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Abstract  

An order placement model is proposed to examine the nature of trading costs and of order 
flow in a dynamic limit order book where traders are risk averse. The adverse selection costs 
of uninformed sellers (resp. buyers) are found to be positively (resp. negatively) related to the 
arrival rates of market buy (resp. sell) orders. Next, the bid-ask spread is decomposed in three 
factors: the differences in risk-adjusted asset valuations, the two adverse selection costs of 
buyers and sellers if an equivalent arrival rate of buy and sell market orders is expected. 
Analyzing European carbon futures data confirms these two findings and precises that the 
arrival of same side market orders at the origin of a diagonal effect is due to adverse selection 
considerations at opening hours, then by the increasing influence of order splitting strategies. 
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1. Introduction 

If the question formulated in Glosten's (1994) celebrated paper: “Is the electronic order 

book inevitable?” sound provocative nearly a quarter of century ago, it now seems to be 

answered. Hence, more than half of the world’s financial markets have adopted an electronic 

limit order book (LOB hereafter) to facilitate trading (Moinas, 2008; Gould et al., 2013)3. 

A central feature of a LOB is the absence of market makers that provide continuous bid 

and ask quotations. Instead, traders can place, modify, and cancel a buy or sell limit order for 

which a price and quantity is specified. Alternatively, traders can submit a market order, without 

any price. A transaction occurs when an incoming order or an existing order’s price is modified 

so that the order crosses the spread of best bid and best ask prices. The unexecuted orders form 

the consolidated source of liquidity and the bid ask spread serves as a proxy of trading costs4. 

With the widespread use of LOBs, the theoretical literature studying the determinants of 

order strategies and the nature of trading costs has witnessed a spurt in interest (Moinas, 2008). 

Glosten (1994) builds a static model where risk neutral traders place market orders when they 

are better informed on the payoff of the risky asset. His model allows to determine the bid-ask 

spread in equilibrium but imposes an exogenous order choice for all traders. Foucault (1999) 

proposes a dynamic model where traders’ order strategies depend on their asset valuation and 

the best limit prices offered. Foucault (1999) demonstrates that if the value of the traded asset 

fluctuates after the disclosure of public information, a limit order may be executed in the case 

of adverse information. It is said to be picked off and the trading profit may become negative. 

Since higher volatility creates a higher picking-off risk, traders increase the reservation prices 

of limit orders widening the bid-ask spread. The order mix then shifts in favor of limit orders, 

but fewer are executed and market orders are more expensive. Liu (2009) extends the Foucault 

(1999)’s model allowing for order cancellations and revisions. He shows that if monitoring the 

information flow contained in the LOB is not too costly, uninformed traders actively revise 

their orders to reduce picking-off and non-execution risks. An alternative view of asymmetric 

information is espoused by Handa et al. (2003)5. They incorporate another type of risk borne 

by limit order traders: the adverse selection risk due to the presence of informed counterparty 

traders that place market orders to benefit from their short lived private information. Then, 

Handa et al. (2003) derive a bid-ask spread as a function of the differences in traders’ valuations 

                                                           
3 According to Moinas (2008), most of financial markets are order driven markets and have mainly adopted LOB 
systems with sometimes distinct features with regard to priority of order execution, competition or transparency.  
4 For exchanges and regulators, larger bid-ask spreads are a signal of lower liquidity and greater inefficiencies. 
Brokers must offer a competitive bid-ask spread to their clients while traders track the evolution of quoted bid-ask 
spreads because they directly impact on the profitability of their limit order strategies. 
5 The existence of trading frictions makes the Foucault (1999)’s model resemble an asymmetric information model. 
Like Goettler et al. (2005), Foucault (1999) hypothesizes that the fundamental value of the risky asset varies 
according to a binomial tree with the same up and down probabilities. Afterwards, the order choice (limit or market 
order) and the trading directions (buy or sell side) both depend on the traders’ private valuation. 
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and of adverse selection. Interestingly, the size of the spread is found to be greater in balanced 

markets than in unbalanced markets with unequal numbers of (high private value) buyers or 

(low private value) sellers. This result also predicted by Foucault (1999) is confirmed with data 

related to CAC40 stocks. Goettler et al. (2005) relax some assumptions made by Foucault 

(1999)6 but retain the idea that both changes in traders’ valuations and the consensus value on 

the traded asset determine order strategies7. Their results suggest that the diagonal effect namely 

the tendency that the same order types tend to follow each other (Biais et al., 19958) is an 

equilibrium property of LOB due to the persistence of its informational state and the waiting 

time required by risk neutral traders to take advantage of stale limit orders.  

At present, there is no reason to believe that all the above-mentioned results tested with 

stock markets data, remain valid in LOB markets where traders exhibit risk averse preferences. 

Departure from the usual assumption of risk neutrality is relatively rare in modelling order 

strategies. In a mean-variance setting, Kovaleva and Iori (2012) study the impact of a random 

delay in the limit order execution on the selling strategy of a risk-averse trader who cannot 

revise their orders. They find that the bid-ask spread increases as his risk aversion increases. 

On the empirical side, Marshall et al. (2011) document that the bid–ask spreads in commodity 

markets increase with volatility as Foucault (1999) predicts, but this relationship varies 

significantly across commodity families given the different levels of risk aversion9. 

The purpose of our study is to embed the models of Foucault (1999) and Handa et al. 

(2003) in a richer framework where risk averse uninformed traders monitor their LOB screens 

to extract public information before submitting orders. Our framework nests the approach of 

these two authors to model two types of information asymmetries. We interpret the picking-off 

risk in the sense of adverse execution due to the arrival of public information, consistent with 

Foucault (1999) and the adverse selection risk due to the inability of uninformed traders to 

discern if their counterparties hold private signals on the asset value as for Handa et al. (2003).  

As a first step toward the study of trading costs, the order strategies of uninformed traders 

are analyzed in a fairly structured dynamic environment where they interact with informed and 

noise traders. Next, we propose a reduced form of our model in which uninformed traders 

homogeneously recognize a similar arrival rate of buy and sell market orders. In both models, 

uninformed traders interact with informed traders and noise traders. They are the only ones to 

                                                           
6 Foucault (1999) derives closed form solutions at the cost of two restrictive assumptions. First, limit orders are 
valid for one trading period and an equal proportion of buyers and sellers is assumed for the general case. 
7 For Foucault (1999), the difference in asset valuations generate necessary gain opportunities for allowing trades 
whereas Handa et al. (2003) assumes that it is an outcome of taxes, liquidity shocks or portfolio considerations. 
8 Biais et al. (1995) provide evidence of the diagonal effect on Paris Bourse for CAC 40 stocks. They put forward 
three possible explanations: (i) traders split large orders, (ii)  they follow what other traders are doing, (iii) they 
react similarly to the same events (“herding”). 
9 Marshall et al. (2011) show that energy bid-ask spreads are less sensitive to return volatility even if energy returns 
are considerably more volatile than other commodities (e.g., agricultural and precious metals). 
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place either market orders or limit orders to trade a risky asset. An additional feature of our 

model is the incorporation of an endogenous noise affecting public information signals that 

uninformed traders extract after monitoring their LOB screens as in Bloomfield et al. (2009)10. 

By making variable the precision of these signals, we bridge the gap between two extreme 

cases: a perfectly known precision or a completely noisy precision. On the basis of these signals, 

uninformed traders conjecture the arrival rates of market orders and consider interdependence 

of buyers’ and sellers’ decisions to revise limit orders or place new orders. We solve the 

equilibrium of our model and obtain corresponding bid and ask prices by optimizing the 

uninformed traders’ order strategies as Kovaleva and Iori (2012) do.  

The main objective of our model is to provide a novel bid-ask spread decomposition11 

more adapted to commodity markets and for which the predictions of Foucault (1999) and 

Handa et al. (2003) may be tested. Important related questions that we address include the 

following: How do uninformed traders react when they capture changes in the arrival of market 

orders or a rise in the asset volatility? Why do adverse selection costs constitute the main 

components of the bid-ask spread as it is often reported (e.g., Marshall et al., 2011)? Do buyers’ 

adverse selection costs differ from sellers’ ones and vary according to the level of risk aversion? 

In which circumstances does the bid-ask spread achieve its maximum (minimum) size? 

Concerning our objective to deliver valuable insights on the composition of the bid-ask 

spread traded in a LOB where traders are risk averse, we obtain the following theoretical results:  

• First, we verify that the price improvement offered by limit orders serves to compensate 

uninformed traders for their risks of adverse selection and of being picked off.  

• Second, the adverse selection risk is found to be dependent on the rate of market orders 

and on the degree of precision and concentration of public information flow.  

• Third, the bid-ask spread is decomposed in three factors: differences between buyers’ and 

sellers’ reservation values, the two adverse selection costs of uninformed buyers and sellers 

if an equivalent arrival rate of buy and sell market orders is expected. In such context, we 

validate the Handa et al. (2003)’s prediction since the spread achieves a maximum (resp. 

minimum) at the most balance (resp. imbalance) value of market competition measure.  

• Fourth, a numerical analysis of our model reveals that adverse selection costs of 

uninformed buyers (resp. sellers) are positively related to the degree of their risk aversion 

and the volatility of reservation values but not in a linear form as in Foucault (1999). 

                                                           
10 Experimental results of Bloomfield et al. (2009) suggest that the order strategies of noise traders allow 
uninformed traders to reduce their adverse selection risks so that the bid-ask spread should decrease. 
11 If spread estimators using transaction data (e.g., Madhavan et al., 1997) perform poorly to estimate adverse 
selection costs, assessing their performance is made more difficult for commodities given that spreads are often 
unobservable. In addition, Van Ness et al. (2001) point out that these estimators assume unit quantity and equally-
spaced trades. Therefore, the asymmetric information (i.e. adverse selection) components of the bid-ask spread are 
often overestimated, which is confirmed by Kalaitzoglou and Ibrahim (2016) for European carbon futures. 
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We further exploit order and trade data of ECX that concentrates 90% of European carbon 

futures trading (Mizrach and Otsubo, 2014) to test the four implications of our model. The so-

called EU Emission Allowances (EUA) futures market is viewed as an emerging commodity 

market where the levels of risk aversion (Chevallier, 2012), of information asymmetry and of 

futures volatility are significantly high (Kalaitzoglou and Ibrahim, 2016)12.  

Overall, our empirical tests confirm the merits of our model and contribute to the market 

microstructure literature on carbon markets in three ways. We find that the buyers and sellers’ 

adverse selection costs represent on average 70% of the bid-ask spread but evolve in line with 

seasonal variations in the level of information asymmetry as reported by Medina et al. (2014) 

and Mizrach and Otsubo (2014). Moreover, the bid–ask spread and adverse selection costs of 

uninformed sellers (resp. buyers) follow a U-shaped (resp. inverted U-shaped) pattern while 

the bid-ask spread component due to traders’ beliefs heterogeneity is rather constant along the 

trading session. Finally, we detect that the diagonal effect is significant in the European carbon 

market and is an LOB equilibrium property (Goettler et al., 2005). Interestingly, this market 

feature is explained by adverse selection considerations at the opening hours and then by the 

increasing influence of order splitting strategies13 along a quicker liquidity replenishment. 

The rest of the paper is organized as follows. The next section sets out the model and 

describes the order strategies of uninformed traders. Section 2 analyzes the equilibrium of our 

model and its implications in terms of price formation and bid-ask spread. In Section 3, we 

perform a numerical analysis of our model that delivers further implications. Section 4 presents 

empirical tests and our findings using European carbon (EUA) futures data. Our conclusions 

and an outlook for further research appear in Section 5. All proofs are gathered in the appendix. 

2.  A new order placement model set in a CARA-normal framework 

We first focus on the four features of our order placement model set in a CARA-normal 

framework before describing the optimal order strategies that uninformed traders can follow. 

2.1. Characteristics of the model 

(1) Market structure . We consider the following competitive model of asset trading. Traders 

have access to two assets14: a single risky asset x with stochastic terminal value XT, liquidated 

                                                           
12 The EU Emissions Trading Scheme (EU ETS) created a new sort of commodity: a EUA (or quota) freely 
allocated that needed to be surrendered for a tonne of CO2 emitted by one of the 13 000 installations covered. 
13 Biais et al. (1995) put forward three explanations for the diagonal effect: (i) traders split large orders, (ii ) 
traders follow what other traders are doing, (iii ) traders react similarly to the same events (“herding”). 
14 The choice of a portfolio including a bond is motivated by two considerations. First, in times of higher 
uncertainty, traders should rebalance their portfolios toward less risky assets (e.g., bonds) as their risk aversion 
increases. Second, Chevallier (2012) found a 3% return with a stand deviation (risk) ≤ 0.06 for a portfolio including 
energy (EUA, oil, gas, coal) futures, weather, ECB 5-year benchmark bond, equities, T-bills. He concludes that 
carbon, gas, coal and bond assets share the best properties to form an optimal portfolio. 
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within a pre-specified time horizon T and a riskless bond with perfectly elastic supply paying 

out a certain payoff RT≥1 at time T. Only the risky asset is traded over a span of t trading times 

with one unit limit or one unit market order in a pure LOB trading system.  

The market operates in discrete time, each time step being characterized by new submission of 

orders or limit order revisions. The usual price/time priority for order execution applies15. If the 

order does not result in a trade, it is added to the LOB as a limit order. Trade is executed at the 

value of the best price i.e. the highest priced bid (resp. lowest priced ask) quote. 

(2) Market participants. Three groups of market participants trade the risky asset which are:  

- Informed traders (I) are rational agents who only use market orders16 to benefit from their 

short lived private information about the risky asset fundamental value (Handa et al., 2003).  

- Noise/sentiment traders (N) can either behave as irrational traders who act as if they have 

private information, or follow feedback speculative strategies (De Long et al., 1990; 

Bloomfield et al., 2009). They use markets orders to obtain immediate order execution. 

- Uninformed traders (U) are rational agents without private information that trade by means 

of limit and market orders to maximize their terminal wealth. Two profiles of uninformed 

traders with different beliefs on the value of the risky asset are considered. For the buyer 

(resp. seller) group, µb,x  (resp. µs,x) is perceived as the reservation price of variance σ
2
b,,x 

(resp. σ
2
s,x) for the true value of the risky asset, for which they are likely to buy (resp. sell) 

one unit of the risky asset. When an uninformed buyer (resp. seller) trades for a share of 

the risky asset at a specified price Pbid (resp. Pask), he expects a terminal wealth ωT is a 

random variable given by WT= Xb,t + (W1-Pbid)×RT (resp. ωT= (W1+Pask) ×RT - Xs,t. 

All of these traders are risk averse. For instance, uninformed traders are supposed to formulate 

their order strategies to maximize the expectation of utility of WT: E(u(WT)) = - exp(φ(W)). 

This utility takes the form of a negative exponential function that depends on a constant absolute 

risk aversion (CARA) parameter φ such as in the framework of Kovaleva and Iori (2012). 

(3) Endogenous noise affecting public information. We conform to the method of Berkman 

and Koch (2008) to estimate an endogenous noise affecting public information. Since the 

activity of noise traders is not directly observable, we consider the daily net initiated order flow 

by B brokers through which they trade on t denoted by random variables {nt; b=1,…, B} that 

are iid distributed with mean zero and variance σt
2. If each broker has an equal market share i.e. 

                                                           
15 In a LOB, a limit order is executed given time and price priority rules. Those posted earlier are further ahead in 
the queue (time priority) and are executed if no other orders have price priority and an incoming trader is willing 
to be a counterparty. A marketable limit order above the ask executes at the ask, is considered as a market order. 
16 It is a classical assumption made by the theoretical literature related to order submission strategies. For instance, 
Handa et al. (2003) assume that informed traders only submit market orders because of short-lived private 
information. In equilibrium of his model, Rosu (2009) finds that the patient informed trader who have long-lived 
private information also post market orders when prices deviate far from the fundamental asset value. 
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N/B noise traders trade through each broker, the{nt}variables are aggregated measures of net 

initiated order flow (OF) across B groups of N/B noise traders which are therefore iid 

distributed with mean zero and variance (N/B)×σt
2. In either case, the net initiated order flow 

per broker: OF/B becomes a consistent estimate of an endogenous noise proportional to the net 

initiated order flow across noise traders provided that there are enough active brokers.17 

(4) Public information and order strategy. By monitoring the information flow through their 

LOB screens, uninformed traders become aware of new public information (that arrives 

randomly) and may learn news before others. Here, the informational state of the LOB contains 

real-time information signals that are publicly visible. Further, uninformed traders are supposed 

to extract and interpret these signals affected by endogenous noise to place new orders or revise 

ones. As a result, their order strategies depend on their posterior beliefs about the fundamental 

value of the risky asset and the precision of the new (noisy) public information received.  

We denote L(Θ) the information set of the LOB state that involves real time and public 

information. Its interpretation differs from uninformed buyers and sellers (Liu, 2009). In 

particular, we assume that the uninformed buyers (resp. sellers) extract the noisy signal
1,

~
bZ  

(resp. Zs,1) from the same information set L(Θ) perceived from the initial time of trading t =1.  

Let us consider the case in which uninformed buyers are seeking to predict the 

fundamental value of the risky asset Xb,T after interpreting a noisy signal 
1,

~
bZ , which verifies 

1,bT,b1,b XZ
~ ε+= where 1,bε is an idiosyncratic shock, independent of Xb,T, with mean 0 and 

variance 2
1,,bB

OF
εσ⋅ . Assuming that Xb,T and 1,

~
bZ  have a joint normal distribution, we exploit the 

Projection theorem to update their conjectures on the buying reservation prices18 as follows:   
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17 Berkman and Koch (2008) confirm the merits of their proxy that we have denoted OF/B by showing that their 
daily variations are positively (resp. negatively) correlated with the arrival rate of uninformed traders, the trading 
volume and the market depth (resp. the bid-ask spread and the probability of informed trading).  
18 One reason to use normal distributions is this popularity amongst the order placement models and its properties: 
expectation, variance, projection theorem of joint normal distributions and integral calculus. Another reason is that 
coupling exponential utility functions with normal distribution allows to control the effects of informed trading 
and risk aversion on prices. A first effect leads to a reduction of price information disclosure whereas the second 
effect contribute to increase it by diminishing the impact of noise trading. With normal distributions and 
exponential utility, Biais and Foucault (1993) find that these two effects are exactly offset.  
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Where: 
2

1,,b
2

x,b

2
x,b2

x,b

B

OF
εσσ

σ
ρ

⋅+
=  is the degree of uninformed buyers’ projection of fundamental value 

Xb,T onto the noisy signal 
1,

~
bZ extracted from the LOB informational state L(Θ). 

Likewise, uninformed sellers are assumed to homogeneously observe a noisy signal after 

monitoring the LOB informational set. Based on this signal, they forecast the fundamental value 

of the risky asset Xs,T after interpreting a noisy signal 
1,

~
bZ , which corresponds to 1,sT,s1,s XZ

~ ε+=

where
1,sε is an idiosyncratic shock, independent of Xs,T with mean 0 and variance 2

1,,sB

OF
εσ⋅ . 

Assuming that Xs,t and 1,

~
sZ  are jointly normal distributed, their projections are as follows: 
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Where: 

2
1,,s

2
x,s

2
x,s2

x,s

B

OF
εσσ

σ
ρ

⋅+
=  is the degree of uninformed sellers’ projection of fundamental value 

Xs,T onto the noisy signal 1,

~
sZ extracted from the LOB informational state L(Θ). 

We introduce a specific public information structure for two distinct reasons. First, prices 

and order flow of informed traders aggregate dispersed private information and could provide 

further information about the fundamental value of the risky asset. Second, the net order flow 

of informed traders initiated by their brokers give some indications about the realised amount 

of noise trading which can allow uninformed traders to partly hedge noise trader risk (to which 

market orders is exposed). For ρ2
b = ρ2

s    = [0;1), these two informational roles of price and order 

flow are present. Conversely, the only visible signal is this held by informed traders when ρ2
b = 

ρ2
s = 1 (perfect correlation). Besides, as ρ2

b  and ρ2
s  go down, the noise components of prices and 

(order book) public information become increasingly uncorrelated across traders. 

The above-mentioned model features (1); (2); (3); (4) have important consequences on 

the order strategies of risk averse uninformed traders that we describe in the next paragraph.  

2.2. The uninformed trader’s limit order strategies  

Order placement strategies is a dynamic process that involves not only the submission of 

market and limit orders but also the revision of limit orders. In our setting, uninformed traders 

are the only limit order submitters. We make the classical assumption that a limit order expires 

at the end of the trading session if it is not cancelled before (e.g., Handa et al., 2003).  
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Uninformed traders can trade with different counterparty traders without restriction: 

informed traders who arrive with a probability pI, noise traders with a probability pN and 

uninformed traders with a probability pU. In addition, we suppose that uninformed buyers (resp. 

sellers) homogeneously recognize the arrival rate of market sell (resp. buy) orders: M
sk  (resp.

M
bk ) which are submitted to urgently sell (resp. buy) orders. From Fig. 1, we observe that a 

limit buy order may be: (1) executed against informed sellers (CI), (2) executed against noisy 

sellers (CN), (3) executed against uninformed sellers (CU), or (4) unexecuted (CRE). A market 

buy order is immediately executed with an uninformed limit sell order. The probability to face 

informed sellers’ counterpart is pI× M
sk while PN× M

sk , pU× M
sk , and (1− M

sk ) are the probability 

to face noise sellers, aggressive uninformed sellers and patient uninformed sellers (Glosten, 

1994) respectively. In addition, Fig. 1 displays all possible configurations for which uninformed 

sellers can execute a limit sell order or alternatively a market sell order. Accordingly, their 

probability to be confronted to informed buyers is pI× M
bk while PN× M

bk , pU× M
bk , 1− M

bk  are 

the probability to be confronted to noise buyers, aggressive uninformed buyers and patient 

uninformed buyers respectively (Glosten, 1994). 

<Fig. 1 is inserted about here>  

Henceforth, we are able to determine four specific profit functions for an uninformed 

trader submitting a limit order and executing (or not) it at time t given the profile of counterpart 

trader met (CI, CN, CU,CRE). For the four scenarios presented below, the subscript b and s 

indicate the buy and sell sides respectively, L denotes an uninformed trader’s limit order 

strategy, E (WT) stands for his expected terminal wealth at the end of the trading session T.  

(1) Informed traders at the opposite side. For Glosten (1994) and Handa et al. (2003), limit 

order traders are confronted to an adverse selection problem when they meet informed 

counterparty traders. Both Foucault (1999) and Liu (2009) consider that uninformed traders 

who place a buy (resp. sell) limit order write a free put (resp. call) option of the execution price 

as the best bid price Pbid (resp. the best ask price Pask) to informed traders. For Foucault (1999), 

this option may be exercised when volatility is higher, triggering a potential limit order harmful 

execution. By placing a limit buy (resp. sell) order conditioning on informed trades (CI) given 

the implied probability density function ( )
I

C,Z
~

Xf 1,bT,bt,b
(resp. ( )

I
C,Z

~
Xf 1,sT,st,s

), an uninformed 

trader with a terminal wealth WT expects the following utility: 

• Buy side: [ ] ( )[ ][ ] ( ) T,bI1,bT,bt,b

PR

bid1t,bI1,bT
L

t,b dXC,Z
~

Xf PWXexp1,Z
~

)W(u
bidT

C ∫∞ −+−−=Ε φ  

• Sell side: [ ] ( )[ ][ ] ( ) T,sI1,sT,st,sPR ask1t,sI1,sT
L

t,s dXC,Z
~

Xf PWXexp1C,Z
~

)W(u
askT

∫
∞

++−−−=Ε φ  
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( )( )[ ][ ] ( )

( )( )[ ][ ] ( ) T,sN1,sT,st,sask1Tt,s

T,sN1,sT,st,sRP ask1Tt,s

T,sN1,sT,st,s

RP

ask1Tt,sN1,sT
L

t,s

dXC,Z
~

Xf PWRXexp1                                

dX,Z
~

Xf PWRXexp1                                

dX,Z
~

Xf PWRXexp1,Z
~

)W(u

C
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Task

Task

∫

∫

∫

∞

∞−

∞
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++−−−=

++−−−+

++−−−=Ε

φ

φ

φ

(2) Noise traders (N) at the opposite side. Market microstructure literature often postulates 

that noise traders do not hold private information. They can use market orders to satisfy 

immediate liquidity or portfolio rebalancing needs. Also, their speculative feedback strategies 

explain their aggressive trading (de Long et al., 1990). Theoretically speaking, noise sellers 

(resp. buyers) trade the altruistic price Pbid (resp. Pask) with limit order traders to get immediate 

order execution. Accordingly, the actions of noise traders beget a bid-ask spread reduction, 

allowing uninformed traders to reduce their adverse selection losses but hinder the adjustment 

of prices to the fundamental asset value if the market is less efficient (Bloomfield et al., 2009). 

Then, execution of limit orders become uncertain because the fundamental asset value is more 

volatile or the picking-off risk may increase (Foucault, 1999) if adverse public information 

arrives.  By posting a limit buy (resp. sell) order conditioning on trading with a noise trader 

counterpart (CN) given the implied probability density function ( )
N

C,Z
~

Xf 1,bT,bt,b
(resp.

( )
N

C,Z
~

Xf 1,sT,st,s
, an uninformed trader with a terminal wealth WT expects the following utility: 

• Buy side: 

[ ] ( )( )[ ][ ] ( )
( )( )[ ][ ] ( )

( )( )[ ][ ] ( ) T,bN1,bT,bt,bbid1Tt,b

T,bN1,bT,bt,bRP bid1Tt,b

T,bN1,bT,bt,b

RP

bid1Tt,bN1,bT
L

t,b

dXC,Z
~

Xf PWRXexp1                               

dX,Z
~

Xf PWRXexp1                                

dX,Z
~

Xf PWRXexp1 C,Z
~

W(u

C

C

Tbid

Tbid

∫

∫

∫

∞

∞−

∞

∞−

−+−−=

−+−−+

−+−−=Ε

φ

φ

φ

 

 
• Sell side: 

 

 

Notice that the left hand side term of the above equations represents the price 

improvement while the right hand side term accounts for the picking-off risk of a limit order. 

(3) Uninformed traders at the opposite side. Unlike Foucault (1999) and Handa et al. (2003), 

we also consider the case for which an uninformed market order trader is the counterpart. He is 

supposed to behave like a liquidity trader (Goettler et al., 2005; Bloomfield et al., 2009) in 

submitting market orders to gain immediacy or because they estimate higher waiting costs due 

to existing aggressive price limit orders in the same side (Rosu, 2009). Given the arrival of an 

uninformed market order counterparty trader, an uninformed order trader can realize trading 

gains from price improvement but also can face risk of being picked off as is the case previously 

with noise traders. By submitting a limit buy (sell) order conditioning on uninformed trade (CU) 

given the implied probability density function ( )
U

C,Z
~

Xf 1,bT,bt,b
 (resp. ( )

U
C,Z

~
Xf 1,sT,st,s

), an 

uninformed trader with a terminal wealth WT expects the following utility: 

• Buy side: [ ] ( )( )[ ][ ] ( ) T,bU1,bT,bt,bbid1Tt,bU1,bT
L

t,b dX,Z
~

Xf PWRXexp1,Z
~

)W(u CC ∫
∞

∞−
−+−−=Ε φ  

 

• Sell side: [ ] ( )( )[ ][ ] ( ) T,sU1,sT,st,sask1Tt,sU1,sT
L

t,s dX,Z
~

Xf PWRXexp1,Z
~

)W(u CC ∫
∞

∞−
++−−−=Ε φ  
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 (4) Limit orders of the opposite side. In the opposite LOB side, there are several reasons for 

an absence of incoming market orders. First, as informed traders obtain new information which 

is desirable, they can submit same side market orders. Second, the opposite side noise traders 

may have no incentives demand liquidity in submitting place market orders. Third, uninformed 

traders of the opposite side may decide to place new limit order or undercut existing ones. In 

these three possible configurations, any limit order trader will lose the opportunity of price 

improvement and run the risks of uncertain limit order execution. To this respect, we assume 

that an uninformed trader is rational in a sense that if he expects that a limit order cannot be 

executed before the end of period T, he will prefer to invest in the bond from which he earns a 

fixed payoff RT (Liu, 2009). By placing a limit buy (resp. sell) order conditioning on the risk 

of non-execution (CNE) given the implied probability density function ( )
NE

C,Z
~

Xf 1,bT,bt,b
(resp.

( )
NE

C,Z
~

Xf 1,sT,st,s
), an uninformed trader with a terminal wealth WT has the expected utility: 

• Buy side: [ ] ( )( )[ ] ( ) T,b1,bT,bt,b1T1,bT
L

t,b dXC,Z
~

Xf WRexp1C,Z
~

)W(u
NENE ∫

∞

∞−
−−−=Ε φ   

 

• Sell side: [ ] ( )( )[ ][ ] ( ) T,s1,sT,st,s1T1,sT
L

t,s dXC,Z
~

Xf WRexp1C,Z
~

)W(u
NENE ∫

∞

∞−
−−−=Ε φ  

2.3. The uninformed trader’s market order strategies 

The uninformed buyer who has a higher valuation for the risky asset faces a decision tree 

displayed in the upper panel of Fig. 1. If the competition for order execution makes their limit 

order strategy unprofitable given insignificant non-execution risks and waiting costs (Rosu, 

2009), uninformed buyers can instead submit a market order strategy denoted M. By placing a 

market buy (sell) order at time 1, given the implied probability density function ( )1,,,

~
bTbtb ZXf

(resp. ( )1,,,

~
sTsts ZXf ), an uninformed trader with a terminal wealth WT has the expected utility: 

• Buy side: [ ] ( )( )[ ][ ] ( ) T,b1,bT,b1,bask1Tt,b1,bT
M

1,b dXZ
~

Xf PWRXexp1Z
~

)W(u ∫
∞

∞−
−+−−=Ε φ  

 

• Sell side: [ ] ( )( )[ ][ ] ( ) T,s1,bT,s1,st,sbid1T1,sT
M

1,s dXZ
~

Xf XPWRexp1Z
~

)W(u ∫
∞

∞−
−+−−=Ε φ  

3.  The equilibrium of the model and optimal prices 

3.1. The equilibrium of our model and the optimal bid and ask prices  

We infer the equilibrium of our model to make optimal the uninformed trader’s order 

strategy who faces uncertain market conditions: absence of knowledge upon the precision of 

(noisy) public information and no identification of counterparty traders among others. In 

previous sections, we have seen that the order strategy of uninformed traders involves two steps:  

- either submit a buy (resp. sell) limit order or a buy (resp. sell) market order ;  

- if a limit order strategy is followed, determine or revise the bid or ask price at which the 

order is posted. We begin by transposing the optimal order strategy of an uninformed buyer.  
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After normalizing the payoff of the uninformed trader to zero if the limit order expires in 

the case that it is not executed, we write his expected utility for an order strategy combining a 

limit buy order placed at a price Pbid and a buy market order executed at Pask as follows: 

[ ] ( )( )[ ][ ] ( )
( )( )[ ][ ] ( )

( )( )[ ][ ] ( )
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∫
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∞−
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∞−

−−−+

−+−−++

−+−−=

−+−−=Ε

φ

φ

φ

φ

θ

 (1) 

With: { }U,N∈θ  and the respective probabilities which both verify 1 p pp UNI =++ .   

The uninformed trader observes the LOB informational state before placing (or revising) 

his buy order at time t. For the sake of tractability, the probability density functions conditioning 

on each of his counterparty trader are assumed identical. Using a Taylor expansion, we obtain 

the linear buy side equilibrium figured out in Eq. (2) where its left hand side represents the 

expected price improvement of a limit order over a market order while the right hand side 

aggregates the expected risks of adverse selection, of picking off and of non-execution. 

Proposition 1.1. summarizes the implications in terms of price formation. 

Proposition 1.1. The uninformed buyer aims at producing a sufficient price improvement to 

cover the adverse selection costs due to the presence of informed traders and minimize the risks 

of non-execution and of picking-off due to the arrival of (noisy) public information signals.  
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= is the degree of an uninformed buyer’s projection of fundamental asset value; 
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RA,AS
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 is the adverse selection 

loss of risk averse buyer. It is a nonlinear-implicit function of: the arrival rate of market sell 

orders, his probability to trade with an informed trader (PI), his revised fundamental value of 

the risky asset: 
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Appendix A.1 shows the proof. 
            □ 
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Similarly, the uninformed seller observes the informational state of LOB at time t-1 to 

submit (or revise) his limit sell order accordingly at time t. He is indifferent between placing a 

limit order or a market order if his expected utility from executing a market order at the bid 

price Pbid equals that from trading with a limit order submitted at the ask price Pask: 
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  (3) 

With { }U,N∈θ and the respective probabilities verify 1 p pp UNI =++ . 

We now derive the linear equilibrium for the sell side as made for the buy side. The left 

hand side of Eq. (4) represents the price improvement expected from a limit order, while the 

right hand side encapsulates the expected risks of adverse selection loss, of picking-off and of 

non-execution. Proposition 1.2. summarizes the implications in terms of price formation.  

Proposition 1.2. The uninformed seller aims at producing a sufficient price improvement to 

cover the adverse selection costs due to the presence of informed traders and minimize the risks 

of non-execution and of picking-off due to the arrival of (noisy) public information signals. 
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of a risk averse seller. It is a nonlinear-implicit function of: the arrival rate of market buy 
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Appendix A.1 shows the proof. 

            □ 
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We are now able to conclude on several points. First, the optimal limit prices should 

generate enough profits to cover the direct costs implied by adverse selection (Handa et al., 

2003) and picking-off risks (Foucault, 1999). We find that the picking-off risk is positively 

related to the volatility of the risky asset in line with the prediction made by Foucault (1999). 

Second, the uninformed trader adjusts his buy and sell reservation asset values given the level 

of volatility, his coefficient of risk aversion, and his public (noisy) information signals received. 

Third, a lower execution risk at each price under the best quote induce less incoming aggressive 

counterpart orders and higher waiting costs for execution (Rosu, 2009). Finally, in a context of 

imperfect information and market uncertainty, a fully revealing equilibrium in which informed 

traders’ signals are fully revealed into prices is unlikely (Foster and Viswanathan, 2016)19.  

Instead, Proposition 2 focuses on a signal-revealing, complete equilibrium solved from 

the partial buy and sell sides’ equilibrium strategies that are determined in Eqs. (2) and (4). 

Proposition 2: There is a unique and signal revealing equilibrium of price quotation for a given 

trading time t which involves the following optimal bid ( bidP ) and ask ( askP ) prices: 
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In Eq. (5), the first part of the bid price is related to the asset valuations of market sell 

order traders and limit buy order traders. For a risk-averse market sell order trader, the 

reservation value is adjusted to asset volatility 2
,xsσ and by the discount rate: ( )21 sOF

B ρφ − . For a 

risk-averse limit buy (uninformed) trader, the reservation value depends on the asset volatility, 

the discount rate ( )21 bOF

B ρφ − and the expected loss of adverse selection: RA,AS
bLOSS . In other 

words, an uninformed buyer can improve his price to increase its trading profits with noisy 

sellers and aggressive uninformed sellers. Otherwise, he faces the risk of adverse selection 

expressed in the second term of Eq. (5), this of being picked-off, and of non-execution 

expressed in the third term of Eq. (5). According to the rule of competition applied to order 

execution, the preference of uninformed buyers for placing limit orders generates an increase 

                                                           
19 Foster and Viswanathan (1996) show that the lower (resp. higher) the correlation of private signals about the 
fundamental asset value held by informed traders is, the less (resp. more) traded prices are informative. 
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of Pbid reducing de facto their expected utility. Ultimately, while the expected utility of limit 

buy order at time t equals this of market buy order, uninformed buyers are indifferent between 

trading via limit order and market order (Kovaleva and Iori, 2012). 

The first term of Eq. (6) makes the ask price dependent to the asset valuations of market 

buy order traders and limit sell order traders. The rationale used to explain the escalation of bid 

price also apply to explain the escalation of the ask price. Additionally, the bid and ask prices 

are together related to the difference between discounted adverse selection losses of buyers and 

sellers: RA,AS
s

RA,AS
b LOSSLOSS − from the third term of Eqs. (5) and (6). If RA,AS

sLOSS is lower (resp. 

higher) than RA,AS
bLOSS , bid and ask prices simultaneously would increase (resp. fall). Other 

things being equal, uninformed sellers can expect a rise (resp. a fall) in their trading profits 

whereas uninformed buyers can expect an increase (resp. decrease) of their trading profits. 

Therefore, the evolution of adverse selection risks borne by uninformed traders are directly 

related to the arrival rate of market orders. Proposition 3 focuses on the implied correlations 

between variation in adverse selection risks and variation in the arrival rate of market orders. 

Proposition 3. The expected adverse selection losses recognized by uninformed traders are 

directly affected by the arrival rates of market buy and sell orders.  

(a) The expected adverse selection costs recognized by uninformed buyers (resp. sellers) are 

negatively (resp. positively) associated with the arrival rates of market buy orders, implying:

0k/LOSS M
b

RA,AS
b <∂∂  (resp. 0k/LOSS M

s
RA,AS

s >∂∂ ) 

(b) The expected adverse selection costs recognized by uninformed sellers (resp. buyers) are 

negatively (resp. positively) associated with the arrival rates of market sell orders, implying: 

0k/LOSS M
b

RA,AS
b >∂∂  (resp. 0k/LOSS M

s
RA,AS

s <∂∂ ) 

 
 

Proof of Proposition 3 is given in Appendix A.2. 
            □ 

3.2. A novel bid-ask spread decomposition (reduced form of the model) 

As a first step toward the study of price formation, the order strategy of uninformed trader 

is scrutinized in a fairly structured dynamic environment. In the following paragraph, we 

propose a reduced form of our model in which uninformed traders homogeneously recognize a 

similar arrival rate of buy and sell market orders. This implies that the parameter k verifies 

M
bk=k  and M

skk1 =− and directly affects the probability of order execution as seen in Fig. 2. 

If k tends to unity, most of market participants are considered sellers. To avoid the risk 

of non-execution, two strategies are possible, either they decrease the bid price of their limit 

order or alternatively the ask price of their market sell order. Therefore, their revised bid and 

ask quotations approaches their reservation value. At the opposite side, few numbered buyers 
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have an absolute competitive advantage over outnumbered sellers but the adverse selection risk 

still concerns uninformed buyers if sellers are informed. If k tends to zero, outnumbered buyers 

will compete with each other and pushes their prices up. The ask price of market buy orders 

approaches the reservation buyers’ value while the bid price of the limit order is close to the 

buyers’ reservation value minus sellers’ loss of adverse selection. Also, uninformed sellers 

benefit from a competitive advantage even through sellers still suffer from adverse selection 

risks if counterparty traders are informed.   

<Fig. 2 is inserted about here> 

Hence, we can infer the buy and sell partial equilibrium uninformed traders’ strategies 

should they expect an equivalent arrival rate of buy and sell market orders. After determining 

the optimal bid and ask prices, we obtain a novel decomposition of the bid-ask spread in three 

factors, which is presented in Proposition 4. 

Proposition 4. If uninformed traders expect an equivalent arrival rate of buy and sell market 

orders, the equilibrium bid-ask spread π is decomposed in three weighted factors: 

- the discounted adverse selection costs of uninformed buyers and sellers respectively; 

- the present value of the different risk-adjusted traders’ valuations of the risky asset. 

[ ] s
T

3
b

T

2
sb

T

1 ASC
R

ASC
R

VRVR
R

×+×+−×=
ωωωπ  (7) 

Given the weights:  
)k1(k1

)k1(k
1 −×−

−=ω ;  
)k1(k1

k2

2 −×−
=ω ;  

)k1(k1

)k1( 2

3 −×−
−=ω such that ω1 + ω2+ ω3 = 1.  

And the following bid-ask spread factors: 

- )
2

1
()1(Z

~
VR 2

x,b
b
x

2
bt,b

2
bb φσ−µ⋅ρ−+ρ= : the risk-adjusted valuation of a buyer; 

- )
2

1
()1(Z

~
VR 2

x,s
s
x

2
st,s

2
ss φσ+µ⋅ρ−+ρ= : the risk-adjusted valuation of a seller; 

- RA,AS
b

2
x,b

2
bb LOSS)1()1t(

B

2

1
ASC

OF
+⋅−⋅−= σρφ : the discounted adverse selection costs of a buyer; 

- RA,AS
s

2
x,s

2
ss LOSS)1()1t(

B

2

1
ASC

OF
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Proof of Proposition 4 is given in Appendix A.3. 

            □ 
 

In the case that ρb = ρs, the expected adverse selection loss of sellers (buyers) is only 

involved in the bid-ask spread composition, generating ω3=1 (resp. ω2=1) under extreme 

market competition (k=0% ) (resp. k=100%). Ceteris Paribus, the size of the bid-ask spread is 

minimized. When k=50%, that means a well-balanced market, the bid-ask spread achieves a 

maximum and the equality ω1=ω2= ω3=1/3 is verified. In either case, it is the largest value of 

ω1 i.e. the weight of the different valuations to reflect traders’ heterogeneous beliefs.  
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Generally, the viability of LOB depends on a constant provision of liquidity at constrained 

costs, which may be either immediacy costs (for the profitability of market orders) or bid-ask 

spread (for the profitability of limit orders). From our model, we understand that the bid-ask 

spread must provide enough price improvement for uninformed traders to reduce their risk of 

adverse selection and of picking-off. Thus, the bid-ask spread also incorporates the effect of 

buyer’s and sellers’ heteregeneous valuations when the fundamental value of the risky asset is 

unknown. Finally, we determine endogenously the precision of (noisy) public information that 

is likely to affect the weights corresponding to the three bid-ask spread components.  

3.3. The behaviour of bid ask-spread according to the precision of public information  

Bloomfield et al. (2009) oppose informed traders who hold private signals on the 

fundamental value to uninformed traders who trade on the basis of noisy prices and information. 

Similar to these authors, we assume that informed traders trade on the basis of private 

signals while uninformed traders update their beliefs on the (unknown) risky asset 

fundamental value at each time of the trading period [0;T] conditioning on the noisy public 

information observed at t-1. Then, we allow for variations of noisy public information 

precisions between two extreme cases: a perfect precision ρ=1 or a complete imprecision ρ=0 

to study the associated effects on the bid ask-spread with the Corollary 1 and Corollary 2. 

Corollary 1: In the case of perfect correlation of public information signals which implies that 

both ρb = ρs=1 and 1
B

OF
→ , the equilibrium bid-ask spread π verifies the following equation:  
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Corollary 2: In the case of very low level of correlation of public information signals implying 

that both ρb and ρs= 0 and 0→
OF

B , the equilibrium bid-ask spread π is written as follows:  
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Where: 2
x,bx,bb 2

1
VR φσ+µ=′′ (resp. 2

x,sx,ss 2

1
VR φσ+µ=″ ) are the risk adjusted valuation of buyer 

(resp. seller) on the fundamental value of the risky asset.  
 

Appendix A.4 shows the proof.  
            □ 

 
For these two propositions, the first order conditions that give extremums (maximum 

and minimum) of Eq. (7) are maintained. With an extreme level of order imbalance (k=0% ) 

(resp. k=100%) the expected loss of adverse selection of sellers (buyers) are only involved, 

the bid-ask spread is minimized and ω3=1 (resp. ω2=1). If k=50%, we verify the result of 

Handa et al. (2003) i.e. the bid-ask spread achieves a maximum with ω1= ω2= ω3=1/3.  

These two results confirm the stability of our model inferences in terms of the size and 

composition of the bid-ask spread in response to changing market conditions. 
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4.  Numerical simulation and implications for the bid-ask spread  

Even through our model offers an insightful analysis of price formation and a bid-ask 

spread decomposition, its unique solution is not in a linear closed form. To transform Eq. (7) in 

a linear form, we assume that the expected value of the terminal wealth ranged from zero to 

unity. Based on this assumption, we set up the following basic parameters values for a scenario 

analysis of our model: µb,x= 0.12, µs,x= 0.11, their respective variances: σb,x=0.003 and 

σs,x=0.003, R=1.01, φ=1, the arrival rate of market orders : 5.0kkk M
s

M
b ===   and the degree of 

precision for noisy signals
sb

OFOF

BB ρ⋅=ρ⋅ = 0.2. We thus proceed by a recursive process on the 

equilibrium conditions to obtain convergent solutions. Hence, we can explore the model 

implications using numerical tests drawn from independently tuning the parameters.   

Fig. 3 presents the effect of a variation in the arrival rate of market buy order given two 

risk aversion coefficients (ϕ= 1 or ϕ= 1,5) on the adverse selection costs and the spread. We 

confirm the implications of Proposition 3, i.e. the uninformed (resp. buyers’) adverse selection 

cost are negatively (resp. positively) associated with the arrival rates of market buy orders when 

the size of the spread is rather constant. This result suggests that the first negative effect on 

adverse selection (ω3) neutralize the second one (ω2), while ω1 is unaffected. 

<Fig. 3 is inserted about here>  

Fig. 4 plots the adverse selection costs and spread as the precision of buyer’s and sellers’ 

noisy signals equally vary. The precision of noisy signals descends (resp. ascends) the expected 

adverse selection costs for sellers (resp. buyers) whereas the bid ask-spread is stable whatever 

the level of risk aversion is. This result is not surprising because when uninformed traders hold 

more precise information, they are more confident on their estimation of their reservation buy 

and sell values. Therefore, they revise more appropriately the price of their limit orders 

downward (resp. upward) reducing their risk of being picked-off in the event that an adverse 

(resp. favorable) information arrives (Foucault, 1999). 

<Fig. 4 is inserted about here>  

In Fig. 5, we examine the joint effect of increasing the variance of buy and sell reservation 

values and the precision of noisy signals on the difference in risk-adjusted valuation (ω1) and 

on the bid-ask spread. Whatever the variance of buy and sell reservation values is, the 

percentage contribution of ω1 to the bid-ask spread remains stable whereas its absolute level 

augments as soon as the precision of noisy signals is lowered.  

<Fig. 5 is inserted about here>  
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5.  Empirical Analysis  

Our empirical analysis aims at first verifying whether the predictions presented in 

Propositions 2 and 4, Corollaries 1 and 2 are valid. We focus our analysis on an emerging 

commodity market: the EU Emission Allowance (EUA) carbon market for four main reasons:  

- All carbon exchanges use a LOB trading system from market inception until now. 

- Some market microstructure studies have explained how informed interact actively with 

uninformed traders in EUA futures market (Kalaitzoglou and Ibrahim, 2013; 2016). 

- The size of the bid-ask spread fluctuates throughout the year and is mainly determined by 

adverse selection costs while inventory costs play a minor role (Medina et al., 2014). 

- A competitive and active brokerage sector facilitates the recourse to block trading and order 

splitting strategies by informed traders (Frunza, 2010; Ibikunle et al., 2016)20. 

- Chevallier et al. (2009) estimate a risk aversion coefficient for EUA futures higher than for 

equity markets, which depends on the occurrence of annual regulatory (compliance) events. 

5.1. Data selection  

The data used are drawn from the Thomson Reuters Tick History database (TRTH) that 

contains the history of order book information available to market participants in real time in 

the LOB of ECX. Market participants are polluting firms and external investors who can trade 

if they have a trading account (as a principal) or via their brokers (as a customer).  

The LOB of ECX concentrates almost 90% of EUA futures trading activity from 2008 to 

2012 (Mizrach and Otsubo, 2014). Also called Webice, it is an order driven market where 

matched bid and ask quotes are executed based on first price and then time priority. Trading is 

continuous from Monday to Friday, with trading hours 07:00–17:00 London Time (GMT). 

Every EUA futures contract, ‘lot’, corresponds to 1000 EUAs (1 EUA is the right to emit 1 

tonne equivalent CO2). Prices are quoted in Euros and the minimum tick is 0.01€.  

We study a sample of five EUA December futures during their latest 254 trading days 

when they are the most liquid and concentrate investors’ attention covering the entire Phase II 

of EU ETS namely March 1, 2008 to December 31, 2012. For each trade, TRTH reports the 

futures code, the price and time of execution, the size in lots21, while for each LOB update, the 

dataset reports the timestamp to the nearest hundredth of a second, the best five bid and ask 

prices and their respective quantity demanded (ask size) or offered (bid size).  

                                                           
20 ECX is held by the Intercontinental Exchange (ICE), a leading platform in the energy derivatives trading. Twelve 
brokers are very active on ECX: BGC Partners; CantorCO2e; Evolution Markets; GFI Group; ICAP; Marex 
Spectron; PVM Oil Associates, 42 Financial Services, Tradition Financial Services, Tullet Prebon, all of members 
of the London Energy Brokers Association (LEBA), and Newedge, Consus. According to Frunza (2010), their 
average net margins have been reduced due to a high pressure of their customers, the falling prices and the high 
number of competitors: 1.11 billion euros in 2009, and two years after: 0.63 billion euros. 
21 EUA futures contract are traded per lot (1000teqC02) with a tick size of 0.01€ (i.e.10€ per lot) on ECX. 
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We apply several filters to clean trade and order book data. Trades that occurred in ECX 

during the pre-opening period (6:45 and 7:00) or in the after-hours market are discarded. We 

remove orders above and below 50 ticks from the best quote to avoid the existence of stale or 

erroneous orders. In line with prior empirical studies on the bid-ask spread in the EUA futures 

market (Frino et al., 2010; Medina et al., 2014, Mizrach and Otsubo, 2014) we classify orders 

executed at the best prevailing ask (resp. bid) as buyer-initiated (seller-initiated) trades.  

5.2. Bid-ask spreads, timing and size of trades  

According the TRTH database, we generate all necessary variables to examine the 

validity of our model and its implications. We first compute the proportional bid-ask spread: 

2

BestPBestP

BestPBestP
PBAS

tbidtask

tbidtask

+
−

=  

We study the behavior of PBAS as well as the below mentioned variable into 15-minute 

intervals. This interval is a tradeoff between too much aggregation and noisy a dataset22.  

We calculate the order imbalance as a proxy of our market competition parameter k23: 

   %100
submitted orders sell andbuy limit bid andask  at the  tradesofnumber 

submitted orders selllimit  ask at the  tradesofnumber 
k ×

+
+=  

Given the k parameter, the components of PBAS are estimated as follows:  

• Weight of the different valuations (ω1%) = k×(1-k) / [1- k×(1-k)] 
• Weight of the buyer’s expected loss of adverse selection (ω2 %) = k² / [1- k×(1-k)] 
• Weight of the seller’s expected loss of adverse selection (ω3 %) = (1-k)² / [1- k×(1-k)] 

Table 1 presents monthly means for the above variables of interest. Between May and 

September, the size of the proportional bid-ask spread decreases on average by 1.1% when the 

information asymmetry decreases (Medina et al., 2014). In contrast, its size increases by 9.7% 

between December and April when the levels of information asymmetry and of risk aversion 

are significantly higher (Chevallier et al., 2009).  

We follow the method of Handa et al. (2003)24 to explore the linkages between the 

proportional bid-ask spread (PBAS%), its factors and the order imbalance k in more details. 

We divide our sample into two parts where the first part is k% larger than 50% and the second 

part is k% smaller than 50%. We observe that in the region where k is greater (less) than 50%, 

the spread is positively related to k and when k is closer to 50%, it achieves its highest levels 

in line with the predictions of Proposition 4 even if the influence of informed trading merits 

                                                           
22 As a robustness check, we have estimated the order imbalance k over a 30-minute interval and calculated k with 
the immediate LOB depth (limit orders posted at the best bid or ask). Our results were qualitatively similar.  
23 Handa et al. (2003) use a very similar measure to ours in dividing the trading volume at the ask plus this of limit 
buys by the sum of the volume of limit buys and sells and the volume of trades.  
24 Handa et al. (2003) show that the monthly proportional spreads follow an inverted U-shaped pattern over order 
imbalance values, i.e spreads are lower (resp. higher) when the market is unbalanced (resp. well-balanced). 
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further investigation. Indeed, the factors that accounts for adverse selection (ω2, ω3) follow an 

opposite pattern, being lower (higher) when the order flow is proportionately more concentrated 

on sell side (balanced). Moreover, we obtain that the size of the spread is significantly higher 

for days when the order imbalance k is higher (resp. lower) than 50% between December and 

April (resp. May and September) consistent with Mizrach and Otsubo (2014) findings. These 

two results provide evidence that the size of the bid–ask spread and its three factors (ω1, ω2, 

ω3) are directly related to the order imbalance measure as it specified in our model.  

Panel B presents the results of univariate regressions of PBAS over three periods of the 

continuous trading session: 7:00-9:00, 9:00-15:00, 15:00-17:00. Consistent with Medina et al. 

(2014) and Ibikunle et al. (2016) findings, monthly bid-ask spreads exhibit an intraday U-

shaped pattern. Indeed, they are greater at the opening hours (7:00 to 9:00) in comparison to 

normal hours (9:00 to 13:00) before they increase during the latest two hours (15:00 to 17:00). 

<Table 1 is inserted about here>  

Hitherto, our emphasis on the relation between order imbalance and the bid-ask spreads 

provide results similar to these of Handa et al. (2003) obtained with data from stock markets. 

Because k% simultaneously generates ω1 i.e. the influence of traders’ heterogeneous beliefs 

and the expected adverse selection costs of buyers (ω2%) and sellers (ω3%), it will be relevant 

to consider ω1, ω2, ω3 altogether with the bid-ask spread. To this respect, we perform two model 

regressions on the proportional bid-ask spreads (PBAS%) to assess whether the bid-ask spread 

decomposition remains robust to changing market conditions. 

In the first regression model, we consider time intervals as the unique control variable. 

Medina et al. (2014) estimate a larger Probability of Informed trading (PIN: Easley et al., 

1996)25 during morning hours for all EUA December futures studies. Ibikunle et al. (2016) 

assess the influence of block trading strategies of informed traders on bid-ask spreads and 

adverse selection costs: intense at the open and mild at the close, which partially explain the U-

shaped pattern of the bid-ask spread. Kalaitzoglou and Ibrahim (2013) show that private 

information held by informed traders is incorporated into prices quicker when the trading 

volume and the trading frequency are increasing. Also, they find that fundamental and 

uninformed traders narrow their spreads to provide liquidity until the last hour contributing to 

make prices noisier. In line with these complementary findings, we assume that time intervals 

can capture the effect of informed trading and noise on spreads.  

 

                                                           
25 Easley et al. (1996) estimate the probability of informed trading (PIN) in a sequential model where informed 
traders buy (resp. sell) when news is good (resp. bad), and do not trade when no news. Uninformed traders do not 
know the probability of other trader counterparts being informed like in our model. In contrast, they place limit 
buy and sell orders at a constant rate while in our model they submit buy and sell orders at different rate. 
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For all of these reasons, we constitute three time intervals INTj previously determined by 

Ibikunle et al. (2016) that we include as control variables into the following model regression: 

( ) ( ) tsbt,s

3

1j
j3sbt,b

3

1j
j2sbt VRASCINTVRASCINTVRPBAS εωω +−⋅⋅+−⋅⋅+= −

=
−

=
− ∑∑        (9) 

Where: 
 

• 
sbsb VRVRVR −=− : the difference between risk-adjusted valuations of buyers and sellers;  

• ASCb (resp. ASCs): the adverse selection costs of buyers (resp. sellers) are defined in Eq. (7);  

• INT 1 if PBAS is between 7:00 and 9:00; INT 2 if PBAS is between 9:00 and 15:00, INT 3 if 

PBAS between 15:00 and 17:00;  

• εt is the random error term. 

According to Palao and Pardo (2014), traders tend to round their prices to digits ending 

in 0 or 5 and simultaneously adjust their trades as a multiple of five contracts when liquidity is 

lower. Moreover, Kalaitzoglou and Ibrahim (2016) show that uninformed traders submit more 

limit orders when the spread is large, or when informed traders trade large orders, especially at 

earliest hours. Ibikunle et al. (2016) find that trade size is inversely related on the degree of 

price noisiness and liquidity risks perceived by informed traders so that they prefer block trades 

to execute large orders at opening hours (7:00 to 9:00). In addition to the above, Kalaitzoglou 

and Ibrahim (2013) estimate a gradual influence of order splitting strategies on prices, given a 

higher concentration of medium sized trades at closing hours.  

Given all of these evidences provided by the literature, we consider a second regression model 

where trade size is used to proxy the influence of private information signals and noise. 

Precisely, we consider three categories of trade size identical to those determined by Frino et 

al. (2010) and Ibikunle et al. (2016) to use trade size as dummy variables. In order to test the 

monotonically increasing relation between these two proxies and adverse selection costs, we 

suppress ω1 variable to avoid multicollinearity. Then, we examine this implied relation by 

running the following panel regression on the proportional bid ask spread for each EUA futures: 
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Where: 

• sbVR − , ASCb, ASCs, INT j with j=1,2,3 are computed analagously to the previous Eq. (9). 

• SIZE1 = 1 for a trade size which falls in the range: 1 and 19 contracts; SIZE2  = 1 for a trade 
size between 20 et 49 contracts; SIZE3  = 1 for a trade with more than 50 contracts. 
 

For robustness purposes, we generate a great number of convergent simulation data 

according to variations in our model parameters. The purpose of this simulation is to verify that 

regression tests are relevant to analyze the relations with the spread implied by our model. For 

that purpose, we examine the bid ask spreads involved by simulation data using panel regression 

based on three time intervals and trade size as follows: 
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Where : 
• ρbi (ρsi) is the degree of precision (correlation) of noisy signals at the buy (sell)  side and σbi 

is the volatility of reservation prices of uninformed buyers (sellers) given the following: 
- ρb1= ρs1 = σb1= σs1 = 0,4 if the simulation is performed  between 7:00 and 8:59:59s ; 

between 15:00 and 17:00 respectively ; 
- ρb2= ρs2 = σb2= σs2 = 0,3 if the simulation is performed between 9:00 and 14:59:59s. 

As shown in Table 2, nearly all monthly ω1, ω2 and ω3 coefficients turn out to be significant 

in view of their t-statistics. If the coefficients of ω1 are always significant and positive, those of 

ω2 and ω3 are more often negative and insignificant. We note that ASCs and ASCb coefficients 

are more significant during the pre-compliance period from November to April, before 

polluting firms submit and disclose their level of verified carbon emissions. This provides 

support for the observation of Medina et al. (2014) about more severe adverse selection risks 

during this period where information asymmetry among traders is higher (see also Table 1). 

Finally, the F-statistics reported in Panels A and B confirm that the dependencies between 

ω1, ω2 and ω3 have strong explanatory power on the size of bid-ask spreads. The column Simul. 

reports significant negative ω1, ω2 coefficients, suggesting a negative relation between the 

spread and the following: the adverse selection costs of buyers and sellers, the precision of 

noisy information signals and asset volatility. 

<Table 2 is inserted about here>  

In Table 3, we report the value of adverse selection costs calculated from the coefficients 

ω2 and ω3 obtained previously considering ω1, ω1 as a constant. On average, the difference in 

risk adjusted valuations represent 29.4% of the spread, while the adverse selection costs of 

sellers (resp. buyers) account for 36.5 % (resp. 34.1%). The aggregated adverse selection costs 

represent 72.3% of the spread at the opening, then slightly decrease (70.6%) to remain constant 

during the latest two hours while the bid-ask spread decreases (see Table 1). As a result, the 

bid–ask spread and adverse selection costs of sellers (resp. buyers) follows an intraday mild U-

shaped (resp. inverted U-shaped) pattern. The increase of bid-ask spread at the approach of 

closing hours (15:00 to 17:00) is more likely to be caused by a more intense trading activity of 

uninformed traders rather than a variation in adverse selection. This interpretation of such 

deadline effects corroborates this of Kalaitzoglou and Ibrahim (2016) who find that uninformed 

traders submit more market orders later in the day since the order execution risk is lowered. 

Overall, the results of Panels B confirm those of Panel A supporting the idea of a random 

rate of public information arrival, a roughly constant effect of the rounding of order sizes over 

the trading day (Palao and Pardo, 2014). If the adverse selection costs of sellers are the most 

important spread component, we observe that adverse selection costs of buyers (resp. sellers) 
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decrease (resp. increase) of two percentage points between October and April for medium and 

large trades. This result suggests that both order splitting and block trading strategies initiated 

by informed traders have gradual influences on traded prices (Kalaitzoglou and Ibrahim, 2013) 

along the trading session. Indeed, informed traders are intended to split large buy market orders 

to minimize price impact and for camouflage purposes (Ibikunle et al., 2016). As for small 

trades, we obtain an 8% increase of the component “Differences in risk-adjusted valuations”. 

We interpret this increase as a signal of the uninformed traders’ appetite for executing small 

trades. They contribute by more intense activity on the segment of small trades to make the 

order imbalance closer to 50% and widen the bid-ask spread.  

Given the complexity of bid-ask spread determination and many potential liquidity and 

information factors, the above results suggest that the spread decomposition in three factors: 

differences in risk-adjusted valuations, adverse selection of buyers and sellers is suitable.  

Market microstructure studies of carbon markets generally use spread estimators to 

estimate aggregate adverse selection costs, inventory and order processing costs (e.g., Medina 

et al., 2014; Mizrach and Otsubo, 2014). Kalaitzoglou and Ibrahim (2016) build a dynamic 

asymmetric information pricing model where the responsiveness of price changes to surprises 

in order flow (information) and changes in trading costs depend on the type of traders who 

instigate the next trade. This model relies on the strong assumption that only price-relevant 

information is included in the last trade. Conversely, we consider that uninformed traders 

monitor the full order book informational state prior to trade. Contrary to the existing literature, 

we also distinguish the adverse selection costs of buyers and sellers if the expected arrival rate 

of buy and market orders is equivalent. For these reasons, our model appears to be in a better 

position to study the composition of trading costs in the European carbon market at least. 

<Table 3 is inserted about here> 

5.3. Variations in adverse selection costs and the influence of incoming market orders 

Although the results of Table 3 are consistent with those found by the literature, our 

regressions may be potentially affected by spurious correlations with other liquidity variables. 

For example, let us assume that informed traders trade more when there are larger than usual 

trading volumes. They may do so in an attempt to camouflage their private information. 

Alternatively, they trade around information events such as the publication of compliance 

results by mid-April in the European carbon market. Since these information events often 

trigger higher trading activities, the inverse correlation between the size of the spread and 

volatility could reflect the effect of trading volume on spreads (Medina et al., 2014). 

Furthermore, the direct relation between adverse selection costs and market orders seen in 
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Proposition 3 may differ given the size of the trade. Indeed, the execution of market orders 

involves an instantaneous quote adjustment when the trade is large (Biais et al., 1995).  

To shed light on these issues, we conduct a simultaneous equations model which has two 

periods, one period before the announcement of compliance results (November-April) and one 

period post their announcement (May-September). The dependent variables are the proportional 

bid-ask spreads and the estimated adverse selection costs. The dummy variable indicates the 

change in liquidity costs around the compliance event and is denoted COMP. The independent 

variables are the volume of market orders and the autocorrelation of buy and sell market orders. 

The model we estimate is:  
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Where : 

• MO b is the volume of buy (sell) market orders executed; 

• COMP=1 if the observation is between November 1 and April 30, 0 otherwise; 

• AUTOCORRb (resp. AUTOCORR s) is the correlation between improvement in bid (resp. 

ask) quotes and the location of next order executed at the best bid or the ask quote. 
 
 

Since the time-series observations of dependent and independent variables may be subject 

to spurious regressions, in which autocorrelation indicate a significant relation between them 

while in fact there is none (Van Ness et al., 2011)26, we check the first-order autocorrelation of 

residuals for each regression. Since the Durbin-Watson statistics indicate a mild positive 

autocorrelation, the two-step transform method of Prais-Winsten to correct for 

autocorrelation27.  Table 4 reports the regression results based on the Prais-Winsten method 

which are qualitatively superior to these obtained without this correction for autocorrelation.  

The sign of relations between MO b and MOs and ASCb, ASCs are those anticipated in 

Proposition 3 for small (Panel A) and medium sized trades (Panel B). In contrast, we see from 

Panel C that the MO b and MOs coefficients are more rarely significant at 1% level and their 

signs are not those expected. This is likely because a large order's size dwarfs the quoted depth, 

making the bid-ask spread is a less relevant measure of their trading costs. Almost MO b and 

MO s coefficients for small (Panel A) and medium sized trades (Panel B are significant at 1% 

level. Those estimated in post compliance period (May-September) are more significant which 

may reflect the presence of more competitive limit orders in the opposite LOB side and a 

                                                           
26 More precisely, we obtain a Durbin-Watson statistic for ASCb (resp. ASCs) distributed as follows: 2.185 (resp. 
2.245) for the maximum value and 1.385 (resp. 1.485) for the minimum value. 
27 The Prais-Winsten procedure refines the Cochrane-Orcutt procedure by including the first observation of the 
transformed data. See Beck and Katz (1995) for a detailed discussion of the advantages of this procedure. 
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quicker incorporation of information into traded prices (Kalaitzoglou and Ibrahim, 2016). This 

first important result provides evidence against the hypothesis that random order placement 

mechanically results in frequent limit orders within the spread when the latter is large in line 

with the findings of Palao and Pardo (2014). Rather, this suggests that when the spread is large 

after large liquidity shocks, uninformed traders quickly place limit orders within the best quotes 

to supply liquidity at better prices and gain time priority.  

A second important result is that AUTOCORRb (resp. AUTOCORR s) coefficients for 

large orders are higher and only significant at opening hours when the adverse selection cost 

ASCs (resp. ASCs) is higher. After a large sale (i.e. a negative informational signal) that 

consumes the liquidity at the bid, bid and ask prices are adjusted downward for the next trade. 

To smooth the price impact associated to large market orders, informed traders are likely to 

split them as soon as limit orders are more competitive and liquidity is better. Interestingly, the 

experimental results of Majois (2011) suggest that the diagonal effect implying positive serial 

correlation of market orders essentially reflects the existence of order splitting strategies, as the 

same informed traders tend to submit the same medium market orders in succession. In our 

model, this persistent order flow pattern can also appear because a change in the risk-adjusted 

asset valuations induce uninformed traders to follow similar order strategies (Biais et al., 1995).  

A third important result related to the higher significance of AUTOCORRb and 

AUTOCORR s coefficients with signs identical to MO b and MO s for medium sizes in normal 

hours (9:00 to 15:00) and in latest hours (15:00 to 17:00) supports the explanation provided by 

Majois (2010). This result clearly indicates an increasing frequency of splitted medium market 

orders at the origin of a pronounced diagonal effect when informed traders anticipate a lower 

price impact because liquidity is more quickly replenished (Ellul et al., 2007). Moreover, the 

fact that AUTOCORR s and MOs coefficients are significantly higher in normal and latest hours 

indicates a quicker liquidity replenishment at sell side so that aggressive limit buy orders and 

sell market orders are more likely late in the day (Kalaitzoglou and Ibrahim, 2016).  

Overall, our results suggest that a rise in sellers’ adverse selection costs greatly increases 

(resp. decreases) the likelihood of small limit (resp. market) sell orders, moderately increases 

(resp. decreases) that of medium limit (resp. market) orders, but has little effect on large orders. 

<Table 4 is inserted about here>
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6.  Conclusion 

The “raison d’être” of a commodity market depends on whose perspective is considered. 

The ideal market, for any trader, may be the one in which orders are accommodated with lowest 

trading costs. For exchanges, the priority is to foster market liquidity in order to maximize their 

trading commissions. To this end, most of them have adopted an electronic LOB. 

Our paper proposes a model which is an extension of the frameworks of Foucault (1999) 

and Handa et al. (2003) to examine trading costs and order book dynamics under the assumption 

of traders’ risk aversion preferences. The novelty of our approach lies in its capacity to make 

the order strategies of risk averse uninformed traders endogenous to the noisy public 

information that they capture after monitoring their LOB screens. We proceed in two steps.  

We first present a generic version of our model set in a CARA-normal framework from 

which we develop an optimal order strategy for uninformed traders and derive optimal bid and 

ask prices. Then, we propose a reduced form of our model where uninformed traders expect an 

equivalent arrival rate of buy and sell market orders when placing or revising orders.   

The main contributions of our model are threefold. First, the bid-ask spread is tactically 

managed by uninformed traders to compensate for the risks of adverse selection (Glosten, 1994) 

and of picking-off they bear (Foucault, 1999). Second, our model inferences involve that 

adverse selection costs are positively (resp. negatively) related to the expected arrival rates of 

market buy (resp. sell) orders. Third, we disentangle three factors of the bid-ask spread in the 

case of the reduced form of the model: the differences of risk-adjusted valuations and the 

adverse selection costs of uninformed buyers and sellers respectively. In either case, we verify 

the Handa et al. (2003)’s result to the extent that the size of the bid-ask spread achieves a 

maximum in balanced markets whatever the precision of noisy public information is.  

Even if the bid-ask spread decomposition is not an easy task due to numerous potential 

explanatory factors, our empirical results appear to be particularly encouraging. For the EUA 

carbon futures market, we find that the aggregated adverse selection costs account for 70% of 

bid-ask spread consistent with the literature (Medina et al., 2014; Mizrach and Otsubo, 2014). 

We also document that the bid-ask spread (resp. adverse selection of buyers) behaves according 

to a U-shaped (resp. inverted U-shaped) intraday pattern. Interestingly, the other bid–ask spread 

component related to traders’ beliefs heterogeneity is rather constant in a context of significant 

risk aversion and uncertainty about the fundamental value of EUA (Chevallier et al., 2009). 

Moreover, we verify and enrich the findings of Kalaitzoglou and Ibrahim (2016) in relation to 

the gradual influence of order splitting strategies along the trading session at ECX. We show 

that the diagonal effect, which commands the arrival rate of market orders is a LOB equilibrium 

property (Goettler et al. 2005). It is explained by adverse selection considerations at earliest 

hours (7:00 to 9:00), an increasing frequency of splitted orders along a quicker liquidity 
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exhaustion-replenishment cycle in normal hours (9:00 to 15:00) and in closing hours (15:00 to 

17:00). This result is important because it implies that the market efficiency of the European 

carbon futures market may be undermined.  

Spread decomposition models often assume that the adverse selection component of the 

spread increases with trade size, because informed traders would prefer to trade via larger orders 

(e.g., Easley et al., 1996). Rather, our results suggest that informed traders trade medium orders 

combined with order splitting strategies for camouflage motives or to minimize price impact 

when liquidity is better. An important implication of these results is that uninformed traders do 

not benefit from being known as uninformed. Besides, uninformed traders might be interested 

in preannouncing their orders via a flash order facility to advertise on their desire for liquidity 

before trading. This has not yet been a feature of the LOB of ECX. Consistent with the findings 

of Skjeltorp et al. (2016), executed flash orders could help them reduce their adverse selection 

costs because informed traders extract less consumer surplus from uninformed orders as prices 

become less noisy so that the overall market efficiency could also be enhanced.  

Avenues for further research may be stretched in several directions.  

On the empirical side, developing an algorithm to detect hidden orders (e.g., iceberg 

orders28) may be useful to assess whether the order imbalance measure that we have used in our 

study is affected or not. Furthermore, our approach to decompose the bid-ask spread could be 

tested on more mature commodity markets such as energy derivatives markets.  

On the theoretical side, we suppose that uninformed traders are the only limit order 

traders. We could instead consider a setting in which informed traders can choose to place either 

a limit order or a market order (Bloomfield et al., 2009). Consequently, uninformed traders may 

opt for different order strategies since liquidity conditions will be necessarily affected. A 

complete analysis of the potential model implications is left for future work.  

                                                           
28 Traders can place iceberg orders on ECX for which only a fraction of the total order quantity is disclosed. The 
remaining part is visible when the displayed quantity is executed, keeping price priority but losing time priority. 
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8.  Appendix 

Appendix A.1. Proof of Proposition 1.1 and 1.2 
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are the normal probability density function of the asset value recognized by the uninformed 

buyer at time 1 and t, respectively. 

Inserting these terms in Eq. (1) and using the approximate equation of (1.1), we get: 
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Further, we can rewrite (1.1) as follows as:  
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In the right hand side of (1.2), the first term represents the expected utility of order execution 

without the presence of informed trader counterparty. The third term is the expected utility of 

non-execution. The second term accounts for the expected utility loss due to informed trading 

since it is related to the probability of informed trading pI and the negative signs represent the 

utility losses. To simplify the notation, we then consider that 
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We now derive the equilibrium of the buy side in indifferent expected value of the uninformed 

buyers’ utility between trading via limit order and trading via market order consistent with the 

approach of Kovaleva and Iori (2012). Then we can conclude that:  
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In order to transfer the above utility equation (1.4) into the linear equilibrium of the expected 

terminal wealth, we assume the restriction that the expected value of the terminal wealth at each 

state is very small and positive.  

Then, applying a Taylor expansion for an exponential function gives the below equation:
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Notice that RA,AS
bLOSS which represents the expected losses of adverse selection borne by a risk 

averse uninformed trader is written in an original non-linear format, due to the difficulty to 

translate it into an approximate linear format. 

If (1.6) is divided by ϕ, we get the linear expected terminal wealth equilibrium for the buy side:  
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Likewise, the model equilibrium implies that uninformed sellers are indifferent between 

via limit order or market order trading. We derive the approximation of the sell side equilibrium 

as we have done previously for this of the buy side.  
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Appendix A.2. Proof of Proposition 3 
 

We now attempt to examine how bid and ask prices are affected by the arrival rates of 

market buy and sell orders. As for the arrival rates of market buy orders, we determine its 

connection to price quotation mechanisms according to the first order condition: M
bask kP∂ and 

M
bbid kP∂ . Taking the derivative on the quotes obtained in Eqs. (5a) and (5b), we get the partial 

differential equations which are assumed to be positive: 
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We multiply (2.1) by ( ) M
b

M
b

M
s kkk1 ⋅⋅− . After rearranging and substituting the ask price as 

formulated in Eq. (5a), we obtain the following inequality:  
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We also multiply (2.2) by ( ) M
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M
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M
s kkk1 ⋅⋅− . After rearranging and substituting the bid price as 

formulated in Eq. (6), we obtain the following inequality:   
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As for the arrival rates of market sell orders, we determine similarly, its connection to 

the ask price quotation given the following first order conditions, M
sask kP∂ and M

sbid kP∂ . 

Taking the derivative on the quotes obtained in Eqs. (5) and (6), we get the partial differential 

equations and assume them as negative: 
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We multiply (2.5) by ( ) M
b

M
b

M
s kkk1 ⋅⋅− . Then, rearranging and substituting the ask price as 

formulated in Eq. (5) gives the following inequation: 
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We also multiply (2.6) by ( ) M
b

M
b

M
s kkk1 ⋅⋅− . After rearranging and substituting the bid price as 

formulated in Eq. (6), we obtain the following inequation: 
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Appendix A.3. Proof of Proposition 4 
 
Eqs. (5) and (6) both determine the optimal prices for the buy and sell side in equilibrium. 

Assuming that M
sk=k  and M

bkk1 =−  we can rewrite Eqs. (5) and (6) in the following manner:  
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Then, we get the comprehensive equilibrium and the associated optimal bid and ask prices: 
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Finally, we can simplify (3.3) and (3.3) respectively following the equations:  
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Where the following weights 
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Next, we compute the difference Pask – Pbid and consider the following simplifications:
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We finally obtain the equation of the equilibrium bid- ask spread as formulated in Eq. (7). 

 

Appendix A.4. Proof of Corollaries 1 and 2 

According to the results of Proposition 3, we have already obtained the optimal bid and ask 

prices. As we know, the optimal ask minus the optimal bid equals the equilibrium spread.  

Assuming that ρb=ρs=1, )
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xsxss φσµρ +−  take the value 0. 

We thus obtain the simplified version of Eq. (6) which is summarized in Corollary 1: 
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With the following weighting factors:
)k1(k1

)k1(
;

)k1(k1

k
;

)k1(k1

)k1(k 2

3

2

21 −−
−=

−−
=

−−
−= ωωω   

Next we obtain ω1+ ω2 + ω3 =1. 
 

To facilitate the demonstration, uninformed buyers and sellers are assumed to suffer from 

identical adverse selection losses. With this assumption, we get sb ASCASCASC == .  

Since the riskless asset value RT is stable ∀t∈ [0,T] we then rewrite (4.1) as follows: 
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π is a C2 (ℜ) function, we calculate the first order derivative of (4.2) given the parameter k : 
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Under the assumption that uninformed buyers and sellers suffer the same level of 

adverse selection losses, we find 0
k

=
∂
π′∂  with k=1/2. Since 0

k2

2

<
∂

π′∂ , π′ reaches a maximum for 

k=1/2 and is equally weighted with ω1= ω2 = ω3 =1/3. The second order derivative is negative, 

implying that π′ is a concave function of k. π achieves therefore a minimum for the first order 

conditions k= 0 and k=1 respectively.  

In Corollary 2, we assume the case for which the precision of noisy signal is totally 

imperfect i.e. 
OF

B  tends to 0. We then rewrite Eq.  (7) in a simplified equation such that:  
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Where 2
x,bx,bb 2

1
VR φσµ +=′′ (resp. 2

x,sx,ss 2

1
VR φσµ +=′′ ) is the reservation asset value of the risk 

averse uninformed buyer (resp. seller) and ASCb and ASCs are defined as in Eq. (7). 
 

We proceed in a similar manner as the previous case to determine the minimum and 

maximum value of π′′. We also verify that the two results implied by Corollary 2 remain valid 

so that π′′ achieves a minimum (maximum) for k= 1/2 (k= 0 or k=1) respectively.  
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FIG . 1. Order placement: the uninformed trader’s decision tree.  
The following protocol for the execution of limit and market orders is applied. At Time 2, all 
market orders are executed whereas limit orders are executed at time t (with t ≥2). At the end 
of the trading period (i.e. time T), the liquidation of the risky asset value occurs. 
 
 

 
FIG . 2. Order placement (reduced form of the model): the uninformed trader’s decision tree.  
The market protocol for the execution of limit and market orders used in Fig. 1 is applied.  
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FIG . 3. The behaviour of adverse selection costs and bid-ask spread when only the arrival rate 
of buy market orders varies (this of market sell orders is 0.5 and remain constant) 
 
 
 

  
FIG . 4. The behavior of adverse selection costs and bid-ask spread as the precision of noisy 
buyers’ and sellers’ signals (

b
OF

B ρ× and
s

OF

B ρ× ) are simultaneously and equally varied 

 

 

 
FIG . 5. The behaviour of bid-ask spread and differences in risk adjusted valuations as standard 
deviation of buyers and sellers’ reservation values are equally varied 

0

0,005

0,01

0,015

0,02

0,025

0,03

0 0,1 0,2 0,3 0,4 0,5 0,6

A
dv

se
 s

el
ec

tio
n 

co
st

s (A
S

C
b

, 
A

S
C

s)
an

d
B

id
-a

sk
 s

pr
ea

d
(π

)

Arrival Rate of Market Buy Orders (kb
m)

π (Φ=1) ASCb (Φ=1) ASCs (Φ=1)
π (Φ=1,5) ASCb (Φ=1,5) ASCs (Φ=1,5)

0

0,0004

0,0008

0,0012

0,0016

0 0,05 0,1 0,15 0,2 0,25

A
dv

er
se

 s
el

ec
tio

n 
co

st
s 

   
  

(A
S

C
b

 a
n

d
 A

S
C

s)
 g

iv
en

 
ϕ
=

1

Degree of precision for noisy signals

ASCb (k=0,25) ASCs (k=0,25)
ASCb (k=0,5) ASCs (k=0,5)

0

0,005

0,01

0,015

0,02

0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008 0,009 0,01

B
id

-a
sk

 s
pr

ea
ds

 (π
)

D
iff

. b
et

w
ee

n 
ris

k 
ad

j. 
va

lu
at

io
ns

 : 
bu

ye
rs

-s
el

le
rs

Volatility of the risky asset
π (precision of noisy signals = 0.2)
π (precision of noisy signals = 0.3)
Difference of risk-adjusted valuations (precision of noisy signals=0.3)
Difference of risk-adjusted valuations (precision of noisy signals=0.2)



 

-39- 
 

 

TABLE 1. Descriptive monthly statistics  

The dataset contains the history of the order book concerning each of the 5 EUA December futures, studied during 
their last year of trading before expiry, from January 3, 2008 to December 31, 2012 (i.e. 254 trading days). All variables are 
calculated on annual basis and their mean (among the five futures contacts) are reported for each month. The proportions of 

sellers to all traders are defined as: %100
submitted orders sell andbuy limit bid andask  at the  tradesofnumber 

submitted orders selllimit  ask at the  tradesofnumber 
k ×

+
+=  

Panel A: Order book (LOB) liquidity measures  

 April May  June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. March 
Mean PBAS (%) 0.830 0.819 0.817 0.817 0.811 0.810 0.816 0.820 0.822 0.831 0.833 0.834 

 k % (mean)  50.90  51.20 51.62 51.73 51.98 52.01 51.69 51.16 51.02 50.91 50.95 50.93 
PBAS% when k%<50% 0.827 0.819 0.826 0.822 0.818 0.818 0.816 0.82 0.821 0.825 0.821 0.825 
PBAS% when k%>50% 0.837 0.832 0.819 0.818 0.812 0.817 0.817 0.819 0.825 0.833 0.837 0.842 

ω1%  (mean) 33.67 33.13 30.47 28.30 26.60 26.30 23.37 25.53 28.30 30.87 28.97 25.10 
ω2%  (mean) 30.17 32.23 32.73 33.17 38.73 35.37 37.70 36.00 33.17 33.67 35.17 36.80 
ω3%  (mean) 36.17 34.63 36.80 38.53 34.67 38.33 38.93 38.47 38.53 35.47 35.87 38.10 

Panel B: Intraday behavior of the proportional bid-ask spread (PBAS%) 

 April May  June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. March 
7:00  to 9:00 0.835 0.832 0.818 0.819 0.811 0.818 0.82 0.828 0.83 0.836 0.839 0.841 

9 :00 to 15:00 0.822 0.827 0.813 0.816 0.805 0.807 0.812 0.815 0.821 0.822 0.824 0.828 
15:00 to 17:00 0.834 0.823 0.823 0.821 0.813 0.82 0.815 0.824 0.829 0.834 0.838 0.839 

 

TABLE 2.  Ordinary least squares regression of PBAS on ω1, ω2, ω3 including size and time intervals  

We first conduct regressions on the proportional bid-ask spreads (PBAS) according to the model outlined in Eq. (9) 
using time intervals of a trading day (Panel A): 

( ) ( ) tsbt,s

3

1j
j3sbt,b

3

1j
j2sbt VRASCINTVRASCINTVRPBAS εωω +−⋅⋅+−⋅⋅+= −

=
−

=
− ∑∑  

We then perform regressions on the proportional bid-ask spreads (PBAS) according to the model presented in Eq.  (10) 
using both time intervals and trade size as control variables (Panel B): 

( ) ( ) tsbt,b

3

0i

3

1j
ji3sbt,s

3

0i

3

1j
ji2sbt FASCINTSIZEFASCINTSIZEFPBAS εωω +−⋅⋅+−⋅⋅⋅+= −

= =
−

= =
− ∑∑∑∑  

For these two types of regressions, we proceed in four steps. We partition each trading day into three periods as in 
Eq. (8). Particularly, INT1 correspond to 7:00 -9:00, INT2: 9:00 -15:00, INT3: 15:00- 17:00. Second, we establish 
three categories: SIZE1, SIZE2, SIZE3 which correspond respectively to a trade size between 1 and 19 contracts, 
20 and 49 contracts, and more than 50 contracts. Third, we calculated and classified simulation data according to 
the parameter values displayed in Eq. (11).  Finally, the mean coefficients of ω1, ω2, ω3, are averaged on a monthly 
basis, and test their significance with t-statistics (t-stat) to test whether they are significantly different from zero. 
The last low presents the value of F-test of the regressions. 
 

Panel A: Ordinary least squares regression of PBAS on ω1, ω2, ω3 using time intervals (INT) 
 
 
$$ 

 April May June July Aug. Sept. Oct. Nov. Dec. Jany Feb. March Simul. 
              

 W1 Mean Coeff. 0.0026 0.0028 0.0022 0.0023 0.0019 0.0018 0.0019 0.0021 0.0023 0.0028 0.0026 0.0021 40.2 
 t-stat 92 115 74 81    50 45 51.4 64.9 68.3 104.5 93.9 68 258 

                           

W
2 

 M
ea

n
 C

o
ef

f. 
 

INT 1   
t-stat 

0.0004
6.5 

0.0023 
89 

0.0013
23.6 

0.0001
3.2 

0.0012 
20.1 

0.0013
21.1 

-0.0004 
-6.6 

-0.0003 
-5.7 

-0.0004 
-10.2 

0.0005
8.5 

0.0009
12.1 

0.0007
10.3 

-37.9 
-244 

INT 2 0.0002 0.0007 0.0005 0.0001 0.0001 0.0005 0.0002 0.001 0.0017 -0.0003 0.0005 0.0004 -38.4 
   t-stat 4.7 7.3 8.8 3.4 2.9 8.7 5.3 14.9 32.4 -6.0 8.8 7.1 -235 
INT 3 

t-stat 
-0.0001 

-2.7 
-0.0006 

-9.2 
-0.0008 
-11.6 

-0.0017 
-32.5 

-0.0016 
-30.0 

-0.0011 
-14.1 

-0.002 
-62.8 

-0.0015 
-28.7 

-0.0007 
-10.9 

0.0002 
4.2 

-0.0005 
-8.7 

0.0003 
5.2 

-35.7 
-222 

                            

W
3 

 M
ea

n
 C

o
ef

f 
 

INT 1   
t-stat 

0.0001 
2.7 

-0.0009 
-12.5 

0.0007 
10.2 

0.0013 
23.1 

0.0011 
14.8 

0.0013 
21.9 

0.0003 
4.9 

-0.0009 
-16.3 

0.0007 
12.1 

0.0011 
14.6 

0.001 
13.9 

0.0005 
8.8 

-37.5 
-244 

INT 2  
t-stat 

-0.0003 
-5.1 

-0.0019 
-32 

0.0002 
4.2 

-0.0012 
-17.9 

0.0006 
9.3 

0.0011 
15.9 

-0.001 
-14.3 

0.0007 
8.6 

0.0008 
11.0 

-0.0005 
-8.9 

-0.0009 
-12.9 

-0.001 
-14.1 

-35.7 
-235 

INT 3 

t-stat 
0.0001 

3.2 
0.0018 

28 
0.0002 

4.1 
0.0018 
42.2 

0.0021 
54.4 

0.0015 
32.8 

0.0029 
67.3 

0.0017 
27.9 

0.0012 
17.0 

0.0014 
22.7 

0.0013 
20.9 

0.0008 
9.6 

-37.5 
-222 

 

 F-statistic 1704 3259 1580 1356 1332 3258 3112 3912 2290 1948 2161 3652 2224 
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Panel B: Ordinary least squares regression of PBAS on ω1, ω2, ω3 including time intervals 
(INT) and trade size (SIZE) as control variables 

 

 

 

  April May June July Aug. Sept. Oct. Nov. Dec. Jany Feb. March Simul. 
W1 Avg Coeff. 0.0055 0.0056 0.0067 0.0069 0.0062 0.0061 0.0062 0.0058 0.0055 0.006 0.0063 0.0061 44.3 

t-stat 136 174 247 255 201 198 202 185 167 194 206 196 289 
  

  

W
2 

 A
vg

 C
o

ef
f.

.  
  

INT 1. SIZE1 0.0013 0.0001 0.0011 -0.0004 -0.0002 -0.0002 -0.0002 0.0002 0.0007 0.001 0.0005 0.0006 -44.4 
 t-stat 23.6 2.3 17.8 -7.2 -3.1 -2.9 -3.1 4.1 8.2 17.2 9.8 11.1 -219 

INT2.  SIZE1 0.0005 0.0007 0.0002 0.0001 0.0001 0.0003 -0.0008 -0.001 0.0023 0.001 0.0006 0.0012 -44.5 
   t-stat 5.3 7.9 4.1 2.8 2.5 3.7 -10.2 -17.2 32.9 17.7 10.3 22.9 -222 

INT 3.  SIZE1 -0.001 -0.0002 -0.0012 -0.0013 0.0004 -0.0003 -0.0002 -0.0001 -0.0001 0.0007 0.0001 0.0001 -43.8 
  t-stat -19.2 -3.1 -22.3 -24.3 4.3 -4.1 -3.1 -2.8 -2.7 14.1 3.1 2.8 -209 

                  

 W
3 

 A
vg

. 
C

o
ef

f  
  

INT 1.  SIZE1 0.0009 -0.001 0.0002 0.001 0.0002 0.0006 0.0011 0.0011 0.0015 0.0012 0.0008 0.0013 -42.9 
  t-stat 14.8 -15.4 3.3 15.3 4.2 11.9 20.8 20.5 28.8 20.9 8.9 23.9 -198 

INT 2.  SIZE1 -0.0013 0.0005 -0.0001 -0.001 0.0002 0.0005 -0.0003 -0.0004 0.0001 -0.0009 0.0006 0.0008 -42.4 
  t-stat -23.8 8.1 -1.9 -15.6 2.2 9.2 -4.2 -5.2 2.3 -14.9 10.9 13.2 -190 

INT 3.  SIZE1 0.0007 0.0006 -0.0005 0.0007 0.0001 0.0018 0.0001 0.0019 0.0018 0.0015 0.0017 0.001 -42.5 
  t-stat 12.6 11.8 -9.8 12.9 1.9 34.2 1.9 40.5 38.1 28.2 32.2 19.8 -190 

  April May June July Aug. Sept. Oct. Nov. Dec. Jany Feb. March Simul. 
W1 Avg Coeff. 

t-stat 
0.0055 0.0056 0.0067 0.0069 0.0062 0.0061 0.0062 0.0058 0.0055 0.006 0.0063 0.0061 44.3 

136 174 247 255 201 198 202 185 167 194 206 196 289 
 

W
2 

 A
vg

 C
o

ef
f..

 
  

INT 1.  SIZE2 0.0015 0.0014 0.0002 0.0009 -0.0002 -0.0001 0.0006 0.0007 0.0009 -0.0008 0.0003 0.0008 -43.9 
 t-stat 28.2 26.2 4.3 15.7 -4.1 -2.9 11.8 12.9 14.5 -13.2 5.7 13.2 -210 

INT2.  SIZE2 0.0014 0.0002 0.0002 0.0009 0.0003 -0.0003 0.0014 0.0012 0.0008 0.0007 0.0019 0.0014 -44.8 
   t-stat 25.9 3.1 3.0 15.6 5.7 -5.7 25.1 20.1 8.9 10.8 31.7 26.9 -230 

INT 3.  SIZE2 -0.0011 0.0006 0.0001 -0.0002 0.0007 0.0002 0.0007 -0.0009 0.0011 0.0009 -0.0011 -0.001 -43.9 
  t-stat -21.1 9.8 2.2 -4.3 10.6 4.1 10.8 -14.1 19.1 14.8 -19.2 -18.1 -209 

                 

W
3 

 A
vg

. 
C

o
ef

f  
  

INT 1.  SIZE2 0.002 0.0015 0.0002 -0.0001 0.0003 -0.0001 0.0015 0.0003 0.0002 0.0001 0.0009 0.0013 -42.5 
  t-stat 34.9 27.3 4.3 -2.8 5.7 -2.8 27.8 5.7 4.1 1.9 10.9 24.8 -191 

INT 2.  SIZE2 -0.0012 0.0007 -0.0002 -0.0013 -0.0001 0.0004 -0.0002 -0.001 0.0013 0.001 0.0016 -0.0008 -42.2 
  t-stat -22.3 11.9 -4.1 -22.7 -3.0 7.2 -4.9 16.1 24.1 18.7 29.1 -13.2 -187 

INT 3.  SIZE2 0.0017 0.0006 0.0005 0.0018 0.0019 0.0002 0.0018 0.0008 0.0010 0.0011 0.0007 0.0015 -41.2 
  t-stat 31.6 9.8 8.8 32.9 33.4 4.2 33.2 11.0 18.7 19.9 8.1 28.8 -189 

 April May June July Aug. Sept. Oct. Nov. Dec. Jany Feb. March Simul. 
W1 Avg Coeff. 0.0055 0.0056 0.0067 0.0069 0.0062 0.0061 0.0062 0.0058 0.0055 0.006 0.0063 0.0061 44.3 

t-stat 136 174 247 255 201 198 202 185 167 194 206 196 289 
 

W
2 

 A
vg

 C
o
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f..

 
  

INT 1.  SIZE3 0.0012 0.0008 -0.0002 0.0005 -0.0005 0.001 0.001 0.0011 0.0004 0.0005 0.0003 0.0009 -43.8 
 t-stat 21.3 12.8 -4.3 9.8 -9.6 19.8 18.9 20.9 7.2 9.5 5.7 15.7 -209 

INT 2.  SIZE3 -0.0014 -0.0007 0.0004 0.0003 0.0004 0.0001 0.0012 -0.0009 0.0017 0.0013 0.0012 0.0014 -43.7 
   t-stat -26.9 -11.7 7.2 5.7 7.3 2.0 21.7 -13.6 31.2 24.3 21.1 26.8 -208 

INT 3.  SIZE3 0.0012 0.0004 0.0001 0.0006 0.0001 -0.0001-0.0003 0.0012 -0.0011 0.0005 0.0013 0.002 -43.4 
  t-stat 21.3 6.8 2.8 9.3 2.8 -2.8 -5.7 21.2 -20.3 7.5 22.0 3.9 -205 

                 

 W
3 
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vg

. 
C

o
ef

f  
  

INT 1.  SIZE3 0.0011 0.0005 -0.0001 0.0001 -0.001 0.0004 0.0009 0.0008 0.0003 0.001 -0.0005 0.0011 -41.2 
  t-stat 20.1 9.8 -2.9 2.6 -19.9 7.2 10.1 13.3 6.1 17.9 -9.8 20.3 -189 

INT 2.  SIZE3 0.0007 -0.0003 0.0004 -0.0011 0.0004 -0.0014 0.0001 -0.0004  -0.0004 -0.0009 0.0018 0.0001 -41.2 
  t-stat 11.6 -5.7 7.2 -2.9 7.2 -26.2 1.9 -7.1 -7.4 -15.1 36.9 1.1 -188 

INT 3.  SIZE3 0.0001 0.0006 0.0013 0.0001 0.0003 0.0012 0.0008 0.0009 0.0008 0.0007 0.0004 0.0005 -41.2 
  t-stat 2.6 10.8 22.8 2.9 5.0 21.2 12.6 13.2 12.7 11.9 7.1 8.8 -189 

 

F-statistic 2487.2 2165.1 2052.3 1734.1 2004.9 3536.3 3311.2 2651.9 2799 3133.2 4219.4 4346.4 2237.9 
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TABLE 3.  Estimation of the bid-ask spread components: ω1, ω2, ω3 according to prior regression using time intervals and trade size 

From the coefficients presented in Table 2, we obtain ω2 (resp. ω3) by multiplying ω2 .SIZEj.INTi (resp. SIZEj ω3.INTi) with i=1,2,3 and adding the intercept term ω1.   
ASCb (resp. ASCs) % Spread are the sellers’ (resp. buyers’) expected loss of adverse selection costs expressed as a percentage of the bid-ask spread: PBAS%.  
The column Simul. contains the simulated adverse selection costs for buyers and sellers calculated from their corresponding coefficients displayed in Table 2. 
 

Panel A: Estimated value of bid-ask spread components according to prior regression using time intervals (see Panel A Table 2) 

 

 

 

 

 

 

 

 
 

Panel B: Estimated value of bid-ask spread components according to prior regression using time intervals and trade size (see Panel B Table 2) 

B.1. Small trades (trade size between 1 and 19 contracts) 
 

 
 
 
 
 
 
 
 
 
 
 

 April  May June July Aug. Sept. Oct. Nov. Dec. Jany Feb. March Simul. 

Opening 
Hours  

(7:00 to 9:00) 

ASCb  0.23 0.24 0.28 0.29 0.31 0.35 0.345 0.34 0.34 0.345 0.35 0.355 
bbbASC σρ  1.3 

% Spread 30.3% 30.5% 33.7% 34.5% 32.2% 37.0% 36.6% 35.6% 35.5% 34.7% 35.2% 36.1% 
ASCs 0.30 0.29 0.30 0.32 0.32 0.34 0.34 0.34 0.35 0.37 0.38 0.385 

sssASC σρ  2.2 
% Spread 37.0% 35.7% 35.6% 35.1% 32.5% 36.7% 36.0% 36.0% 37.1% 37.7% 37.8% 38.1% 

Normal 
Hours  

(9:00 to 15:00) 

ASCb 
% Spread 

0.235 
30.9% 

0.24 
31.0% 

0.27 
33.9% 

0.29 
34.9% 

0.31 
32.3% 

0.36 
37.5% 

0.35 
37.3% 

0.35 
35.9% 

0.36 
35.2% 

0.34 
33.7% 

0.355 
36.2% 

0.36 
36.3% bbbASC σρ  2.6 

ASCs 
% Spread  

0.27 
35.5% 

0.26 
34.8% 

0.30 
35.2% 

0.31 
35.0% 

0.30 
32.3% 

0.31 
34.5% 

0.325 
35.3% 

0.35 
35.9% 

0.36 
36.0% 

0.365 
35.8% 

0.37 
36.6% 

0.37 
36.5% sssASC σρ  4.5 

End of Day 
Hours  

(9:00 to 15:00) 

ASCb  
% Spread 

0.225 
30.3% 

0.23 
30.1% 

0.24 
29.6% 

0.26 
32.1% 

0.29 
31.7% 

0.34 
33.8% 

0.32 
34.2% 

0.33 
34.4% 

0.35 
35.1% 

0.34 
33.6% 

0.35 
34.6% 

0.365 
35.1% bbbASC σρ  2.7 

ASCs 
% Spread 

0.28 
36.0% 

0.30 
36.6% 

0.30 
39.5% 

0.33 
38.5% 

0.34 
34.2% 

0.345 
34.8% 

0.37 
35.5% 

0.38 
36.0% 

0.37 
36.5% 

0.38 
37.9% 

0.39 
37.6% 

0.38 
37.7% sssASC σρ  4.5 

 April  May June July Aug. Sept. Oct. Nov. Dec. Jany Feb. March Simul. 

Opening 
Hours  

(7:00 to 9:00) 

ASCb  0.22 0.23 0.26 0.25 0.24 0.26 0.31 0.32 0.31 0.33 0.32 0.34 
bbbASC σρ  0.33 

% Spread 27.9% 28.3% 29.8% 28.1% 27.6% 29.8% 30.8% 32.3% 31.1% 34.1% 33.2% 33.9% 
ASCs 0.29 0.27 0.27 0.30 0.27 0.25 0.31 0.29 0.315 0.355 0.34 0.35 

sssASC σρ  -0.11 
% Spread 31.4% 31.9% 32.0% 31.3% 30.3% 28.9% 30.8% 29.1% 31.6% 35.7% 37.4% 35.2% 

Normal 
Hours  

(9:00 to 15:00) 

ASCb  0.225 0.23 0.26 0.26 0.24 0.27 0.30 0.31 0.35 0.34 0.33 0.35 
bbbASC σρ  0.34 

% Spread 28.1% 28.6% 29.7% 28.7% 28.4% 29.6% 30.5% 30.4% 36.3% 34.3% 33.3% 34.6% 
ASCs 

% Spread 
0.26 

32.4% 
0.26 

29.0% 
0.27 
31.7% 

0.27 
29.1% 

0.23 
27.6% 

0.255 
29.2% 

0.29 
29.6% 

0.28 
28.6% 

0.30 
30.0% 

0.34 
33.1% 

0.32 
33.1% 

0.35 
35.1% sssASC σρ  0.43 

End of Day 
Hours  

(9:00 to 15:00) 

ASCb  
% Spread 

0.19 
29.6% 

0.22 
27.9% 

0.23 
27.4% 

0.24 
31.5% 

0.25 
29.6% 

0.27 
29.4% 

0.30 
30.0% 

0.30 
29.2% 

0.35 
36.2% 

0.35 
35.1% 

0.35 
35.7% 

0.345 
34.3% bbbASC σρ  0.12 

ASCs 
% Spread 

0.25 
33.5% 

0.27 
31.2% 

0.25 
30.8% 

0.28 
35.7% 

0.27 
36.2% 

0.28 
30.3% 

0.29 
29.9% 

0.31 
30.1% 

0.33 
34.6% 

0.365 
36.3% 

0.35 
35.8% 

0.36 
36.2% sssASC σρ  1.88 
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B.2. Medium-sized trades (trade size between 20 and 49 contracts) 
 

 
 
 

 
 
 
 
 
 
 
 

B.3. Large trades (trade with a size greater than 50 contracts) 
 

 
 
 

 
 
 
 
 
 
 

 
 

 April  May June July Aug. Sept. Oct. Nov. Dec. Jany Feb. March Simul.

Opening 
Hours  

(7:00 to 9:00) 

ASCb  0.28 0.30 0.275 0.255 0.24 0.27 0.31 0.33 0.34 0.33 0.33 0.35 
bbbASC σρ  0.43 

% Spread 35.0% 36.3% 33.0% 32.3% 30.4% 34.6% 35.7% 36.4% 36.7% 35.8% 34.2% 35.3% 
ASCs 0.31 0.28 0.28 0.27 0.26 0.255 0.29 0.30 0.33 0.335 0.34 0.36 

sssASC σρ  -0.20 
% Spread 38.7% 32.4% 33.2% 34.1% 33.0% 32.8% 34.1% 34.3% 36.0% 36.2% 34.8% 36.2% 

Normal 
Hours  

(9:00 to 15:00) 

ASCb  0.29 0.31 0.28 0.26 0.26 0.29 0.33 0.36 0.35 0.34 0.37 0.39 
bbbASC σρ  1.35 

% Spread 35.8% 36.6% 33.2% 32.6% 32.8% 35.9% 36.9% 39.8% 38.0% 36.7% 37.8% 39.0% 
ASCs 

% Spread 
0.28 

35.2% 
0.27 

28.5% 
0.26 

31.7% 
0.24 

31.4% 
0.26 

32.9% 
0.24 

31.4% 
0.28 

32.6% 
0.27 

31.8% 
0.33 

36.1% 
0.345 
37.2% 

0.36 
36.8% 

0.355 
36.6% 

 
 

sssASC σρ  0.91 

End of Day 
Hours  

(9:00 to 15:00) 

ASCb  
% Spread 

0.28 
32.9% 

0.33 
34.8% 

0.28 
32.5% 

0.27 
33.4% 

0.28 
34.4% 

0.30 
37.6% 

0.34 
38.6% 

0.34 
39.8% 

0.37 
39.0% 

0.36 
38.5% 

0.36 
 36.7% 

0.38 
38.7% bbbASC σρ  1.77 

ASCs 
% Spread 

0.33 
39.5% 

0.29 
30.5% 

0.30 
34.9% 

0.27 
33.4% 

0.29 
35.5% 

0.27 
34.4% 

0.32 
36.4% 

0.29 
33.9% 

0.385 
41.3% 

0.36 
38.4% 

0.37 
37.8% 

0.37 
37.3% 

 

sssASC σρ  3.03 

 April  May June July Aug. Sept. Oct. Nov. Dec. Jany Feb. March Simul.

Opening 
Hours  

(7:00 to 9:00) 

ASCb  
% Spread 

0.29 
35.8% 

0.32 
37.2% 

0.26 
35.8% 

0.25 
32.0% 

0.235 
31.0% 

0.29 
35.7% 

0.32 
36.3% 

0.34 
36.8% 

0.345 
37.1% 

0.325 
35.2% 

0.33 
34.2% 

   0.35 
 35.2% bbbASC σρ  0.56 

ASCs 
% Spread 

0.30 
36.4% 

0.28 
32.8% 

0.26 
31.9% 

0.28 
33.2% 

0.26 
34.5% 

0.27 
33.9% 

0.30 
34.0% 

0.32 
34.2% 

0.33 
35.5% 

0.37 
37.1% 

0.36 
36.3% 

0.38 
38.3% sssASC σρ  -0.54 

Normal 
Hours  

(9:00 to 15:00) 

ASCb  
% Spread 

0.27 
32.9% 

0.31 
34.1% 

0.26 
31.7% 

0.26 
34.4% 

0.27 
35.9% 

0.29 
35.7% 

0.34 
39.5% 

0.33 
36.2% 

0.37 
40.7% 

0.35 
36.0% 

0.34 
34.8% 

0.37 
37.3% bbbASC σρ  3.03 

ASCs 
% Spread 

0.31 
38.5% 

0.28 
30.2% 

0.28 
34.2% 

0.25 
33.1% 

0.28 
37.3% 

0.25 
32.1% 

0.30 
33.9% 

0.31 
33.7% 

0.32 
34.9% 

0.36 
36.6% 

0.39 
39.2% 

0.38 
38.0% sssASC σρ

 

1.77 

End of Day 
Hours  

(9:00 to 15:00) 

ASCb 
% Spread  

0.33 
37.9% 

0.32 
34.4% 

0.30 
34.1% 

0.27 
34.4% 

0.265 
34.9% 

0.29 
35.5% 

0.335 
38.4% 

0.32 
35.6% 

0.34 
36.6% 

0.36 
36.8% 

0.36 
35.4% 

0.36 
36.2% bbbASC σρ  3.13 

ASCs 
% Spread 

0.31 
35.6% 

0.29 
30.6% 

0.30 
34.1% 

0.27 
34.4% 

0.29 
37.7% 

0.27 
33.5% 

0.33 
38.0% 

0.325 
34.7% 

0.33 
35.2% 

0.37 
37.1% 

0.40 
39.8% 

0.385 
38.2% sssASC σρ

 

5.24 
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TABLE 4.  Cross-sectional association of estimated adverse selection costs with trade size, 
market orders and order autocorrelation 

Note: We perform ordinary least squares regressions on the proportional bid-ask spreads (PBAS) according to Eq. (12a). 

( ) t,id,td,1

3

1j
sbt,si2

3

1i

3

1i

3

1j
sbt,sij1sbt,i COMPVRASCSIZE.INT)VRASC(SIZE.INTVRPBAS ε+γ+−δ+−δ+= ∑∑∑∑

=
−

== =
−−

   

We then regress the estimates of ASCb and ASCs on four independent variables: MOb, MOs, AUTOCORRb, 

AUTOCORRb according to Eq. (12b): 





µ+β+β+β+β+α=
µ+β+β+β+β+α=

t,st,bids,4t,asks,3t,ss,2t,bs,1s,1t,i,s

t,bt,bidb,4t,askb,3t,sb,2t,bb,1b,1t,i,b

AUTOCORRAUTOCORRMOMOASC

AUTOCORRAUTOCORRMOMOASC
 

  
 

All coefficients are first estimated for each of the five EUA sample futures using the Prais-Winsten method which 
assumes first-order autocorrelation in disturbance terms based on the Durbin Watson statistic approach.  
We then compute the cross-sectional averages of regression coefficients denoted “Mean coeff” that are reported 
in the following Panels of Table 4. The t-statistic (t-stat) test whether this mean coefficient is statistically 
significant i.e. different from zero. * (**) indicate their significance respectively at 0.05 (0.01) level.  
The columns with the heading “Nb.signif. correct sign” report the proportion of individual coefficients among the 
five (EUA sample futures) coefficients obtained which are significant at 0.05 level and have a sign identical to this 
of the cross-sectional average coefficient “Mean Coeff”.  
 
Panel A: Small trades (trade size between 1 and 19 contracts) 

 

 7:00 to 9:00 (INT1) 9:00 to 15:00 (INT2) 15:00 to 17:00 (INT3) 

DEPENDANT 

VARIABLE : ASCb 

November-April May-September November-April May-September November-April May-September 

Mean  (Nb. Signif 
Coef.     corr. sign) 

Mean   (Nb. Signif 
Coef.      corr. sign)

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.     corr. sign)

Mean   (Nb. Signif 
Coef.      corr. sign) 

Intercept 
t-stat  

0.044** (5/5) 0.055** (5/5) 0.043** (5/5) 0.0485**  (5/5) 0.045** (5/5) 0.049** (5/5) 
42.76   46.97   41.82   45.94   42.22   46.38   

MO b 
t-stat  

-0.00017 (0/5) -0.0001 (0/5) -0.00015 (0/5) -0.00007 (0/5) -0.00006 (0/5) -0.00003 (0/5) 
-0.98   -0.38   -0.52   -0.2   -0.38   -0.14   

MO s 
t-stat  

0.0023**  (5/5) 0.003** (5/5) 0.0016**  (5/5) 0.0021**  (5/5) 0.0012**  (4/5) 0.0016**  (5/5) 
10.89   12.68   9.3   10.83   4.98   5.8   

AUTOCORR b 
t-stat  

-0.0002 (0/5) -0.0004 (0/5) -0.0041 (2/5) -0.007**  (4/5) -0.005* (3/5) -0.011**  (4/5) 
-0.08   -0.11   -1.99   -3.12   -2.28   -4.25   

AUTOCORR s 
t-stat  

0.0022 (0/5) 0.00154 (0/5) 0.0037 (25) 0.0048*  (3/5) 0.0047* (2/5) 0.009** (4/5) 
0.79   0.56   1.61   2.15   2.12   3.79   

 

DW-statistic 2.03 
0.64 

2.04 
0.59 

2.02 
0.58 

2.02 
0.61 

2.01 
0.57 

2.02 
0.6 Adjusted R² 

 
             
 7:00 to 9:00 (INT1) 9:00 to 15:00 (INT2) 15:00 to 17:00 (INT3) 

DEPENDANT 

VARIABLE : ASCs 

November-April May-September November-April May-September November-April May-September 

Mean   (Nb. Signif 
Coef.     corr. sign) 

Mean   (Nb. Signif 
Coef.      corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.     corr. sign)

Mean   (Nb. Signif 
Coef.      corr. sign) 

Intercept 0.051** (5/5) 0.050** (5/5) 0.0475**  (5/5) 0.0474**  (5/5) 0.0468**  (5/5) 0.0466**  (5/5) 
t-stat  41.65   41.61   39.57   39.53   37.8   37.16   
MO b 0.0017**  (5/5) 0.0018**  (5/5) 0.0019**  (5/5) 0.0021**  (5/5) 0.0013**  (5/5) 0.0013**  (5/5) 
t-stat  9.51   10.04   13.5   14.25   8.13   8.58   
MO s -0.0007** (4/5) -0.0009** (5/5)  -0.0006  (1/5) -0.0007*   (2/5) -0.0003 (0/5) -0.0004 (0/5) 

t-stat  -3.26   -4.69   -1.82   -2.61   -0.58   -0.83   
AUTOCORR b 0.0048 (1/5) 0.0057* (2/5) 0.0013 (0/5) 0.0064*  (3/5) 0.0089**   (3/5) 0.0134**  (5/5) 

t-stat  1.68   2.19   0.84   2.49   2.98   7.58   
AUTOCORR s -0.003 (1/5) -0.0012 (0/5) -0.0031 (1/5) -0.0053* (3/5) -0.0078* (3/5) -0.012**  (5/5) 

t-stat  0.99   0.39   -1.32   -2.32   -2.24   -7.10   
 

DW-statistic 
Adjusted R² 

2.03 
0.59 

2.04 
0.57 

0.62 
2.03 

2.02 
0.6 

2.01 
0.6 

2.02 
0.61 
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Panel B: Medium-sized trades (trade size between 20 and 49 contracts) 
 
 
 

 7:00 to 9:00 (INT1) 9:00 to 15:00 (INT2) 15:00 to 17:00 (INT3) 

DEPENDANT 

VARIABLE : ASCb 

November-April May-September November-April May-September November-April May-September 
Mean   (Nb. Signif 
Coef.     corr. sign) 

Mean (Nb. Signif 
Coef.   corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.     corr. sign) 

Mean   (Nb. Signif 
Coef.      corr. sign) 

Intercept 
t-stat 

0.105** (5/5) 0.106** (5/5) 0.099** (5/5) 0.101** (5/5) 0.094** (5/5) 0.095** (5/5) 
52.65  52.92  49.31  50.47  49.49  49.59  

MO b 
t-stat 

-0.0011** (5/5) -0.0012** (5/5) -0.0022** (5/5) -0.0023** (5/5) -0.0009** (5/5) -0.001**  (5/5) 
-11.61  -12.31  -20.43  -21.67  -9.40  -11.09  

MO s 
t-stat 

0.0025**  (5/5) 0.0027**  (5/5) 0.0024**  (5/5) 0.0026**  (5/5) 0.0026**  (5/5) 0.0027**  (5/5) 
24.02  26.64  25.02  27.74  27.08  30.03  

AUTOCORR b 
t-stat 

-0.0059 (1/5) -0.0055 (1/5) -0.008**  (4/5) -0.009**  (4/5) -0.008 (3/5) -0.009**  (4/5) 
-1.51  -1.61  -3.08  -3.32  -2.53  -3.20  

AUTOCORR s 
t-stat 

0.0039 (1/5) 0.0061 (0/5) 0.0089* (4/5) 0.011** (4/5) 0.0094* (4/5) 0.0084**  (4/5) 
0.97  1.81  3.19  4.19  3.27  3.06  

               

DW-statistic 
Adjusted R² 

2.01 
0.69 

2.02 
0.71 

2.01 
0.70 

2.01 
0.72 

1.99 
0.69 

2.01 
0.73 

 
 
             

 7:00 to 9:00 (INT1) 9:00 to 15:00 (INT2) 15:00 to 17:00 (INT3) 

DEPENDANT 

VARIABLE : ASCs 

November-April May-September November-April May-September November-April May-September 

Mean   (Nb. Signif 
Coef.     corr. sign) 

Mean (Nb. Signif 
Coef.   corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.     corr. sign) 

Mean   (Nb. Signif 
Coef.     corr. sign) 

Intercept 0.0339**  (5/5) 0.0367**  (5/5) 0.0363**  (5/5) 0.0371**  (5/5) 0.0365**  (5/5) 0.0040**  (5/5) 
t-stat  25.28  27.72  27.65  30.32  28.32  31.05  
MO b -0.0004** (4/5) -0.0006** (5/5) -0.0005** (5/5) -0.0008** (5/5) -0.0005** (5/5) -0.0008** (5/5) 
t-stat  -6.36  -9.34  -10.99  -16.15  -8.4  -12.34  
MO s 0.0008**  (5/5) 0.0012**  (5/5) 0.0009**  (5/5) 0.0036**  (5/5) 0.0007**  (5/5) 0.0028**  (5/5) 

t-stat  10.91  12.59  16.05  32.06  11.02  27.88  
AUTOCORR b 

t-stat  
-0.0015 
-0.82 

(0/5) -0.006* 
-2.11 

(3/5) -0.0033 
-1.36 

(2/5) -0.0112**
-4.13 

(4/5) -0.007* 
-2.27 

(4/5) -0.008** 
-2.42 

(4/5) 

AUTOCORR s 0.0012 (0/5) 0.0015 (1/5) 0.001 (0/5) 0.0034 (2/5) 0.0075**  (1/5) 0.0076**  (4/5) 
t-stat 0.46  0.57  0.52  1.41  2.26  2.39  

  

DW-statistic 
Adjusted R² 

2.05 
0.75 

2.01 
0.73 

2.02 
0.77 

2.01 
0.72 

1.98 
0.73 

2.01 
0.74 
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Panel C: Large trades (trade with a size greater than 50 contracts) 

 

 7:00 to 9:00 (INT1) 9:00 to 15:00 (INT2) 15:00 to 17:00 (INT3) 

DEPENDANT 

VARIABLE : ASCb 

November-April May-September November-April May-September November-April May-September 

Mean   (Nb. Signif 
Coef.     corr. sign) 

Mean (Nb. Signif 
Coef.   corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.     corr. sign)

Mean   (Nb. Signif 
Coef.     corr. sign) 

Intercept 
t-stat 

0.055** (5/5) 0.071** (5/5) 0.081** (5/5) 0.088** (5/5) 0.072** (5/5) 0.075** (5/5) 
7.26  11.27  14.71  16.83  11.74  14.22  

MO b 
t-stat 

-0.0003**  (4/5) -0.0002*  (3/5) -0.0001 (0/5) -0.00017 (1/5) 0.00005 (0/5) 0.00004 (0/5) 
-3.18  -2.36  -0.43  -1.44  0.41  0.37  

MO s 
t-stat 

-0.0002*  (3/5) -0.0004** (3/5) -0.0002*  (3/5) -0.0003** (3/5) -0.0001 (0/5) -0.0002 (1/5) 
-2.51  -3.34  -2.34  -3.26  -1.72  -1.97  

AUTOCORR b 
t-stat 

0.025 (0/5) -0.022 (0/5) -0.0294*  (3/5) 0.0071 (0/5) -0.0018 (0/5) 0.0013 (0/5) 
1.08  -1.00  -2.25  0.73  -0.13  0.12  

AUTOCORR s 
t-stat 

-0.0284*  (2/5) -0.021 (1/5) 0.0099 (0/5) 0.0047 (0/5) 0.0094 (0/5) 0.0046 (0/5) 
-2.12  -1.24  0.77  0.45  0.72  0.41  

  

DW-statistic 
Adjusted R² 

2.06 
0.80 

2.02 
0.83 

2.01 
0.70 

1.98 
0.72 

2.01 
0.69 

2.02 
0.68 

 
 
             

 7:00 to 9:00 (INT1) 9:00 to 15:00 (INT2) 15:00 to 17:00 (INT3) 

DEPENDANT 

VARIABLE : ASCs 

November-April May-September November-April May-September November-April May-September 

Mean   (Nb. Signif 
Coef.     corr. sign) 

Mean (Nb. Signif 
Coef.   corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.    corr. sign) 

Mean  (Nb. Signif 
Coef.     corr. sign)

Mean   (Nb. Signif 
Coef.     corr. sign) 

Intercept 0.049** (5/5) 0.047** (5/5) 0.036** (5/5) 0.047** (5/5) 0.036** (5/5) 0.059** (5/5) 
t-stat  8.29  7.87  6.89  8.04  6.87  10.78  
MO b -0.0005**  (5/5) -0.0004** (5/5)  -0.0004**  (4/5) -0.0004** (4/5) -0.0003*  (3/5) -0.0002 (1/5) 
t-stat  -7.01  -5.34  -4.22  -4.09  -2.54  -1.54  
MO s 0.00015 (1/5) 0.00014 (1/5) 0.00011 (0/5) 0.00012 (0/5) 0.00003 (0/5) 0.00015 (0/5) 

t-stat  1.49  1.59  1.12  1.21  0.49  1.25  
AUTOCORR b -0.022* (3/5) -0.019 (1/5) 0.0002 (0/5) 0.0002 (0/5) -0.0002 (0/5) -0.0001 (0/5) 

t-stat  -2.28  -1.97  0.38  0.31  -0.28  -0.10  
AUTOCORR s 0.0143 (1/5) 0.0103 (0/5) -0.0036 (0/5) 0.0124 (0/5) 0.0033 (0/5) 0.0260 (1/5) 

t-stat  1.35  0.76  -0.55  1.10  0.49  1.59  
  

DW-statistic 
Adjusted R² 

2.01 
0.69 

2.02 
0.71 

2.01 
0.70 

2.01 
0.72 

1.99 
0.69 

2.01 
0.73 


