between −20% and 20% which corresponds to what ob-
serves a practitionner in practice. Since the function is bijective, when taking v ∈ (−0.2, 0.2),
for the third case, the corresponding shock ε is in (−1.5, 1.5). If we consider the �rst case then
the boundaries −0.2 and 0.2 for v are not reach for a shock in (−3.5, 3.5). In the two other
cases, the shock once again remains in (−1.5, 1.5).

When considering yield-rates at a future horizon t, according to (16) and (30), it would be
useful to consider the value of G

(
u;xt(·); Θ

)
as depending on some shock εt(·). In other term,

we have to analyze the mapping

εt(·) 7−→ G
(
u;xt(·); Θ

)
.

3.3 Yield-rate sensitivities and its approximation change

In this section we assume to be at the present time 0 where the exact (or approximated)
yield-curve (

y(0, 0 + τm)
)
m∈{1,...,M}

12



is supposed to be available. Recall that by y(0, 0 + τm) we mean the time-0 yield rate with τm
as a time-to-maturity. Let us consider a future horizon t, with

0 < t.

We are interested on the yield-curve values at this time horizon. Precisely our focus is on all
changes

y(t, t+ τm)(·)− y(0, 0 + τm). (32)

The dot notation is used to recall that actually y(t, t+ τm) is a random quantity when viewed
from the present time 0.

According to our result in Theorem 1 and especially the analysis in equation (23), the
yield-rate y(t, t+ τm)(·) appears to be an explicit function of the Gaussian shock εt(·) arising
at the future time horizon. Actually this is a highly nonlinear function.

Our main achievement in this Subsection part is to build a one-variable polynomial approx-
imation of the interest rate change, corresponding to any time-to-maturity τm. The underlying
variable is named as shock. And the (constant) coe�cients of such a polynomial function are
refereed here to as the sensitivities of the considered yield-rate, with respect to a shock a�ecting
the shadow rate. Consistently with the intuition and practical observation, these sensitivities
highly depend on the time-horizon under consideration.

Under a view on the yield-rate with the shortest maturity, the polynomial approxima-
tion found below provides a quick look at the yield-curve at the future-time-horizon without
performing a full calculation. But the main key application of our approximation is on the
derivation of sensitivity prices for a zero-coupon. These last are useful either for a purpose of
risk measurement or a position hedging.

In order to achieve this purpose lets see how G can be written as a polynomial function of the
one variable ε. Recall that the expression of G(ui,m, xt,Θ) is given by

G
(
ui,m;xt; Θ

)
= F

(
ui,m;xt; Θ

)
Φ

(
F
(
ui,m;xt; Θ

)
V(ui,m; Θ)

)
+ V(ui,m; Θ)ϕ

(
F
(
ui,m;xt; Θ

)
V(ui,m; Θ)

)
. (33)

The ui,m's are given as in (25) of Theorem 1 in terms of the abscissas
(
ai
)
i∈{1,...,I} and weights(

wi
)
i∈{1,...,I}'s associated with the setting of Legendre Gaussian quadrature integration.

Now we set

F
(
ui,m;xt; Θ

)
= α(ui,m)xt + β(ui,m) and

F
(
ui,m;xt; Θ

)
V(ui,m; Θ)

= α∗(ui,m)xt + β∗(ui,m)

where

α(ui,m) = exp(−κui,m), α∗(ui,m) =
α(ui,m)

V(ui,m; Θ)
,

β(ui,m) = κθb(ui,m, κ)− 1

2
σ2b2(ui,m, κ), β∗(ui,m) =

α(ui,m)

V(ui,m; Θ)
.

By applying the change of variable see in (30) and by momentarily ignoring some variable
dependencies, then the expression in (33) can be simply written as

G
(
ui,m;xt; Θ

)
= g
(
ε, λi,m, νi,m, λ

∗
i,m, ν

∗
i,m

)
=
(
λi,mε+ νi,m

)
Φ
(
λ∗i,mε+ ν∗i,m

)
+ vi,mϕ

(
λ∗i,mε+ ν∗i,m

)
(34)
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where

λi,m = Λi,m(t, ui,m,Θ) ≡ σb
1
2 (t, 2κ)α(ui,m),

νi,m = Ψi,m(t, ui,m,Θ) ≡ α(ui,m)
(

exp−κt x0 + κθb(t, κ)
)

+ β(ui,m),

λ∗i,m = Λ∗i,m(t, ui,m,Θ) ≡ λi,m
V(ui,m; Θ)

, and ν∗i,m = Ψ∗i,m(t, ui,m,Θ) ≡ νi,m
V(ui,m; Θ)

.

For i ∈ {1, . . . , I} and m ∈ {1, . . . ,M} we de�ne the one-variable function

ε 7→ gi,m(ε) = g(ε, λi,m, νi,m, λ
∗
i,m, ν

∗
i,m). (35)

In order to get our polynomial approximation we need to have the derivatives of g, up to
an order N , and valued at ε = 0. These are de�ned by

gi,m(0) ≡ g
(
0;λi,m, νi,m, λ

∗
i,m, ν

∗
i,m

)
= νi,mΦ

(
ν∗i,m

)
+ vi,mϕ

(
ν∗i,m

)
(36)

g
(1)
i,m(0) ≡ g(1)

(
0;λi,m, νi,m, λ

∗
i,m, ν

∗
i,m

)
= λi,mΦ

(
ν∗i,m

)
+
(
λ∗i,mνi,m + a∗i,m(0, 1)vi,m

)
ϕ
(
ν∗i,m

)
(37)

g
(2)
i,m(0) ≡ g(2)

(
0;λi,m, νi,m, λ

∗
i,m, ν

∗
i,m

)
=
(
bi,m(0; 2) + a∗i,m(0; 2)vi,m

)
ϕ(ν∗i,m) (38)

and for 3 ≤ n ≤ N

g
(n)
i,m(0) ≡ g(n)

(
0;λi,m, νi,m, λ

∗
i,m, ν

∗
i,m

)
=
(
bi,m(0;n) + a∗i,m(0;n)vi,m

)
ϕ(ν∗i,m). (39)

where coe�cients a∗i,m(k, n) and bi,m(k, n) are recursively obtained and displayed in the ap-
pendix.

We are now ready to state our second main result, related to the yield-rate and its approx-
imation in term of related sensitivities.

Theorem 2 Assume that at the time-horizon t the underlying short rate is impacted by some
shock εt(·). Under the Krippner model Kr-1-Vas, the yield-rate change, with the time-to-
maturity τm, at this time-horizon t is given by the following N -th order level approximation

y(t, t+ τm)
∣∣∣
εt(·)
−y(0, 0 + τm) ≈sens_yield(0)(0, t, τm)

+
N∑
n=1

1

n!
sens_yield(n)(0, t, τm)εnt (·) (40)
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where N is a nonnegative integer and

sens_yield(0)(0, t, τm) ≡ τ−1m

( I∑
i=1

[ m∑
k=1

θkgi,k(0)

]
wi

)
− y(0, 0 + τm) (41)

and for 1 ≤ n ≤ N,

sens_yield(n)(0, t, τm) ≡ τ−1m

I∑
i=1

[ m∑
k=1

θkg
(n)
i,k (0)

]
wi. (42)

It should be emphasized that by

sens_yield(n)(0, t, τm)

we mean the n-th order sensitivity of the yield-rate level with the time-to-maturity τm which
prevails at the time-horizon t as viewed from the present time 0. This inclusion of the time-
passage in the sensitivity is a main feature which distinguishes our present investigation from
common sensitivities used and introduced the literature as the duration and convexity param-
eters

As can be seen in (40) we will content just to state an approximation of the yield-change
without specifying more the size of the resulting error

error_N(t, τm)(·) ≡ y(t, t+ τm)(·)− y(0, 0 + τ)

−
(
sens_yield(0)(0, t, τm) +

N∑
n=1

1

n!
sens_yield(n)(0, t, τm)εnt (·)

)
(43)

though it is possible to do so, as a function of the size shock. The full explicit value is the-
oretically interesting but, as the resulting function is highly nonlinear and complex, from the
practical point of view we think that it is enough to empirically analyze sample error approx-
imation distributions corresponding to the shocks covering a range of plausible state variable
relative changes. Nethertheless, our approximation is exact for the shock ε = 0

3.4 Sensitivities and approximation of the zero-coupon bond price

In many situations (as those which arise when dealing with coupon bearing bonds or interest
swaps) one has to deal with the curve of Zero-Coupon Bond (ZCB) prices represented by

P (0, T1), . . . , P (0, Tm), . . . , P (0, TM)

for some nonnegative integer M and where the maturities are supposed to be increasing in the
sense that

0 < T1 < . . . < Tm < . . . < TM .

Recall that each P (0, Tm) is de�ned as

P (0, Tm) = exp
[
−y(0, Tm)Tm

]
.

Let us consider a future horizon t before the next �rst coupon, that is

0 < t < T1
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At the time-horizon t we are face with dealing the curve

P (t, T1)(·), . . . , P (t, Tm)(·), . . . , P (t, TM)(·)

which is of course unknown when viewed from the present time 0. Actually the issue is on
analyzing each m-th zero-coupon price change

P (t, Tm)(·)− P (0, Tm)

which, by setting
τm ≡ Tm − t

is nothing else than
P (t, t+ τm)(·)− P (0, t+ τm). (44)

As the zero-coupon price P (t, t+ τm)(·) is associated with the yield-rate y(t, t+ τm)(·) then
it appears that we may bene�t from our analysis performed in (40). In any case, the ZCB price
change (44) depends on the shock εt(·) which arises at the future-horizon t. This dependence
is given by a highly nonlinear function and consequently, as in the case of the yield-rate,
we are interested on deriving a one-variable polynomial approximation. The variable is the
underlying shock and the coe�cients of such polynomial function are referred to as the ZCB
price sensitivities. By sensitivity here, we mean the price change result with respect to one-unit
shock a�ecting the underlying shadow rate. The point here is that the ZCB price sensitivities
are de�ned by means of the yield-rate sensitivities introduced in the previous Subsection 3.1.

To de�ne our ZCB price sensitivities let us set the following short notations:

Y0 ≡ sens_yield(0)(0, t, τm) + y(0, 0 + τm),

Yn ≡ sens_yield(n)(0, t, τm) for 1 ≤ n ≤ N.

Then the price sensitivities of the ZCB, with the maturity t+ τm, at the future-time-horizon t
and as viewed from the present time 0 are de�ned by

sens_ZC(0)(0, t, τm) ≡ exp
[
−Y0τm

]
− P (0, t+ τm) (45)

sens_ZC(n)(0, t, τm) ≡
{
Qn(0)

}
exp
[
−Y0τm

]
, for 1 ≤ n ≤ N. (46)

The identity (46) makes use of the valuation at 0 of the N -th order polynomial function

Qn(ε) =
N∑
k=0

γk,nε
k, for 1 ≤ n ≤ N. (47)

The integer N , assumed to be su�ciently large, arises from the technical consideration that
actually we derive the ZCB price sensitivities by making use of level sensitivities for the yield-
rates. The coe�cients (γk,n)n 's involved in the polynomial function Qn is recursively de�ned
as follows

γk,1 = (k + 1)ak+1 0 ≤ k ≤ N − 1, ak = − 1

k!
Ykτm

γN,1 = 0

and for 2 ≤ n ≤ N one has

γk,n = (k + 1)γk+1,n−1 + βk,n for 0 ≤ k ≤ N − 1

γN,n = βN,n
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where

βk,n =
k∑
j=1

γj,1γk−j,n−1.

The expected approximation for the ZCB price change (44), which is our third main result,
can be now stated.

Theorem 3 Assume that at the time-horizon t the underlying short rate is impacted by some
shock εt(·). Under the Kr-1-Vas model, the price change, of the ZCB with the maturity Tm,
may be approximated by the following N-th order polynomial function

P (t, t+ τm)
∣∣∣
εt(·)
−P (0, t+ τm) ≈

sens_ZC(0)(0, t, τm) +
N∑
n=1

1

n!
sens_ZC(n)(0, t, τm)εnt (·) (48)

where n is and nonnegative integer not too large in the sense that 1 ≤ n ≤ N . Here N is
a nonnegative integer for which the remainder order N approximation for the yield rate is
considered as small enough.

From the implementation perspective, either for the yield-rates curve or for the zero-coupon
prices curve, we have to consider the matrices(

sens_yield(n)(0, t, τm)
)
m∈{1,...,M}; n∈{0,...,N}

and (
sens_ZC(n)(0, t, τm)

)
m∈{1,...,M}; n∈{0,...,N}

.

To have an idea of how our approximation is close enough to the real zero-coupon price change,
we plot, for some shocks in (−2, 2), the zero-coupon price curve obtained with our approxi-
mation and the one with the exact zero-coupon price. Various numerical illustrations both for
the ZCB sensitivities and the related approximation are presented in section (7).

For the followings graphs, the 1-Vas parameters are

x0 = 2.5%, κ = 18.171718%, θ = 5.215587%, σ = 1.7599183%

. The ZC price change are given in basis point, the black line correspond to the real ZC price
change and the dot red line is the ZC price change obtained with our approximation.
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Figure 1: ε = −1.5

When the shock is negative, here ε = −1.5, this result in a gain, which grows with the
maturity.

Figure 2: ε = 0
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When there is no shock, the owner of the ZCB lost money on his position due to time
passing.

Figure 3: ε = 1.5

A positive shock leads to a loss on the position which grows with the maturity.
The gain and the loss on a position are symetric for a symetric shock for a �xed maturity,

in either case, the lost, respectively the gain, increase when the maturity grows. The situation
where there is no shock also leads to a loss due the time passage.

3.5 Sensitivities and approximation of a Coupon-Bearing-Bond price

A Coupon-Bearing-Bond (CBB) is a debt security such that the issuer owes to the holders a
debt and, depending on the terms of the considered bond, is obliged to pay interest ( often
named a coupon ) and/or repay the principal at a later date, termed as maturity. In this work
we consider vanilla bonds and assume that the issuer cannot default until the maturity. A CBB
can be viewed as a series of ZCBs, each with a di�erent maturity date. Among characteritics
of a given CBB is its face value (usually 100 or 1000) and the coupon-rate, as for example 0.1%
which is low under the ZLB environment.

For convenience we set

f ≡ face value and c ≡ coupon-rate.

and, as in the previous section, consider increasing times as

0 < t < T1 < · · · < Tm < · · · < TM . (49)

Here t is a future time-horizon before the payment date T1 of the �rst coupon. The Tm's should
be seen as the CBB times coupon payment, such that TM is the maturity.
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Usually, the time-t price of the considered CBB price is given by

Price_CBBt =
M∑
m=1

Cm × P (t, Tm)

=
M∑
m=1

Cm × P (t, t+ τm) for τm = Tm − t (50)

where

C1 = f × c× (T1 − t)
Cm = f × c× (Tm − Tm−1) for 2 ≤ m ≤ (M − 1)

CM = f ×
(

1 + c× (TM − TM−1)
)
.

The CBB price change under the Kr-1-Vas depends on a nonlinear fashion on the shock
εt(·) arising at the future horizon t. As a linear combination of ZCBs prices, the CBB price
is a highly nonlinear function of the shock. The approximation performed in the previous
subsection 3.4 for the ZCB price change allows us to approximate the CBB price change. This
is done by introducing the CBB sensitivities according to

sens_CBB(p)
(
0, t, TM

)
=

M∑
m=1

Cm × sens_ZC(p)(0, t, τm) (51)

with TM ≡
(
τ1, . . . , τm, . . . , τM ; f, c

)
where the sens_ZC(n)(0, t, τm)'s are de�ned from (45)

and (46). Identity (51) holds for all positive integers n, and means that the CBB sensitivities
are given in term of sensitivities for the ZCBs.

Now the result for the CBB change and its price approximation may be stated.

Proposition 2 Assume that at the time-horizon t the underlying short rate is impacted by
some shock εt(·). Under the Kr-1-Vas, the change of the CBB price is given by the following
approximation

Price_CBBt(·)−Price_CBB0 ≈
n∑
p=0

1

p!
sens_CBB(p)(0, t)εpt (·). (52)

To derive the CBB price sensivities we have used the sensivities for the ZCB prices, which
themselves have been obtained from the yields sensivities. Therefore the CBB sensivities
appear to be an approximation derived from various approximation, necessarily leading to a
lost of precision. We think that increasing the order of the sensivities contributes to improve
the sensitivities essentially if one has a hedging strategy as a target.

3.6 Portfolio of Coupon-Bearing-Bonds

Let us denote by Bt the present time-t value of a portfolio made by CBBs in long or short
positions. We assume there are I types of CBBs Bi in long position and I∗ types of CBBs B∗i∗
in short position inside our portfolio.
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In the following, we considered a portfolio made of ni CBBs of type i each worth Bt,i and ni∗
CBBs of type i∗ worth B∗t,i∗ . Then the time-t value of this portfolio can be written as

Bt =
I∑
i=1

niBt,i −
I∗∑
i∗=1

ni∗B
∗
t,i∗ (53)

Coupons of the CBB B,i, with the maturity TMi
, face value fi and a coupon rate ci are paid

at increasing times
T (i) = (T1(i), . . . , TMi

(i)).

Similarly coupons of the CBB B∗,i∗ with the maturity TMi∗ , face value fi∗ and a coupon rate
ci∗ are paid at increasing times

T ∗(i∗) = (T ∗1 (i∗), . . . , T ∗Mi∗
(i∗))

In this paper we consider that no coupons has been paid before the time-horizon t at which
the portfolio manager has a view about a possible market movement. So it is assumed that

0 < t < min{T1(i), . . . , TMi
(i), T ∗1 (i∗), . . . , T ∗Mi∗

(i∗)}

Here we want to analyze the portfolio change value

change_port_CBB0,t(·) = Bt(·)− B0

=
I∑
i=1

ni

(
Bt,i(·)−B0,i

)
−

I∗∑
i∗=1

ni∗
(
B∗t,i(·)−B∗0,i∗

)
(54)

Since the portfolio CBB change is a linear combination of the CBBs change Bt,i(·)− B0,i and
B∗t,i(·)−B∗0,i, then the sensitivities related to the portfolio would result from the expression in
(51).

To get the approximation of the portfolio change value, there is the need to introduce the
following short notations:

sens_CBBi
(n)(0, t, Ti) with Ti =

(
T (i), fi, ci

)
= fici × sens_ZC(n)(0, t, τ1(i))

+

Mi−1∑
j=2

fici × sens_ZC(n)(0, t, τj(i))

+ fi ∗
(

1 + ci ∗ τMi
(i)
)
× sens_ZC(n)(0, t, τMi

(i))

sens_CBB∗i∗
(n)(0, t, T ∗i∗) with T ∗i∗ =

(
T ∗(i∗), f ∗i∗ , c∗i∗

)
= fi∗ci∗ × sens_ZC(n)(0, t, τ ∗1 (i∗))

+

Mi∗−1∑
j=2

fi∗ci∗ × sens_ZC(n)(0, t, τ ∗j (i∗))

+ fi∗
(

1 + ci∗τ
∗
Mi∗

(i)
)
× sens_ZC(n)(0, t, τ ∗Mi∗

(i∗))

Change_Bi

(
n, ε(·)

)
≡

n∑
p=1

1

p!
sens_CBBi

(p)(0, t)εpt (·)
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Change_B∗i∗
(
n, ε(·)

)
≡

n∑
p=1

1

p!
sens_CBB∗i∗

(p)(0, t)εpt (·).

Using all of these notations, we can now state the following result.

Proposition 3 Assume that at the time-horizon t the underlying short rate is impacted by
some shock εt(·). Under the Kr-1-Vas model, at the order n, the portfolio change value may be
approximated as

change_port_CBB0,t(·) ≈
I∑
i=1

ni ×Change_Bi

(
n, ε(·)

)
−

I∗∑
i∗=1

ni∗ ×Change_B∗i∗
(
n, ε(·)

)
. (55)

4 Numerical experiments

4.1 Zero-coupon price

In the sequel for the considered calibration situation, the illustrations are just limited to a short
horizon t = 10 days. We are interested to derive numerical values of errors approximations. For
all tables (1) to (9), in the �rst column is given some possible values of the shock ε that belong
in (−2, 2). The exact zero-coupon price change, withrespect to the given shock is displayed in
the second column in basis point. It is obtained by computing P (t, t+τm)()̇−P (0, 0+τm). The
zeroth to the �fth approximations for the ZC price change, as described in equations (48), are
presented in the third column to the eight columns. The corresponding errors approximations
are displayed in the appendix part in tables below in basis point. They represent the di�erence
between the exact value and approximation from order 0 to 5.

It may be observed from these tables that the error is exactly equal to zero when there is
no shock which means our approximation is exact for ε = 0.

Another main point is that the error decrease with the order of the approximation as showed
in �gures (4), (6),(8), (10), (12), (14), (16), (18), (20) where are ploted errors in basis point
between the exact value and the approximation given the order.
These graphics also show us that is not necessary to go beyond the �fth order where all the
errors reach an asymptote. We can explained that by the fact the nth term in our approximation
is divided by a factorial n which tends to zero when the order grows. Then it becomes not
relevant to take into account order larger than 5 since it will change our approximation less
than 1.10−3 basis point our error.

As expected, when the shock moves away from zero our approximations are less e�cient
which is easily explained by the fact we have made a Taylor-Lagrange approximation.
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In most of work the regression is generaly used since it also gives the sensitivities to any order
with no any further computation. To compare the two methods we have ploted in �gures (5),
(7), (9),(11), (13), (15), (17), (19), (21) the errors obtained with our 5th order approximation
(the green line) and the regression (the blue line). As one can notice, our approximation is way
better especially for shocks away from 0. Our results show that our sensitivities give precise
bond change approximations when compare to regression approach based only on data. It
seems that the pain granted to our approach pays on accuracy.

4.2 CBB

As for the zero coupon price the illustrations are just limited to a short horizon t = 15 days
and a CBB with a 100 dollar face value and a coupon rate of 0.1%. For table (??), in the �rst
column is given some possible values of the shock. The exact CBB value change is displayed in
the second column. Columns 3 to 8 reprensents the approximation of the CBB chnage value
from order 0 to 5. The table below give the corresponding error in basis point.
With the shock ε = 1.5 the error approximation for the �rst order is 7.41̇0−3 which represent
0.0074% of the CBB face value. If instead of consediring just one CBB we deal with a position
of 10 millions of such a CBB, then the error approximations becomes 74000. A loss with this
magnitude size may be unacceptable for the hedger point of view. It means that limiting to the
�rst order approximation should not be su�cient in prcatice. This is the reason why we also
introduce and consider high order approximations. For example with the same shock ε = 1.5
but considering the �fth order approximation we get an error of 1.61̇0−3. It means that when
considering a position of 10 millions of such a bond the error approximation is just reduced to
16000. Of course an amount loss with such a magnitude size is negligible for the hedger point
of view.

5 Conclusion

1. Our derivation of the bond sensitivities relies on an approximation of the instantaneous
forward as found by Krippner (2013) which, as highlighted by Christensen and Rudebusch
(2015), should be viewed as not fully internally consistent and should be considered as
simply an approximation to an arbitrage-free model. However the tractability bene�t
fully justi�es our willing to base our �ndings with this Krippner's result. By the way,
it would be interesting to better analyze the sensitivities inaccuracies spanned by our
approach, when compared to results coming from Monte-Carlo simulations and Least-
Square-Regressions.

2. We have obtained here global sensitivities in the sense that they have to apply without
any restriction on the size of shocks a�ecting the underlying shadow rate. Some of
our numerical experiments show that the resulting error approximations become high
for shocks with large magnitudes. Careful inspection in our approach show that local
results may actually be easily derived. This is particularly useful when one wishes to
deal with extreme or stressed situations. The local sensitivities would provide better
approximations than the direct ones we present in this paper.

3. When compared to regression the approximation we have performed for the zero coupon
price change is way smaller in terms of error no matter the chosen shock or maturity.
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4. Though the present work is only focused on the restrictive case, dealing with an un-
derlying shadow rate driven by the one-factor Vasicek model (1-Vas), our results would
highlight and provide a benchmark for further extensions, as the 1-Vas itself played with
respect to classical term structure models. As seen here, derivation of sensitivities based
on a shadow rate driven by a multi-dimension dynamic model would lead to technical
complications.

5. Before investigating this high-dimensional situation, we think it is �rst useful to explore
the sensitivities of related nonlinear interest rate products, as caps/�oors.

6. In this paper, the model is already assumed to calibrated and our main focus is only
on the derivation of the sensitivities with respect to the shock linked to the unobserved
underlying shadow rate. The results obtained here may help to appreciate the stability
of the model parameter used in the pricing for example.

7. Even for the time being negative yield-rates are present in markets and people expect
gradual increase of the rates for the coming months, the studies of features related to the
ZLB, as we have performed here, still deserve interest as they shed light on the alternative
treatment toward to issues related to credit spreads, survival probabilities and volatilities,
for which the associated processes are restricted to have nonnegative values.
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7 Appendix

7.1 Dé�nition of the a∗i,m and bi,m

We denote
a∗i,m(0, n) = a

(
0, n;λi,m, νi,m, λ

∗
i,mν

∗
i,m

)
We set for n = 1

a∗i,m(0, 1) ≡ −λ∗i,mν∗i,m, a∗i,m(1, 1) ≡ −(λ∗i,m)2

and for n = 2
a∗i,m(0; 2) ≡ a∗i,m(0; 1)2 + a∗i,m(1; 1),

a∗i,m(1; 2) ≡ 2a∗i,m(0; 1)a∗i,m(1; 1),

a∗i,m(2; 2) ≡ a∗i,m(1; 1)2

then for n ≥ 3, one has

a∗i,m(0, n) = a∗i,m(0, 1)a∗i,m(0, n− 1) + a∗i,m(1, n− 1)

a∗i,m(n− 1, n) = a∗i,m(0, 1)a∗i,m(n− 1, n− 1) + a∗i,m(1, 1)a∗i,m(n− 2, n− 1)

a∗i,m(n, n) = a∗i,m(1, 1)a∗i,m(n− 1, n− 1)

For 1 ≤ k ≤ n− 2,

a∗i,m(k, n) = a∗i,m(0, 1)a∗i,m(k, n− 1) + a∗i,m(1, 1)a∗i,m(k − 1, n− 1) + (k + 1)a∗i,m(k + 1, n− 1).
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The bi,m's are similarly de�ned by

bi,m(0, n) = b
(
0, n;λi,m, νi,m, λ

∗
i,m, ν

∗
i,m

)
.

bi,m(0, 2) ≡ λ∗i,m

(
2λi,m + νa∗i,m(0; 1)

)
,

bi,m(1, 2) ≡ λ∗i,m

(
νa∗i,m

(
1; 1
)

+ λi,ma
∗
i,m

(
0; 1
))

bi,m(2, 2) ≡ λ∗i,mλi,ma
∗
i,m

(
1; 1
)

for n ≥ 3, one has

bi,m(0, n) = a∗i,m(0, 1)bi,m(0, n− 1) + bi,m(1, n− 1)

bi,m(n− 1, n) = a∗i,m(0, 1)bi,m(n− 1, n− 1) + a∗i,m(1, 1)bi,m(n− 2, n− 1)

bi,m(n, n) = a∗i,m(1, 1)bi,m(n− 1, n− 1)

for 1 ≤ k ≤ n− 2, one has

bi,m(k, n) = a∗i,m(0, 1)bi,m(k, n− 1) + a∗i,m(1, 1)bi,m(k − 1, n− 1) + (k + 1)bi,m(k + 1, n− 1).

7.2 Tables and plots for the Zero-coupon-bond price change approx-

imation

maturity (years) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Set calibration

t (Days) x0 (%) κ (%) σ (%) θ (%)

15 2.5 13.2103 2.3520 6.8720

7.2.1 Comparaison of approximations errors

In the following we want to show, with plots and tables, how the error between the real ZCB
price change and our approximation evolve when the order of the performed approximation
increase.

For each maturity, we �rst give the plot for some given shock in (−1.5, 1.5), of these erros.
Then the corresponding tables are given below each �gure so that the reader get more precision.
Finally we give the plot of the 5th order error in function of the shock and make a comparison
with the error found with a linear regression.
Note that all the results are given in basis point.

• For τm = 1 : When the maturity is 1 year, our approximation gets better for negative
shocks when the order increase, however for positive shocks, the order 3 give us the
smallest error.
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Figure 4: m = 1 year

Table 1: m = 1 year
Shock ZC change Approx 1 Approx 2 Approx 3 Approx 4 Approx 5

-3,5 112,9447 117,6770 114,9888 114,1025 113,2127 112,7293

-3,0 97,4633 100,6685 98,6935 98,1354 97,6551 97,4314

-2,5 81,6078 83,6601 82,2885 81,9656 81,7339 81,6440

-2,0 65,4404 66,6516 65,7738 65,6085 65,5136 65,4841

-1,5 49,0147 49,6431 49,1494 49,0796 49,0496 49,0426

-1,0 32,3770 32,6347 32,4152 32,3946 32,3886 32,3877

-0,5 15,5668 15,6262 15,5713 15,5688 15,5684 15,5684

0,0 -1,3823 -1,3823 -1,3823 -1,3823 -1,3823 -1,3823

0,5 -18,4414 -18,3907 -18,4456 -18,4430 -18,4434 -18,4433

1,0 -35,5863 -35,3992 -35,6186 -35,5980 -35,6039 -35,6030

1,5 -52,7964 -52,4077 -52,9014 -52,8316 -52,8617 -52,8547

2,0 -70,0545 -69,4161 -70,2939 -70,1285 -70,2234 -70,1940

2,5 -87,3462 -86,4246 -87,7961 -87,4731 -87,7048 -87,6149

3,0 -104,6594 -103,4331 -105,4080 -104,8499 -105,3303 -105,1066

3,5 -121,9841 -120,4415 -123,1297 -122,2434 -123,1333 -122,6499
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Shock Error 1 Error 2 Error 3 Error 4 Error 5

-3,5 4,7323 2,0441 1,1579 0,2680 0,2154

-3,0 3,2052 1,2302 0,6721 0,1918 0,0319

-2,5 2,0523 0,6808 0,3578 0,1261 0,0363

-2,0 1,2112 0,3335 0,1681 0,0732 0,0438

-1,5 0,6284 0,1347 0,0649 0,0349 0,0279

-1,0 0,2577 0,0382 0,0176 0,0116 0,0107

-0,5 0,0594 0,0046 0,0020 0,0016 0,0016

0,0 0,0000 0,0000 0,0000 0,0000 0,0000

0,5 0,0506 0,0042 0,0016 0,0020 0,0020

1,0 0,1871 0,0324 0,0117 0,0176 0,0167

1,5 0,3887 0,1050 0,0353 0,0653 0,0583

2,0 0,6384 0,2394 0,0740 0,1689 0,1394

2,5 0,9216 0,4499 0,1269 0,3586 0,2687

3,0 1,2263 0,7487 0,1905 0,6709 0,4472

3,5 1,5426 1,1456 0,2593 1,1492 0,6658

Figure 5: m = 1 year
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• For τm = 1.5 years : We observe the same results as for the 1 year maturity.

Figure 6: m = 1.5 years
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Table 2: m = 1.5 year
Shock ZC change Approx 1 Approx 2 Approx 3 Approx 4 Approx 5

-3,5 158,2769 165,0093 160,8485 158,8467 157,7308 157,2424

-3,0 136,5424 141,1597 138,1027 136,8421 136,2398 136,0139

-2,5 114,3167 117,3100 115,1871 114,4576 114,1672 114,0764

-2,0 91,6719 93,4604 92,1017 91,7282 91,6093 91,5795

-1,5 68,6715 69,6107 68,8465 68,6889 68,6513 68,6442

-1,0 45,3714 45,7611 45,4214 45,3748 45,3673 45,3664

-0,5 21,8205 21,9115 21,8265 21,8207 21,8202 21,8202

0,0 -1,9382 -1,9382 -1,9382 -1,9382 -1,9382 -1,9382

0,5 -25,8671 -25,7878 -25,8727 -25,8669 -25,8674 -25,8673

1,0 -49,9334 -49,6375 -49,9771 -49,9304 -49,9379 -49,9369

1,5 -74,1086 -73,4871 -74,2513 -74,0938 -74,1314 -74,1244

2,0 -98,3678 -97,3367 -98,6954 -98,3219 -98,4409 -98,4111

2,5 -122,6895 -121,1864 -123,3093 -122,5798 -122,8703 -122,7794

3,0 -147,0549 -145,0360 -148,0930 -146,8324 -147,4347 -147,2088

3,5 -171,4480 -168,8857 -173,0465 -171,0448 -172,1607 -171,6723

Shock Error 1 Error 2 Error 3 Error 4 Error 5

-3,5 6,7325 2,5716 0,5699 0,5461 1,0344

-3,0 4,6172 1,5603 0,2997 0,3026 0,5286

-2,5 2,9933 0,8704 0,1409 0,1496 0,2404

-2,0 1,7884 0,4298 0,0563 0,0627 0,0924

-1,5 0,9392 0,1750 0,0174 0,0203 0,0273

-1,0 0,3897 0,0500 0,0034 0,0041 0,0050

-0,5 0,0910 0,0060 0,0002 0,0003 0,0003

0,0 0,0000 0,0000 0,0000 0,0000 0,0000

0,5 0,0793 0,0056 0,0002 0,0003 0,0002

1,0 0,2960 0,0437 0,0030 0,0044 0,0035

1,5 0,6215 0,1427 0,0149 0,0228 0,0157

2,0 1,0311 0,3276 0,0459 0,0730 0,0433

2,5 1,5031 0,6198 0,1097 0,1808 0,0900

3,0 2,0189 1,0381 0,2225 0,3798 0,1539

3,5 2,5624 1,5985 0,4033 0,7127 0,2243
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Figure 7: m = 1.5 years

• For τm = 2 years the tendency is reversed. Indeed, we now observes for positives shocks
a continuous decrease with the order when for negative shocks, the order 3 becomes the
best.
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Figure 8: m = 2 years

Table 3: m = 2 year
Shock ZC change Approx 1 Approx 2 Approx 3 Approx 4 Approx 5

-3,5 198,5518 206,5639 201,4616 198,6750 197,4544 196,9704

-3,0 171,1873 176,7081 172,9596 171,2047 170,5459 170,3219

-2,5 143,2568 146,8524 144,2492 143,2337 142,9160 142,8260

-2,0 114,8387 116,9967 115,3306 114,8107 114,6805 114,6510

-1,5 86,0028 87,1409 86,2038 85,9844 85,9432 85,9362

-1,0 56,8110 57,2852 56,8687 56,8037 56,7955 56,7946

-0,5 27,3183 27,4294 27,3253 27,3172 27,3167 27,3167

0,0 -2,4263 -2,4263 -2,4263 -2,4263 -2,4263 -2,4263

0,5 -32,3796 -32,2820 -32,3862 -32,3780 -32,3785 -32,3785

1,0 -62,5032 -62,1378 -62,5543 -62,4893 -62,4974 -62,4965

1,5 -92,7631 -91,9935 -92,9306 -92,7113 -92,7525 -92,7455

2,0 -123,1294 -121,8492 -123,5153 -122,9953 -123,1255 -123,0960

2,5 -153,5756 -151,7050 -154,3082 -153,2926 -153,6104 -153,5204

3,0 -184,0783 -181,5607 -185,3093 -183,5545 -184,2133 -183,9893

3,5 -214,6171 -211,4165 -216,5187 -213,7321 -214,9527 -214,4686
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Shock Error 1 Error 2 Error 3 Error 4 Error 5

-3,5 8,0121 2,9098 0,1232 1,0974 1,5814

-3,0 5,5209 1,7723 0,0174 0,6414 0,8654

-2,5 3,5956 0,9924 0,0231 0,3408 0,4308

-2,0 2,1580 0,4919 0,0280 0,1582 0,1877

-1,5 1,1381 0,2010 0,0184 0,0595 0,0665

-1,0 0,4742 0,0577 0,0073 0,0154 0,0163

-0,5 0,1111 0,0070 0,0011 0,0016 0,0017

0,0 0,0000 0,0000 0,0000 0,0000 0,0000

0,5 0,0975 0,0066 0,0015 0,0010 0,0011

1,0 0,3654 0,0511 0,0139 0,0057 0,0067

1,5 0,7696 0,1675 0,0518 0,0106 0,0176

2,0 1,2802 0,3859 0,1341 0,0039 0,0334

2,5 1,8706 0,7325 0,2830 0,0348 0,0553

3,0 2,5176 1,2310 0,5239 0,1350 0,0890

3,5 3,2006 1,9016 0,8850 0,3356 0,1485

Figure 9: m = 2 years
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• For τm = 2.5 years

Figure 10: m = 2.5 years
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Table 4: m = 2.5 years
Shock ZC change Approx 1 Approx 2 Approx 3 Approx 4 Approx 5

-3,5 234,3792 243,1086 237,5184 234,1840 232,9088 232,4301

-3,0 201,9477 207,9709 203,8638 201,7640 201,0757 200,8542

-2,5 168,9057 172,8331 169,9810 168,7658 168,4339 168,3449

-2,0 135,3359 137,6954 135,8700 135,2479 135,1119 135,0827

-1,5 101,3122 102,5576 101,5309 101,2684 101,2254 101,2184

-1,0 66,9006 67,4199 66,9635 66,8858 66,8773 66,8764

-0,5 32,1604 32,2821 32,1681 32,1583 32,1578 32,1578

0,0 -2,8556 -2,8556 -2,8556 -2,8556 -2,8556 -2,8556

0,5 -38,1002 -37,9933 -38,1074 -38,0977 -38,0982 -38,0982

1,0 -73,5312 -73,1311 -73,5874 -73,5097 -73,5182 -73,5172

1,5 -109,1111 -108,2688 -109,2956 -109,0331 -109,0762 -109,0692

2,0 -144,8061 -143,4066 -145,2319 -144,6098 -144,7458 -144,7166

2,5 -180,5865 -178,5443 -181,3965 -180,1813 -180,5133 -180,4242

3,0 -216,4255 -213,6821 -217,7891 -215,6893 -216,3777 -216,1562

3,5 -252,2995 -248,8198 -254,4100 -251,0756 -252,3508 -251,8721

Shock Error 1 Error 2 Error 3 Error 4 Error 5

-3,5 8,7294 3,1392 0,1952 1,4704 1,9492

-3,0 6,0232 1,9161 0,1837 0,8721 1,0935

-2,5 3,9274 1,0753 0,1399 0,4719 0,5609

-2,0 2,3595 0,5341 0,0881 0,2240 0,2532

-1,5 1,2455 0,2187 0,0438 0,0868 0,0937

-1,0 0,5193 0,0629 0,0148 0,0233 0,0243

-0,5 0,1217 0,0076 0,0021 0,0026 0,0026

0,0 0,0000 0,0000 0,0000 0,0000 0,0000

0,5 0,1069 0,0072 0,0025 0,0020 0,0020

1,0 0,4002 0,0562 0,0216 0,0131 0,0140

1,5 0,8422 0,1845 0,0779 0,0349 0,0418

2,0 1,3995 0,4258 0,1963 0,0604 0,0895

2,5 2,0421 0,8100 0,4052 0,0732 0,1622

3,0 2,7434 1,3637 0,7361 0,0478 0,2693

3,5 3,4797 2,1105 1,2239 0,0514 0,4274
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Figure 11: m = 2.5 year

• For τm = 3 years
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Figure 12: m = 3 years

Table 5: m = 3 years
Shock ZC change Approx 1 Approx 2 Approx 3 Approx 4 Approx 5

-3,5 266,1659 275,1839 269,4635 265,7463 264,4415 263,9683

-3,0 229,1920 235,4102 231,2074 228,8665 228,1622 227,9433

-2,5 191,5853 195,6364 192,7178 191,3631 191,0235 190,9355

-2,0 153,4315 155,8626 153,9947 153,3011 153,1620 153,1332

-1,5 114,8072 116,0889 115,0382 114,7456 114,7015 114,6947

-1,0 75,7816 76,3151 75,8481 75,7614 75,7527 75,7518

-0,5 36,4165 36,5413 36,4246 36,4137 36,4132 36,4132

0,0 -3,2324 -3,2324 -3,2324 -3,2324 -3,2324 -3,2324

0,5 -43,1153 -43,0062 -43,1230 -43,1121 -43,1127 -43,1126

1,0 -83,1873 -82,7800 -83,2470 -83,1603 -83,1690 -83,1681

1,5 -123,4081 -122,5538 -123,6045 -123,3118 -123,3559 -123,3490

2,0 -163,7418 -162,3275 -164,1954 -163,5018 -163,6410 -163,6121

2,5 -204,1561 -202,1013 -205,0199 -203,6652 -204,0049 -203,9169

3,0 -244,6219 -241,8751 -246,0778 -243,7370 -244,4413 -244,2224

3,5 -285,1133 -281,6488 -287,3693 -283,6521 -284,9569 -284,4837
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Shock Error 1 Error 2 Error 3 Error 4 Error 5

-3,5 9,0181 3,2976 0,4196 1,7244 2,1976

-3,0 6,2182 2,0154 0,3254 1,0297 1,2487

-2,5 4,0511 1,1325 0,2222 0,5618 0,6498

-2,0 2,4312 0,5633 0,1303 0,2695 0,2983

-1,5 1,2816 0,2309 0,0617 0,1057 0,1125

-1,0 0,5335 0,0665 0,0202 0,0289 0,0298

-0,5 0,1248 0,0081 0,0027 0,0033 0,0033

0,0 0,0000 0,0000 0,0000 0,0000 0,0000

0,5 0,1091 0,0077 0,0032 0,0026 0,0027

1,0 0,4073 0,0597 0,0270 0,0183 0,0192

1,5 0,8544 0,1963 0,0963 0,0523 0,0591

2,0 1,4143 0,4536 0,2400 0,1009 0,1297

2,5 2,0548 0,8638 0,4909 0,1512 0,2392

3,0 2,7469 1,4559 0,8849 0,1806 0,3996

3,5 3,4645 2,2559 1,4612 0,1564 0,6297

Figure 13: m = 3 year
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• For τm = 3.5 years

Figure 14: m = 3.5 years
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Table 6: m = 3.5 years
Shock ZC change Approx 1 Approx 2 Approx 3 Approx 4 Approx 5

-3,5 294,2360 303,2191 297,6417 293,6592 292,3394 291,8718

-3,0 253,2124 259,3932 255,2955 252,7877 252,0752 251,8589

-2,5 211,5502 215,5674 212,7218 211,2704 210,9269 210,8399

-2,0 169,3372 171,7415 169,9203 169,1773 169,0365 169,0080

-1,5 126,6520 127,9157 126,8913 126,5778 126,5332 126,5265

-1,0 83,5655 84,0898 83,6345 83,5416 83,5329 83,5320

-0,5 40,1418 40,2640 40,1502 40,1385 40,1380 40,1380

0,0 -3,5619 -3,5619 -3,5619 -3,5619 -3,5619 -3,5619

0,5 -47,4936 -47,3877 -47,5015 -47,4899 -47,4905 -47,4904

1,0 -91,6067 -91,2135 -91,6688 -91,5760 -91,5848 -91,5839

1,5 -135,8594 -135,0394 -136,0638 -135,7503 -135,7948 -135,7881

2,0 -180,2138 -178,8652 -180,6864 -179,9433 -180,0841 -180,0556

2,5 -224,6360 -222,6911 -225,5367 -224,0854 -224,4289 -224,3420

3,0 -269,0953 -266,5169 -270,6146 -268,1067 -268,8191 -268,6028

3,5 -313,5643 -310,3428 -315,9201 -311,9377 -313,2575 -312,7899

Shock Error 1 Error 2 Error 3 Error 4 Error 5

-3,5 8,9830 3,4057 0,5768 1,8966 2,3642

-3,0 6,1809 2,0832 0,4247 1,1371 1,3535

-2,5 4,0171 1,1715 0,2798 0,6234 0,7103

-2,0 2,4043 0,5832 0,1599 0,3006 0,3291

-1,5 1,2637 0,2393 0,0742 0,1187 0,1255

-1,0 0,5243 0,0690 0,0239 0,0327 0,0336

-0,5 0,1222 0,0084 0,0032 0,0038 0,0038

0,0 0,0000 0,0000 0,0000 0,0000 0,0000

0,5 0,1059 0,0080 0,0036 0,0031 0,0031

1,0 0,3932 0,0621 0,0308 0,0220 0,0229

1,5 0,8200 0,2044 0,1091 0,0646 0,0713

2,0 1,3486 0,4726 0,2705 0,1297 0,1582

2,5 1,9449 0,9007 0,5506 0,2070 0,2940

3,0 2,5783 1,5193 0,9886 0,2762 0,4925

3,5 3,2215 2,3559 1,6265 0,3067 0,7743
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Figure 15: m = 3.5 year

• For τm = 4 years
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Figure 16: m = 4 years

Table 7: m = 4 years
Shock ZC change Approx 1 Approx 2 Approx 3 Approx 4 Approx 5

-3,5 318,8741 327,5806 322,3501 318,1883 316,8629 316,4011

-3,0 274,2635 280,2336 276,3909 273,7700 273,0546 272,8409

-2,5 229,0210 232,8867 230,2181 228,7014 228,3564 228,2705

-2,0 183,2356 185,5397 183,8318 183,0553 182,9139 182,8858

-1,5 136,9873 138,1927 137,2321 136,9044 136,8597 136,8531

-1,0 90,3482 90,8458 90,4188 90,3217 90,3129 90,3120

-0,5 43,3835 43,4988 43,3921 43,3799 43,3794 43,3794

0,0 -3,8481 -3,8481 -3,8481 -3,8481 -3,8481 -3,8481

0,5 -51,2937 -51,1951 -51,3018 -51,2897 -51,2903 -51,2902

1,0 -98,9053 -98,5421 -98,9690 -98,8720 -98,8808 -98,8799

1,5 -146,6400 -145,8890 -146,8497 -146,5221 -146,5668 -146,5602

2,0 -194,4587 -193,2360 -194,9439 -194,1673 -194,3087 -194,2805

2,5 -242,3265 -240,5830 -243,2515 -241,7349 -242,0799 -241,9940

3,0 -290,2116 -287,9299 -291,7727 -289,1518 -289,8673 -289,6537

3,5 -338,0855 -335,2769 -340,5073 -336,3455 -337,6710 -337,2092
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Shock Error 1 Error 2 Error 3 Error 4 Error 5

-3,5 8,7065 3,4761 0,6858 2,0112 2,4729

-3,0 5,9702 2,1274 0,4935 1,2089 1,4225

-2,5 3,8656 1,1970 0,3197 0,6647 0,7505

-2,0 2,3041 0,5962 0,1804 0,3217 0,3498

-1,5 1,2055 0,2448 0,0828 0,1276 0,1342

-1,0 0,4976 0,0706 0,0265 0,0353 0,0362

-0,5 0,1153 0,0086 0,0035 0,0041 0,0041

0,0 0,0000 0,0000 0,0000 0,0000 0,0000

0,5 0,0986 0,0082 0,0040 0,0034 0,0034

1,0 0,3633 0,0637 0,0334 0,0245 0,0254

1,5 0,7510 0,2097 0,1179 0,0732 0,0798

2,0 1,2228 0,4852 0,2914 0,1501 0,1782

2,5 1,7435 0,9251 0,5916 0,2466 0,3325

3,0 2,2817 1,5611 1,0597 0,3443 0,5579

3,5 2,8086 2,4219 1,7400 0,4145 0,8763

Figure 17: m = 4 years
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• For τm = 4.5 years

Figure 18: m = 4.5 years
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Table 8: m = 4.5 years
Shock ZC change Approx 1 Approx 2 Approx 3 Approx 4 Approx 5

-3,5 340,3418 348,5948 343,8590 339,5820 338,2575 337,8018

-3,0 292,5778 298,2105 294,7311 292,0377 291,3228 291,1120

-2,5 244,1980 247,8262 245,4100 243,8513 243,5066 243,4218

-2,0 195,2917 197,4420 195,8956 195,0975 194,9563 194,9286

-1,5 145,9399 147,0577 146,1879 145,8512 145,8065 145,7999

-1,0 96,2153 96,6734 96,2868 96,1871 96,1783 96,1774

-0,5 46,1838 46,2892 46,1925 46,1800 46,1795 46,1795

0,0 -4,0951 -4,0951 -4,0951 -4,0951 -4,0951 -4,0951

0,5 -54,5677 -54,4794 -54,5760 -54,5636 -54,5641 -54,5641

1,0 -105,1856 -104,8636 -105,2502 -105,1505 -105,1593 -105,1584

1,5 -155,9049 -155,2479 -156,1178 -155,7811 -155,8258 -155,8192

2,0 -206,6859 -205,6322 -207,1786 -206,3805 -206,5218 -206,4940

2,5 -257,4930 -256,0165 -258,4327 -256,8740 -257,2188 -257,1341

3,0 -308,2938 -306,4007 -309,8801 -307,1867 -307,9016 -307,6908

3,5 -359,0592 -356,7850 -361,5208 -357,2438 -358,5683 -358,1127

Shock Error 1 Error 2 Error 3 Error 4 Error 5

-3,5 8,2530 3,5172 0,7598 2,0843 2,5399

-3,0 5,6327 2,1533 0,5401 1,2550 1,4658

-2,5 3,6283 1,2120 0,3467 0,6914 0,7761

-2,0 2,1502 0,6038 0,1942 0,3354 0,3632

-1,5 1,1178 0,2480 0,0887 0,1334 0,1399

-1,0 0,4582 0,0716 0,0282 0,0370 0,0379

-0,5 0,1054 0,0087 0,0038 0,0043 0,0043

0,0 0,0000 0,0000 0,0000 0,0000 0,0000

0,5 0,0884 0,0083 0,0042 0,0036 0,0037

1,0 0,3220 0,0646 0,0351 0,0263 0,0272

1,5 0,6569 0,2129 0,1238 0,0791 0,0857

2,0 1,0537 0,4927 0,3054 0,1642 0,1919

2,5 1,4765 0,9397 0,6190 0,2742 0,3589

3,0 1,8931 1,5863 1,1071 0,3922 0,6030

3,5 2,2742 2,4616 1,8154 0,4909 0,9465
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Figure 19: m = .5 years

• For τm = 5 years
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Figure 20: m = 5 years

Table 9: m = 5 years
Shock ZC change Approx 1 Approx 2 Approx 3 Approx 4 Approx 5

-3,5 358,8847 366,5582 362,4199 358,0764 356,7577 356,3085

-3,0 308,3724 313,5776 310,5372 307,8019 307,0901 306,8823

-2,5 257,2668 260,5969 258,4855 256,9026 256,5594 256,4758

-2,0 205,6577 207,6163 206,2650 205,4546 205,3140 205,2866

-1,5 153,6261 154,6357 153,8756 153,5337 153,4892 153,4827

-1,0 101,2452 101,6550 101,3172 101,2159 101,2071 101,2063

-0,5 48,5812 48,6744 48,5899 48,5773 48,5767 48,5767

0,0 -4,3063 -4,3063 -4,3063 -4,3063 -4,3063 -4,3063

0,5 -57,3630 -57,2869 -57,3713 -57,3587 -57,3592 -57,3592

1,0 -110,5403 -110,2675 -110,6054 -110,5040 -110,5128 -110,5120

1,5 -163,7939 -163,2482 -164,0083 -163,6664 -163,7109 -163,7044

2,0 -217,0839 -216,2288 -217,5801 -216,7697 -216,9103 -216,8829

2,5 -270,3742 -269,2094 -271,3208 -269,7380 -270,0812 -269,9977

3,0 -323,6322 -322,1901 -325,2305 -322,4953 -323,2070 -322,9992

3,5 -376,8283 -375,1707 -379,3091 -374,9656 -376,2843 -375,8351
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Shock Error 1 Error 2 Error 3 Error 4 Error 5

-3,5 7,6735 3,5351 0,8084 2,1270 2,5762

-3,0 5,2051 2,1647 0,5705 1,2823 1,4902

-2,5 3,3301 1,2187 0,3642 0,7075 0,7910

-2,0 1,9586 0,6073 0,2032 0,3438 0,3711

-1,5 1,0096 0,2495 0,0924 0,1369 0,1434

-1,0 0,4098 0,0720 0,0293 0,0381 0,0389

-0,5 0,0932 0,0088 0,0039 0,0044 0,0045

0,0 0,0000 0,0000 0,0000 0,0000 0,0000

0,5 0,0761 0,0083 0,0043 0,0038 0,0038

1,0 0,2727 0,0651 0,0362 0,0274 0,0283

1,5 0,5457 0,2144 0,1275 0,0830 0,0895

2,0 0,8551 0,4962 0,3142 0,1736 0,2010

2,5 1,1647 0,9467 0,6362 0,2930 0,3765

3,0 1,4421 1,5984 1,1369 0,4251 0,6329

3,5 1,6576 2,4808 1,8627 0,5440 0,9932

Figure 21: m = 5 years
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7.3 Tables for the CBB price change approximation

For our implementation of the CBB price change approximation we have taken a face value
of 100 $ and a coupon rate of 0.1%. The coupons are paid semiannually starting on the sixth
month.

Shock CBB price Approx 1 Approx 2 Approx 3 Approx 4 Approx 5
-3,5 36 005,6739 36 776,6602 36 360,6363 35 924,8370 35 792,3995 35 747,2467
-3,0 30 938,1250 31 461,1309 31 155,4807 30 881,0415 30 809,5551 30 788,6645
-2,5 25 810,9799 26 145,6017 25 933,3446 25 774,5256 25 740,0511 25 731,6556
-2,0 20 633,2531 20 830,0724 20 694,2279 20 612,9126 20 598,7918 20 596,0408
-1,5 15 413,0841 15 514,5432 15 438,1307 15 403,8258 15 399,3579 15 398,7050
-1,0 10 157,8239 10 199,0140 10 165,0528 10 154,8884 10 154,0059 10 153,9199
-0,5 4 874,1139 4 883,4847 4 874,9944 4 873,7239 4 873,6687 4 873,6660
0,0 -432,0445 -432,0445 -432,0445 -432,0445 -432,0445 -432,0445
0,5 -5 755,2268 -5 747,5738 -5 756,0640 -5 754,7935 -5 754,8486 -5 754,8460
1,0 -11 090,5294 -11 063,1030 -11 097,0641 -11 086,8997 -11 087,7823 -11 087,6963
1,5 -16 433,5190 -16 378,6322 -16 455,0448 -16 420,7399 -16 425,2078 -16 424,5549
2,0 -21 780,1875 -21 694,1615 -21 830,0060 -21 748,6907 -21 762,8114 -21 760,0604
2,5 -27 126,9112 -27 009,6907 -27 221,9478 -27 063,1288 -27 097,6033 -27 089,2079
3,0 -32 470,4143 -32 325,2199 -32 630,8701 -32 356,4309 -32 427,9173 -32 407,0267
3,5 -37 807,7361 -37 640,7492 -38 056,7730 -37 620,9737 -37 753,4111 -37 708,2583

> > > y2=data.frame("Shock"=shock,error) > names(y2)=c("Shock","Error 1","Error
2","Error 3","Error 4","Error 5") > > y2=xtable(y2) > digits(y2)=xdigits(y2) > print(y2,format.args
= list(big.mark = " ", decimal.mark = ","),include.rownames = FALSE)

Shock Error 1 Error 2 Error 3 Error 4 Error 5
-3,5 770,9862 354,9624 80,8370 213,2744 258,4273
-3,0 523,0059 217,3557 57,0835 128,5700 149,4606
-2,5 334,6218 122,3647 36,4543 70,9288 79,3243
-2,0 196,8193 60,9748 20,3406 34,4613 37,2124
-1,5 101,4591 25,0466 9,2584 13,7263 14,3791
-1,0 41,1900 7,2289 2,9355 3,8180 3,9040
-0,5 9,3709 0,8806 0,3900 0,4451 0,4478
0,0 0,0000 0,0000 0,0000 0,0000 0,0000
0,5 7,6531 0,8372 0,4333 0,3782 0,3808
1,0 27,4264 6,5347 3,6297 2,7471 2,8331
1,5 54,8867 21,5258 12,7791 8,3112 8,9640
2,0 86,0260 49,8185 31,4968 17,3760 20,1270
2,5 117,2204 95,0366 63,7824 29,3078 37,7033
3,0 145,1943 160,4559 113,9834 42,4969 63,3876
3,5 166,9869 249,0370 186,7623 54,3249 99,4778
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