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Abstract

This article considers the optimal fund allocation for an insurance company
that issues variable annuities with riders such as GMWBs. We analyze the
problem from the point of view of the managers of the insurance company. We
optimize with respect to two criteria: The utility of the profitability of the
scheme, and also the level of asset-liability concordance. For the asset-liability
management part of the criterion, we rely on a Redington type immunization
where the duration of assets and liabilities should be matched and the convex-
ity of the assets should be as high as possible in comparison to the convexity of
the liabilities. The asset portfolio consists of stocks, bonds, and cash, and are
modeled using diffusion process. The problem is solved using Hamilton-Jacobi-
Bellman equations. Illustrations and discussions are provided.
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Introduction
In North America, Equity Indexed Annuities (EIAs) and Variable Annuities

(VAs) constitute an important market. EIAs are linked to an equity index, typ-
ically the S&P 500 index or an international index, because they are considered
to be fixed annuities by insurance regulators, they fall under protection of state’s
guaranty funds. VAs are linked to equity securities chosen by the investor. VAs
were created in the US in the 1950s and became widespread in Japan in the
1990s; they also have become popular in Europe at the end of the 2000s. In
Canada, segregated fund contracts and guaranteed investment funds are pop-
ular. Segregated funds also consist of a pool of investments in securities but
they are fully segregated from the company’s general investment funds. In the
UK, the most common instruments are Compulsory Purchase Annuities, such as
conventional annuities, with-profit annuities and unit-linked annuities. A Unit
Linked Insurance Plan is a product launched in India where policyholders have
the option to select the type of funds they prefer. In France and in continental
Europe also, similar products are increasingly made available to the public.

In the actuarial literature, relatively many papers take the retiree’s stand-
point rather than the insurance company’s side. The retiree has the option
to annuitize his plan balance, so to select an asset mix upon which the annu-
ity payments will be based. This asset mix is one possible focus of research.
Charupat and Milevsky (2002) derived the optimal asset allocation for a VA
contract in the payout phase, where the retiree’s expected utility of consump-
tion is maximized under the condition that the account balance is annuitized
at fixed retirement dates. Unlike Charupat and Milevsky (2002), Milevsky and
Young (2007) focuses on the optimal annuitization timing and asset mix strate-
gies of a utility-maximizing retiree endowed with a fixed annuity. Milevsky and
Kyrychenko (2007) detected the change on asset mix and found that policy-
holders are holding more equity when guarantees are offered. Most of the above
papers used a constant relative risk aversion(CRRA) or constant absolute risk
aversion(CARA) utility function, while Huang and Milevsky (2008) considered
the general hyperbolic absolute risk aversion(HARA) case.

Another research strand focuses on the annuities when the retirement port-
folio includes other products. Chen and Milevsky (2003) computed the optimal
mix between traditional assets and immediate annuities using the scenario stud-
ies and obtained the sensitivities of weights with respect to risk aversion, age,
and other factors. Xiong, Idzorek, and Chen (2010) considered a similar prob-
lem with deferred annuities. Kartashov, Maurer, Mitchell, and Rogalla (2013)
assessed the impact of allocation of variable annuities on household welfare. The
benefits of the variable annuities depend on the performance of the underlying
portfolio under different stochastic and systematic mortality scenarios. Both
Blanchett (2012) and Horneff, Maurer, Mitchell, and Rogalla (2013) specified
the allocation problem for the popular Guaranteed Minimum Withdraw Bene-
fit (GMWB) product. Ostaszewski (2013) considered an empirical problem of
allocation of an individual investment portfolio in the context of a guarantees
provided by income from a social insurance scheme.

Next, we examine several papers that look at the insurance company’s side.
For insurance companies that issue variable annuities, two core issues are the
pricing of contracts and the hedging of risks. A large quantity of work has been
done for the former point that we omit here. One can refer to the introduction of
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Kelani and Quittard-Pinon (2014) for several papers concerning hedging in life
insurance and variable annuities. Let us mention here several additional papers.
Coleman, Li, and Patron (2006) compared the effectiveness of hedging against
equity and interest rate risk, whether using underlying assets or liquid options.
Cox and Lin (2007) focused on the hedging of life annuities and annuities against
mortality risk.

Most of the papers from the insurer’s side take the directions mentioned
above, which are not pursued in this paper. The following papers are also from
the insurer’s side, but instead of a risk minimization that is usually used for
hedging, they use a utility framework. Devolder, Princep, and Fabian (2003)
consider a defined contribution pension plan whose benefits are paid with an
annuity. Their paper neglects mortality risk when choosing the best investment
strategies for managers and finds explicit solutions of asset allocation before and
after retirement for the CRRA and CARA utility functions.

Let us now examine how financial risk is modeled in the related actuarial
literature. The common interest rate models include the constant model used in
Charupat and Milevsky (2002) and Milevsky and Young (2007) and the Vasicek
model as used in Coleman, Li, and Patron (2006). The models used to simulate
risky assets include the Geometric Brownian Motion (GBM) model used in
Charupat and Milevsky (2002) and Milevsky and Young (2007), the GBMmodel
with dividends used in Coleman, Li, and Patron (2006), the Merton’s Jump
Diffusion model used in Coleman, Li, and Patron (2006) and the Lévy process
approach used in Kelani and Quittard-Pinon (2014).

In addition to the above two kinds of assets, models comprising three or even
four kinds of assets also exist. A bond account is the most commonly additional
asset. The common bond models include the stochastic diffusion model used in
Boulier, Huang, and Taillard (2001) and Battocchio and Menoncin (2004) and
the yield smoothing approach used in Binsbergen and Brandt (2007).

Annuities can be modeled in several ways, depending on interest rates as
in Milevsky and Young (2007), or depending on assumed interest rates as in
Charupat and Milevsky (2002) and Kartashov, Maurer, Mitchell, and Rogalla
(2013), or using the discrete model as in Cox and Lin (2007) and Horneff,
Maurer, Mitchell, and Rogalla (2013).

Then, we examine the mortality risk models used in the above mentioned
articles. The market is assumed complete under mortality risk if the number
of policyholders is large enough, as in Coleman, Li, and Patron (2006) and De-
volder, Princep, and Fabian (2003). Mortality can be regarded as part of the
extra fees with other expense charges, as in Milevsky and Kyrychenko (2007).
Other approaches include the exponential model used in Charupat and Milevsky
(2002) and the Gompertz-Makeham model used in Charupat and Milevsky
(2002) and Milevsky and Young (2007).

While the key optimization problem is about maximization of the wealth of
the owner of the insurance firm offering the variable product, this optimization
is under specified asset-liability management constraints. Our model, there-
fore, in contrast to existing literature, captures what is common practice of the
insurance industry in variable annuities: A trade off between maximizing com-
pany wealth, and tools used for management of asset-liability risks, within the
framework of providing guarantees to the customer.
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1 Actuarial and Financial Setting
We construct a fund that represents the wealth of an insurance company.

The analysis can be separated into two time periods: before and after retirement.
Before retirement, we have an optimal portfolio problem where the premiums
paid by the policyholders make up the insurer’s initial wealth and where the
objective is to find the optimal allocation of assets maximizing the expected
utility of wealth until retirement. Some changes can be made if we want to model
the characteristics of certain riders, e.g., GMWB, where withdrawals are allowed
before retirement. At retirement, part or all of the fund is used to purchase an
annuity. The benefits can be calculated using the annuity models such as those
described above. After retirement, the optimization problem for insurers can
be regarded as finding allocation strategies to optimize the remaining funds at
policyholders’ limit ages.

We consider an insurance company that issues variable annuities with guar-
antees, specifically guaranteed minimum withdrawal benefits(GMWBs). The
problem is to find the “best” investment strategy for the assets that back the
pension liabilities during the existing period of the annuities. In this section,
we first examine the mechanism of a GMWB. Then we introduce the market
structure under which the optimal asset allocation problem is defined.

1.1 GMWBs
Originally, the payment from a variable annuity used an Assumed Interest

Rate (AIR), where the payment changes based on the actual return of the
underlying investments compared to the AIR. For example, if the AIR is 4%,
as long as the underlying fund earns more than 4%, say 10%, payments will
increase by a factor 1.1

1.04 ≈ 1.06. If the underlying fund earns less than 4%,
say −10%, payments will decrease by a factor 0.9

1.04 ≈ 0.87. Because payments
depend on the performance of the underlying investments, the variable annuity
is risky. Its risk can be managed with the creation of a GMWB.

A GMWB is a combination of an insurance and an investment. There are
two types of GMWBs: finite-life GMWBs and lifetime GMWBs. A finite-
life GMWB is a contract where the holder can withdraw guaranteed periodic
amounts up to the initial capital. The GMWB terminates once the initial invest-
ment has been withdrawn; any remaining funds are returned to the policyholder
at maturity. For example, if one invests 100 euros in a GMWB that guarantees
a 5% annual payment, then the maturity of the contract is set at 20 years.

We now describe in detail the mechanism of a lifetime GMWB, which is also
called a GLWB, where L stands for lifetime. With a typical lifetime GMWB, the
policyholder deposits a lump sum in a pre-retirement year, say at age T0 = 50,
to buy the variable annuity with GMWB rider. We denote C0 this lump sum,
which includes the premium for the VA and the price of the GMWB option.
Then, the policyholder has the right to choose the composition of the assets
in his/her sub account. Let us assume that 70% of the initial contribution is
virtually invested in risky assets and 30% in bonds. The management fee for the
stock and bond accounts is 0. We further assume that once the contribution is
invested, it follows a buy-and-hold strategy and no further contribution is made
during the accumulation period. Once the variable annuity is bought, the benefit
base account and contract value account are set up. While the contract value
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account is the actual value of the investments in the annuity’s sub accounts,
the benefit base is what future guaranteed income payments will be based on.
Typically, the benefit base initially equals C0 and automatically increases by a
certain percentage each year for a specified time period. If the contract value
account is greater than the benefit base at the end of a certain year, the benefit
base account will be periodically set equal to the higher contract value account.
The benefit base account remains unchanged after retirement.

For simplicity, we assume that at the age of retirement, normally TR = 65,
the policyholder decides to withdraw a lump sum equal to the contract value
or to receive an annuity, so to withdraw monthly or annual payments from the
next period on. Once the withdrawals begin, the benefit base no longer increases
automatically.

The guaranteed minimum payments are distributed as a percentage of the
benefit base until death. We postulate that the policyholder can withdraw up
to 5% of the investment amount each year for life, no matter how long he/she
lives or how bad his/her investments perform. The policyholder has the option
to choose his/her withdrawal strategy, but we postulate that he/she will only
withdraw 5% per year. At the death time of the policyholder, if a positive
contract value still exists, it is returned to the beneficiary. If the policyholder
dies before retirement, his/her contract value is also returned to the beneficiary
at his/her supposed retirement age.

1.2 Financial Market
The insurance company holding the premiums invests them in cash, stocks

and bonds. The portfolio holds a quantity θ0(t) of cash, and numbers θS(t) of
risky assets and θB(t) of bonds.

In Table 1, the left-hand-side column lists the company’s assets: the equity
investment, the real estate investments, BK , the position in bonds and S0,
the cash. The right-hand-side column displays the capital and liability of the
insurance company.

Table 1: Overall Framework/space
stocks

real estates

}
: S1

capital

bonds: BK

liabilities: VA and guaranteescash: S0

Default risk is neglected in this study. We assume that the instantaneous
credit-risk-free interest rates follows a Vasicek model:

dr(t) = a(b− r(t))dt+ σrdWr(t), r(0) = r0, (1)

where Wr is a Brownian motion in the real world. The explicit solution to (1)
is

r(t) = b+ (r0 − b)e−at + σr

∫ t

0

e−a(t−s)dWr(s),
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and we have for the corresponding cash asset S0:

S0(t) = e
∫ t
0
r(s)ds.

The expectation of this latter quantity equals

emt+
1
2 Σ2

t ,

where

mt = bt+ (r0 − b)
1− e−at

a
, Σ2

t = σ2
r

∫ t

0

(
1− e−a(t−u)

a
)2du.

For the rolled-over position in bonds, we use the diffusion equation intro-
duced in Boulier, Huang, and Taillard (2001). The strategy for constructing a
rolling bond is achieved by continuously rebalancing a portfolio of zero-coupon
bonds and allow us to reproduce bonds with a single time to maturity K. For
such a bond, the price follows the equation

dBK(t)

BK(t)
= r(t)dt− σK(dWr(t) + λrdt), (2)

where λr is a constant risk premium and

σK =
1− e−aK

a
σr.

As mentioned before, the insurance company invests part of its funds in risky
assets. This investment in risky assets of the insurance company includes a
combination of stocks and real estate participations. We assume that the total
dynamics of this combination is represented by S1. We call S1 stock for sim-
plicity from now on. The policyholder has the right to choose a portfolio, on
which his future benefits will be based. He/she also chooses a combination of
stocks and real estates to represent the risky investment in his/her underlying.
We assume that the dynamics of this combination is represented by S2. Note
that S2 only acts as an index on which the policyholder’s benefits will be based;
it is not possessed by the insurer or the policyholders. The real-world dynamics
of S1 and S2 are given below:

dS1(t)
S1(t) = r(t)dt+ σ1(dW1(t) + λ1dt)− δ1(t)dt,
dS2(t)
S2(t) = r(t)dt+ σ2(dW2(t) + λ2dt)− δ2(t)dt,

< dW1, dW2 >= ρ12dt.

(3)

W1, W2 are correlated Brownian motions and λ1, λ2 are constant premiums.
Each stock pays dividends continuously at a rate δi=1,2(t) per unit of time.
S1 represents the combination in which the company really invests while S2

represents the combination used for the computation of that the policyholder’s
subaccount appreciation. If the stock market is assumed to be correlated with
the bond market, then < dW1, dWr > = ρr1dt, < dW2, dWr > = ρr2dt. So, the
variance-covariance matrix of BK , S1, S2 is

MVC =

 σ2
K −σKσ1ρr1 −σKσ2ρr2

−σKσ1ρr1 σ2
1 σ1σ2ρ12

−σKσ2ρr2 σ1σ2ρ12 σ2
2

 (4)

6



We can construct uncorrelated Brownian motions W̃r, W̃1 and W̃2, where

dW̃r = dWr −
σK
2
dt,

dW̃1 =
1√

1− ρ2
r1

(
dW1 − ρr1dWr +

(σ1

2
+
ρr1σK

2

)
dt
)
,

dW̃2 =

√
1− ρ2

r1√
(1− ρ2

r1)(1− ρ2
r2)− (ρ− ρr1ρr2)2

(
dW2 −

ρ− ρr1ρr2
1− ρ2

r1

dW1

−
(
ρr2 − ρr1ρ

1− ρ2
r1

)
dWr +

(
σ2 + ρr2σK − σ2ρ

2
r1 − ρσ1 − ρρr1σK + ρr1ρr2σ1

2(1− ρ2
r1)

)
dt

)
(5)

The real-world dynamics of the bond and the risky investments become

dBK(t)

BK(t)
= (r(t)− σKλr −

σ2
K

2
)dt− σKdW̃r,

dS1(t)

S1(t)
= (r(t) + σ1λ1 − δ1 −

σ2
1

2
)dt+ σ1ρr1dW̃r + σ1

√
1− ρ2

r1dW̃1,

dS2(t)

S2(t)
= (r(t) + σ2λ2 − δ2 −

σ2
2

2
)dt+ σ2ρr2dW̃r +

σ2(ρ− ρr1ρr2)√
1− ρ2

r1

dW̃1

+ σ2

√
(1− ρ2

r1)(1− ρ2
r2)− (ρ− ρr1ρr2)2

1− ρ2
r1

dW̃2,

(6)
For simplicity, we omit the ·̃ and rely on uncorrelated Brownian motions

until the end of the paper.

1.3 Company Assets
As already stated, the insurance company invests θ0(t) in cash, θS(t) in risky

assets and θB(t) in bonds, i.e.,

Ft = θ0(t)S0(t) + θS(t)S1(t) + θB(t)BK(t).

The associated SDE is therefore

dFt = θ0(t)dS0(t) + θS(t)dS1(t) + θB(t)dBK(t)

+dθ0(t)(S0(t) + dS0(t)) + dθS(t)(S1(t) + dS1(t)) + dθB(t)(BK(t) + dBK(t)).

Before time T , no withdrawals exist and the company is self-financed. According
to the self-financing condition,

dFt = θ0(t)dS0(t) + θS(t)dS1(t) + θB(t)dBK(t).

Using Eqs. (6), we have:

dFt = [Ftr(t) + ω1(t)λ1σ1 − ω2(t)λrσK − ω1(t)δ1(t)] dt+

ω1(t)σ1

√
1− ρ2

r1dW1(t) + (ω1(t)σ1ρr1 − ω2(t)σK)dWr(t),

where

ω1(t) = θS(t)S1(t), ω2(t) = θB(t)BK(t), ω1(t) + ω2(t) = Ft − θ0(t)S0(t).
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In vector form,

dFt = [Ftr(t) + ω(t)′(σλ− δ)]dt+ ω(t)′σdWt, (7)

where

ω(t) =

(
ω1(t)
ω2(t)

)
, λ =

(
λ1−ρr1λr√

1−ρ2r1
λr

)
, σ =

(
σ1

√
1− ρ2

r1 σ1ρr1
0 −σK

)
, δ =

(
δ1
0

)
, dWt =

(
dW1(t)
dWr(t)

)
.

1.4 Contracts
Next, we model the variable annuity and the GMWB guarantee. We denote

ti, i = 0, 1, 2 · · · a sequence of constant times. The time interval is determined
by the contract, i.e., if the contract payments are annual, the time interval is
one year, if the contract payments are monthly, the time interval is one month,
and so on. Further, t0 = 0.

We use β to denote the benefit base and C to represent the contract value.
Cti is the contract value after withdrawals. β0 = C0 is the original lump sum
used for the purchase of the contract. For simplicity, we construct an index P
that tracks the underlying fund value. This index does not represent the assets
of the insurer; it is the index on which the policyholder’s contract is based and
is made of S2 and BK . Indeed,

P (t)

P (0)
= ν1

S2(t)

S2(0)
+ ν2

BK(t)

BK(0)
, (8)

where ν1 = 0.7, ν2 = 0.3.
If the policyholder chooses to receive an annuity, he/she starts receiving

monthly or annual level payments from time ti > T , TR − T0 = 15, where, as
mentioned in subsection 1.1, TR is the retirement age and T0 is the age at which
the contract begins. Here, we assume that the constant annual withdrawal rate
is 5%. For ti > T , the investor is guaranteed to be able to make a withdrawal
of

wti =

{
0 if ti 6 T,

5%βti−1
if ti > T.

(9)

at each date ti.
We further define rg as the percentage increase of the benefit base. According

to the step up feature, before T , the benefit base βti is set to the higher of
βti−1(1 + rg) and of the contract value after withdrawals, i.e., Cti . After T , the
benefit base βti remains unchanged, such that

βti =

{
max(βti−1

(1 + rg), Cti) if ti 6 T,
βT if ti > T.

(10)

The contract value changes with the value of underlying assets. Net of with-
drawals, it never falls below zero, by construction:

Cti = (Cti−1
· Pti
Pti−1

− wti)+, (11)

Based on the above equations, the proceeds for the original VA plus GMWB
for the policyholder at time ti = T is either a lump sum equal to the contract
value or a sequence of withdrawals, i.e.,

Payoff(T ) = max(5%βT äR(T ), CT ).
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where 5%βT äR(T ) is the market value of lifelong withdrawals and äR(T ) is the
market price at time T of an immediate annuity with payments of one euro per
annum beginning at time T until death.

We can derive a different interpretation. GMWB riders represent embedded
financial put options on the contract values. Milevsky and Salisbury (2006),
which is the initial paper on pricing and hedging finite-life GMWB products,
decompose the contract into a term certain component and a quanto Asian
put option. Inspired by them, Piscopo (2009) decomposes the lifetime GMWB
contract into a life annuity and a portfolio of quanto Asian put options.

1.5 Mortality Model
We use the Gompertz-Makeham mortalitymodel. In this model, the force of

mortality ψ can be written as:

ψ(t) = χ+
1

b
e
t−m
b , (12)

where χ is a positive constant measuring accidental deaths linked to non-age
factors, while m and b are modal and scaling parameters of the distribution,
respectively. The corresponding survival probability is

tpt0 = e−χ(t−t0)+e

t0−m
b

1−e
t−t0
b


.

In our framework we assume that τ is independent of all the other stochastic
variables affecting the financial market.

2 Optimization Problem

2.1 Asset-liability Matching Indicators
Asset-liability mismatches are an important concern for insurance companies

and pension funds. Several indicators exist that allow us to test the different
aspects of asset-liability matching levels.

One can consider for instance the difference between the total risk of assets
and that of liabilities. The tracking error, defined as the standard deviation of
the difference in the returns of assets and liabilities, measures this difference.
In symbolic form,

tracking error = SD[RA −RL],

where RA and RL are the returns of assets and liabilities, respectively. SD is
the standard deviation. It is also possible to construct indexes from different
asset-liability matching strategies, like dedication and immunization strategies.

In a dedication strategy, assets and liabilities provide the same total cash
flows in each period. From this strategy, we can construct the index maturity
gap. The maturity gap is defined as follows: assets and liabilities are grouped
into time buckets according to maturity or the time until the first possible
resetting date of interest rates. For each time bucket,

maturity gap = MA −ML,
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where MA and ML are maturities for assets and liabilities. When the maturity
gap is zero, the company is protected against interest rate moves.

A commonly used immunization strategy is duration matching. Under this
strategy, we construct a duration matching level index that is defined as the
difference between the durations of assets and liabilities:

duration matching level = DA −DL.

The duration gap is also used to measure the risks related to interest rate
changes. It is defined as

duration gap = DA −DL
assets

liabilities
.

When the duration gap is positive, the company suffers from an increase of
interest rates; when the duration gap is negative, the company suffers from
a decrease of interest rates. When the duration gap is zero, the company is
immunized against interest rate risk. The duration gap improves the maturity
gap by taking into account the timing and market value of cash flows rather
than the horizon maturity.

Utility functions are increasing functions, so the immunization target can be
expressed as

1

|DA −DL|
,

or as
1

|DA −DL
assets

liabilities |
.

The Redington immunization strategy, named after the British actuary Frank
Redington, imposes an additional condition on convexity beyond duration and
asset and liability value matching. See Redington (1952). Specifically, this
strategy requires that the convexity of assets be greater than that of liabilities.
However, it is not always easy to enforce this condition in practice. Rather, we
impose a related condition: we maximize the ratio of the convexity of assets to
the convexity of liabilities. Then, we construct an index that consists of two
parts:

ξ
1

|DA −DL|
+ ζ

CA
CL

, (13)

where D denotes duration, C denotes convexity, α and ζ are given coefficients:
We use this new indication in the remainder of the test as an asset- liability
management criterion. It should be noted that using this criterion results in a
possible tradeoff between duration match and convexity gain. While such trade-
off has been largely ignored in existing literature, it is a real issue in the practical
management of insurance firms, as well as the tradeoff between convexity and
yield, which has received much more attention in the existing literature.

The liquidity mismatch index (LMI) defined by Brunnermeier, Markus, Gor-
ton, and Krishnamurthy (2011) and Brunnermeier, Markus, Gorton, and Krish-
namurthy (2013) is also worth mentioning. This index measures the mismatch
between the market liquidity of assets and the funding liquidity of liabilities.
The market liquidity of assets is the ability to quickly convert them into cash.
The funding liquidity of liabilities is the ability to raise money by borrowing
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using the assets as collateral. The LMI is defined as the difference between
the liquidities of assets and liabilities, and weighs each asset and liability by a
liquidity weight η. In symbolic form,

LMIt =
∑
k

ηt,Akxt,Ak −
∑
k′

ηt,Ak′xt,Ak′ .

The assets xt,Ak and liabilities xt,Ak′ vary with time and with the class k or
k′ of the asset or liability considered. ηt,Ak and ηt,Ak′ are liquidity weights.
Beyond the LMI, the liquidity coverage ratio (LCR) of Basel 3 and the liquidity
creation measure introduced by Berger and Bouwman (2009) are other relevant
indicators.

2.2 Objective Function
We assume that the insurance company considers two elements in its op-

timization strategy: the expected value of the fund at the contract maturity
and/or the company’s asset liability matching criteria. Its managers are con-
cerned about both profitability and risk management.

First, we consider optimization of the utility of wealth. There are two situ-
ations for the contract maturity. In the first situation, the policyholder prefers
to receive a lump sum equal to the balance in his/her sub-account at the re-
tirement age. The decision is made at the retirement age. Then, the contract
maturity is the smaller of the retirement age T and death age τ . In this case,
the optimization program is

ω(t) = argmax EP
[
U1(Fτ )e−κτ1τ6T + U1(FT )e−κT1τ>T

]
, (14)

where κ is the subjective discounting factor that represents the degree of an
insurer’s patience, U1 is the utility function and F is subject to Eq. (7).

In the second situation, the policyholder prefers to receive an annuity. The
decision is also made at the retirement age. Then, the contract maturity is
the client’s death time τ . It is necessary to make some changes to the original
optimization problem and its constraints. The portfolio is not self-financed any
more. The changes in the portfolio are made of discrete withdrawals. We can
consider them as jumps.

On t ∈ [0, τ ]\{ti}, the constraint condition of Ft is still given by

dFt = θ0(t)dS0(t) + θS(t)dS1(t) + θB(t)dBK(t),

for ti = T + 1, · · · , xτy. xτy means the largest integer smaller than τ . At times
ti = T + 1, · · · , xτy, we have the following jump condition:

F (ti) = F (t−i )− wti ,

which means the company pays wti to its policyholders at time ti.
Using the notation introduced above, Eq. (7) can be modified as{
dFt = [Ftr(t) + ω(t)′(σλ− δ)]dt+ ω(t)′σdWt, , For t ∈ [0, τ ]\{T + 1, · · · , xτy}
F (ti) = F (t−i )− wti , For ti = T + 1, · · · , xτy (15)
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The optimization problem can be modified as

ω(t) = argmax EP
[
U1(Fτ )e−κτ

]
, (16)

where U1 is the utility function and F is subject to Eq. (15).
As we mentioned before, the company not only considers the optimization

of utility of wealth, but also cares about asset liability matching. For the latter
point, we can refer to the last subsection for a survey about asset liability
matching criteria. In fact, we optimize the problem in two steps, the details of
which will be specified in the next section.

Here, we use the duration matching index and synthesize the above two
points to the following objective function:

ω(t) = argmax
[
αEP

[
U1(Fτ )e−κτ

]
+ (1− α)U2

(
1

|DA −DL|

)]
, (17)

where U2 is the utility function, DA and DL are the durations of assets and
liabilities respectively, and where we have assumed that the total utility function
is separable.

3 Results

3.1 Solution to the first wealth optimization problem
When dealing with problem (14), we can write the maximization problem

as follows:

ω(t) = argmax EP0
[∫ T

0
U1(Fs)ψ(s)e−

∫ s
0
κ+ψ(u)duds+ U1(FT )e−

∫ T
0
κ+ψ(u)du

]
where ψ is the force of mortality and is independent of financial risk. The
factors that multiply the utility terms are respectively a death density and a
death survival probability, times a discount factor in κ.

Assume that the utility function U1 is CRRA with risk aversion coefficient
γ, i.e., U1(c) = c1−γ

1−γ . According to Proposition 4.1, the solution is{
ω∗1 (t)
F = σ1λ1−δ1

γ ,
ω∗2 (t)
F = σr(1−γ)

σKaγ
(ea(t−T ) − 1)− σKλr

γ .
(18)

3.2 Solution to the second wealth optimization problem
When dealing with problem (16), we can write the maximization problem

as follows:

ω(t) = argmax EPt
[∫ ∞

0

ψ(s)U1 (F (s)) e−
∫ s
0
κ+ψ(u)duds

]
.

We also assume that U1 is CRRA. According to Proposition 4.2, the solution is

ω∗(t) = (σσ′)−1(F −
∑
i:ti>t

wtie
−

∫ ti
t r(s)ds)

σ(0 σr)
′A2 + (σλ− δ)

γ
. (19)
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3.3 Solution to the risk management problem
Next, we consider the durations of assets and liabilities. For the liabilities,

as withdrawals are discrete, we can use the following formula to calculate the
Macaulay duration

Duration of liabilities(t) =
Σxτy
ti=T+1tiwtie

−
∫ ti
t r(s)ds

Σxτy
ti=T+1wtie

−
∫ ti
t r(s)ds

. (20)

For the assets, companies are holding cash, stocks and bonds. We first calculate
the duration of each part and use

Duration of assets = (1− ω1

F
− ω2

F
) ·D(cash) +

ω1

F
D(S1) +

ω2

F
D(BK) (21)

to calculate the asset duration. The duration of cash can be regarded as zero.
According to Farrell Jr. (1985), the duration of stocks can be approximated by
1
δ1
. This is, of course, only a “first order” approximation, because in practice

duration of stocks is strongly affected by the ability of managers to respond to
interest rate changes by adjusting the projects the firm invests it, and generally,
is shorter than the “first order” approximation produced by the reciprocal of the
dividend yield. The Macaulay Duration of a zero coupon bond equals its term
to maturity K.

Therefore, the optimization problem becomes

ω∗(t) = argmax

[
U2

(
1

| ω1

F δ1
+ Kω2

F −DL|

)]
. (22)

Dealing with the above problem alone gives out infinite optimal solutions,
which is making the denominator equal to 0,

ω1

F δ1
+
Kω2

F
= DL.

As mentioned before, we will deal with this problem in two steps. The
first step concerns the duration matching part. The second step concerns the
convexity improvements. We add an additional constraint that the company
should hold a minimum level of cash to makes sure its solvency. We suppose
that this minimum level is 5% of the company’s fund, that is ω1 + ω2 = 0.95F .
The optimization algorithm that we are actually processing is:{

ω1

F δ1
+ Kω2

F = DL,

ω1 + ω2 = 0.95F.

Solving the above system of equations, we get the results{
ω1 = Fδ1DL−0.95KFδ1

1−Fδ1 ,

ω2 = 0.95F−Fδ1DL
1−Fδ1 .

3.4 Numerical simulation details
The calculations of DA Eq. (21) analytical, while the calculations of DL in

Eq. (20) depend on the trajectory of Monte-Carlo method. In this part, we
display the numerical details for calculating DL.
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First, generate Nb branches of (rt, BK(t), S1(t), S2(t)). Then, in each sce-
nario calculate the benefit base account and contract value to obtain the cash
flows of liabilities wt. Use Eqs. (20) to obtain the duration and convexity of
liabilities in each scenario and average all these durations to get the desired DL.

4 Illustration
In this section, we set out a numerical illustration in order to analyze the

dynamic behavior of the optimal portfolio strategy derived in the above subsec-
tion. The parameters of the financial market and the mortality model are listed
in Table 2.

Table 2: Parameters for illustration
Interest rate Risky investment S1

mean reversion, a 0.2 Risk premium, λ1 0.3
mean rate, b 0.05 stock own volatility, σ1 0.2
volatility, σr 0.02 dividends, δ1 0.02
initial rate, r0 0.03

Risky investment S2

Fix-maturity bond Risk premium, λ2 0.2
maturity, K 20 stock own volatility, σ2 0.1
market price of risk, λr -0.15 dividends, δ2 0

Gompertz-Makeham model correlation between stocks, ρ12 0.2
non-age factor, χ 0.01 correlation between S1 and BK , ρr1 0.06
modal, m 92.63 correlation between S2 and BK , ρr2 0.06
scaling, b 8.78

Figure 1 shows the results of Eq. (23) with respect to the relative risk
aversion level. It is not surprising to find that the higher the relative risk
aversion level, the lower the risky asset optimal share.

As the results to problems (16) and (17) are not analytical, we use Monte-
Carlo method to obtain the average behavior. However, even with N = 100, 000
scenarios, the results are volatile, so we calculate the mean excluding the highest
and lowest k data values where k = N percent/2. Figures 2 and 3 show the
results of Eqs. (23) and (19) with respect to time under the condition that
the risk aversion level γ = 2. It shows that the optimal share of stocks drops
dramatically when withdrawals begin and climbs back to the original level as the
client gets older. This phenomenon can be explained by the insurance company
using ‘safer’ strategy when it has larger liabilities.

Figures 4 and 5 show the results of problem (17) before retirement. The
solid lines are results of Eq.(23). The dotted lines are the results of simply
duration matching and the dashed lines are adjusted results after synthesizing
wealth maximization and duration matching criteria.

Figures 6 and 7 show the results of problem (17) after retirement. The solid
lines are results of Eq.(23). The dotted and dashed lines represent the same
meaning as figures 4 and 5.
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Figure 1: optimal share of risky assets w.r.t. relative risk aversion level
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Figure 4: optimal share of risky assets
w.r.t. time (γ = 2,α = 0.5)
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Figure 5: optimal share of bonds w.r.t.
time (γ = 2,α = 0.5)
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Figure 6: optimal share of risky assets
w.r.t. time (γ = 2,α = 0.5)
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Figure 7: optimal share of bonds w.r.t.
time (γ = 2,α = 0.5)
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Conclusion

Appendix
Proposition 4.1. The solution of problem (14) is{

ω∗1 (t)
F = σ1λ1−δ1

γ ,
ω∗2 (t)
F = σr(1−γ)

σKaγ
(ea(t−T ) − 1)− σKλr

γ .

Proof. We can solve problem (14) using section 5.4 in Korn and Korn (2001).
Defining

v(t, F, r) = maxω EPt
[∫ T

0
U1(Fs)ψ(s)e−

∫ s
0
κ+ψ(u)duds+ U1(FT )e−

∫ T
0
κ+ψ(u)du

]
,

the HJB equation that corresponds to this problem can be cast in the form of

vt +
F (t)1−γ

1− γ
ψ(t)e−

∫ t
0
κ+ψ(u)du + a(b− r(t))vr +

1

2
σ2
rvrr

+ max
ω

{
[Ftr(t) + ω(t)′(σλ− δ)] vF +

1

2
ω′σσ′ωvFF + ω′σ(0 σr)

′vrF

}
= 0,

with boundary condition

v(T, F, r) =
F 1−γ

1− γ
e−

∫ T
0
κ+ψ(u)du.

Formal maximization yields the following candidate for the optimal control:

ω∗(t) = −(σσ′)−1σ(0 σr)
′vrF + (σλ− δ)vF

vFF
.

Inserting ω∗ into the HJB equation results in the non linear partial differential
equation

vt +
F (t)1−γ

1− γ
ψ(t)e−

∫ t
0
κ+ψ(u)du + a(b− r(t))vr +

1

2
σ2
rvrr + Ftr(t)vF

− 1
2 (σλ− δ)′(σσ′)−1(σλ− δ) v2F

vFF
− 1

2
σ2
rv

2
rF

vFF
− (σλ−δ)′(σσ′)−1σ(0 σr)′vF vrF

vFF
= 0

To solve it, we choose the candidate form

v(t, F, r) = h(t, r)
F 1−γ

1− γ
e−

∫ t
0
κ+ψ(u)du

and obtain a partial differential equation for h(t, r)

ht
1− γ

− h(κ+ ψ(t))

1− γ
+
a(b− r)hr

1− γ
+

1

2

σ2
rhrr

1− γ
+ rh+

1

2

σ2
rh

2
r

hγ

+
1

2
(σλ− δ)′(σσ′)−1(σλ− δ)h

γ
+

(σλ− δ)′(σσ′)−1σ(0 σr)
′hr

γ
= − ψ(t)

1− γ
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with condition h(T, r) = 1. We first solve the homogeneous equation associated
with this PDE. We guess here that h(t, r) = eA1(t)+A2(t)r. Thus, we obtain

A′1(t) +A′2(t)r

1− γ
− κ+ ψ(t)

1− γ
+
a(b− r)A2(t)

1− γ
+

1

2

σ2
rA

2
2(t)

1− γ
+ r +

1

2

σ2
rA

2
2(t)

γ

+
1

2

(σλ− δ)′(σσ′)−1(σλ− δ)
γ

+
(σλ− δ)′(σσ′)−1σ(0 σr)

′A2(t)

γ
= 0.

Rearranging by order of r, we have

r

{
A′2(t)

1− γ
− aA2(t)

1− γ
+ 1

}
+
A′1(t)

1− γ
− κ+ ψ(t)

1− γ
+
abA2(t)

1− γ
+

1

2

σ2
rA

2
2(t)

1− γ

+
1

2

σ2
rA

2
2(t)

γ
+

1

2

(σλ− δ)′(σσ′)−1(σλ− δ)
γ

+
(σλ− δ)′(σσ′)−1σ(0 σr)

′A2(t)

γ
= 0.

with boundary condition A1(T ) = A2(T ) = 0. The above equation is equivalent
to the following two equations

A′2(t)
1−γ −

aA2(t)
1−γ + 1 = 0,

A′1(t)
1−γ −

κ+ψ(t)
1−γ + abA2(t)

1−γ + 1
2
σ2
rA

2
2(t)

1−γ

+ 1
2
σ2
rA

2
2(t)
γ + 1

2
(σλ−δ)′(σσ′)−1(σλ−δ)

γ + (σλ−δ)′(σσ′)−1σ(0 σr)′A2(t)
γ = 0.

The solution for A2 is

A2(t) =
1− γ
a

[
1− ea(t−T )

]
.

As A1 has no influence on the optimal share, we omit its solution here. There-
fore, we have

ω∗(t)

F (t)
= (σσ′)−1σ(0 σr)

′A2(t) + (σλ− δ)
γ

. (23)

where the optimal asset allocation ω∗1(t) per unit of wealth F (t) is time invariant
as its coefficient of A2(t) is 0 and ω∗2(t) per unit of wealth F (t) is time decreasing.
We call this ratio the optimal share. To demonstrate it more clearly, we expand
the above equation with assumption ρr1 = 0, and obtain the result in the
proposition.

Proposition 4.2. The solution to problem (16) is

ω∗(t) = (σσ′)−1(F −
∑
i:ti>t

wtie
−

∫ ti
t r(s)ds)

σ(0 σr)
′A2 + (σλ− δ)

γ
. (24)

Proof. To deal with the constraints (15), we put aside at t = T the cash required
to satisfy the needs for withdrawals, as in Korn and Krekel (2002). Then, the
remaining capital is invested as if there were no withdrawals at all. As F is
discontinuous at time ti, we cannot expect the value function to be continuous
at ti. Therefore, the HJB equation that corresponds to this problem is

vt +
F (t)1−γ

1− γ
ψ(t)e−

∫ t
0
κ+ψ(u)du + a(b− r(t))vr +

1

2
σ2
rvrr

+ max
ω

{
[Ftr(t) + ω(t)′(σλ− δ)] vF +

1

2
ω′σσ′ωvFF + ω′σ(0 σr)

′vrF

}
= 0,
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for all t ∈ [0, τ ]\{T + 1, · · · , xτy}
and

v(ti, F − wti) = v(t−i , F ),

for some fixed ti = T + 1, · · · , xτy, with the condition that the assets can back
the withdrawals during the intermediate process, i.e.,

v
(
t,
∑
i:ti>t

wtie
−

∫ ti
t r(s)ds

)
= 0.

Using a process similar to that presented above, we obtain the partial differential
equation:

vt +
F (t)1−γ

1− γ
ψ(t)e−

∫ t
0
κ+ψ(u)du + a(b− r(t))vr +

1

2
σ2
rvrr + Ftr(t)vF

− 1
2 (σλ− δ)′(σσ′)−1(σλ− δ) v2F

vFF
− 1

2
σ2
rv

2
rF

vFF
− (σλ−δ)′(σσ′)−1σ(0 σr)′vF vrF

vFF
= 0

To solve it, we choose the candidate form of

v(t, F ) = h(t, r)
(F −

∑
i:ti>t

wtie
−

∫ ti
t r(s)ds)1−γ

1− γ
e−

∫ t
0
κ+ψ(u)du

The procedure to solve h(t, r) is the same except the boundary condition is
modified to a transversality condition, resulting A2(t) = 1−γ

a , t > T .
Thus, we obtain

ω∗(t) = (σσ′)−1(F −
∑
i:ti>t

wtie
−

∫ ti
t r(s)ds)

σ(0 σr)
′A2 + (σλ− δ)

γ
.

where at times ti we have taken the right-continuous limit of the derivatives.
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