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1. Introduction

The percentage capital allocation is well known to be a bad advisor on the percentage risk

allocation in multi-asset class portfolios. In a typical 60/40 US equities-bond portfolio, the equity

part is often responsible for more than 90% of the total portfolio’s volatility (Qian, 2005). One

solution is to let portfolio weights be indirectly determined by a target constraint on the percent-

age volatility contributions. A special case is the risk parity or equal-risk-contribution portfolio,

seeking for portfolios in which all components contribute equally to the portfolio’s volatility (see,

e.g., Qian (2005), Maillard et al. (2010) and Bai et al. (2016)).

Boudt et al. (2012) and Roncalli (2015) generalize the approach to risk allocation based on

downside risk measures of the type Rp ≡ −µp + cpσp, with µp and σp the portfolio expected

return and volatility, and cp a multiple that may depend on the portfolio return distribution. For

such downside risk measures, setting a target value on the risk contribution implies finding a

balance between the expected return contribution and the portfolio volatility contribution. This

objective of finding a balance between a marginal revenue-type measure and a marginal cost-type

measure is intuitive from a profit-maximizing perspective, as mentioned by Lee (2011). In fact,

the maximum Sharpe ratio portfolio is such that the excess return contribution of each asset is

proportional to the volatility contribution of that asset, with the value of the multiplier being equal

to the value of the maximum Sharpe ratio.

Because of the non-normality of financial returns, the portfolio mean and volatility are not

sufficient to describe the preference of most investors. As shown by Scott and Horvath (1980),

investors tend to have positive preferences for odd moments (i.e., mean and skewness) and aver-

sion to even moments (i.e., variance and kurtosis). It follows that balancing the excess return

contributions of the portfolio positions with their volatility contribution may not be optimal when

the returns have a non-normal distribution. A potentially better approach is thus to balance the

expected (excess) return contribution with the contribution to a portfolio downside risk measure,

taking the non-normality of the return distribution into account.
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In this paper, we introduce a flexible framework to evaluate and optimize the balance between

components’ performance and risk contributions, where the performance measure (denoted by Pp)

and risk measure (denoted byRp) can be any measure, as long as they are first-order homogeneous

functions of the portfolio weights, such that they can be decomposed into performance and risk

contributions using Euler’s theorem. This is clearly the case for the portfolio mean (excess) re-

turn, and for the portfolio volatility, when estimated using the classical sample-based estimator.

In our study, we consider also four estimators for the portfolio Value-at-Risk (VaR) and Expected

Shortfall (ES) that are first-degree homogeneous functions of the portfolio weights: the paramet-

ric approaches of assuming a Gaussian or a Student-t distribution, the semi-parametric approach

based on the Cornish-Fisher approximation, and the non-parametric technique using kernel esti-

mators.

For the evaluation of the balance between the performance and risk contributions, we propose

the Performance/Risk Contribution Concentration (PRCC) metric. This measure is designed to be

minimal when, for all portfolio components, the performance and risk contributions are perfectly

aligned. We show its usefulness as an ex-post diagnostic tool to characterize the portfolio’s bets

in terms of performance contributions. More precisely, we define a bet when the ratio between

the portfolio component’s performance contribution compared with its risk contribution deviates

from the ratio between the aggregate portfolio performance relative to the aggregate portfolio risk.

The latter is denoted as τp ≡ Pp/Rp and henceforth used as a measure of the portfolio’s relative

performance.

The potential mismatch between the component performance and risk contribution of a port-

folio is especially a concern in the analysis of a risk-based portfolio, which, by the definition of

Lee (2011), is a portfolio for which the weights are determined without making use of a return

forecast. A typical example is the equally-weighted portfolio, for which Kritzman et al. (2010,

page 31) criticize the absence of optimization as follows: “If we have at least some information

on the expected returns, riskiness, and diversification properties of the assets, why should we not
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expect optimization to improve on a naively diversified portfolio?” On the other hand, Ardia and

Boudt (2015) show that risk-based portfolios can have the maximum Sharpe ratio properties under

specific conditions on the expected return. We illustrate in this paper that a necessary condition

for a portfolio to be the maximum Sharpe ratio portfolio is that its PRCC equals zero (when the

PRCC is computed using volatility as the risk measure). For this reason, we recommend to adjust

the weights of risk-based portfolios such that their PRCC value are closer to zero. A further advan-

tage of low values for the PRCC is that it implies robustness to estimation errors in the portfolio

weights.

In addition to its interpretation as a diagnostic tool, we recommend using the proposed PRCC

to go beyond risk-based portfolios in order to adjust the risk-based portfolio weights, such that they

achieve a better balance between the performance and risk contributions at the individual compo-

nent level. The adjustment is limited because of an upper-bound constraint on the mean squared

distance between the PRCC modified weights and the original risk-based portfolio weights. This

bound constraint ensures that the optimized weights can still be interpreted in connection to the

traditional risk-based portfolio. We further impose that the optimized portfolio needs to have the

same relative performance as the risk-based portfolio such that the PRCC is well defined. The

proposed framework of considering performance and risk allocation jointly is an alternative to the

traditional mean-variance optimization of Markowitz (1952).

We illustrate this framework of building PRCC modified risk-based portfolios in the real-life

asset allocation problem of finding the optimal mix across investments in developed markets’

equity, emerging markets’ equity, US government bond, corporate bonds, real estate and gold over

the period 1988-2015. Our out-of-sample analysis shows that, when the reference portfolio is

the equally-weighted, equal-risk-contribution and maximum diversification portfolio, the PRCC is

relatively high, and optimizing the PRCC under the constraint of equal relative performance and

a maximum tracking error in terms of the portfolio weights, leads to a substantial increase in both

the portfolio’s absolute and relative performance.
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The remainder of the paper is organized as follows. In Section 2 we define the PRCC measure

and show that it can be interpreted as a measure of robustness of the portfolio performance and risk

with respect to weight perturbations. In Section 3 we study its properties in the case of a volatility-

based risk measure for risk-based portfolios. We also show how it can be implemented in case of

a downside risk objective. In Section 4 we introduce a portfolio optimization framework in which

the investor minimizes the PRCC under a tracking error constraint with respect to the weights of

a reference portfolio and ensures that the optimized portfolio has the same relative performance

as the benchmark portfolio. In Section 5 we illustrate the use of the PRCC as a diagnostic and

optimization criterion in a real-life asset allocation problem. Our main findings are summarized in

Section 6.

2. Measuring the alignment of Component Performance/Risk Contributions

2.1. General framework

We consider a portfolio invested in N assets with weight vector w ≡ (w1, . . . , wN)′.1 We

assume to have a measure for the performance of the portfolio, denoted by Pp(w), and a measure

for the portfolio risk, denoted by Rp(w). As mentioned in Caporin et al. (2014), it is common to

evaluate the portfolio’s relative performance using ratios expressing the reward per unit of risk:

τP ,Rp (w) ≡
Pp(w)

Rp(w)
. (1)

As will be discussed later, many of the often used performance and risk measures have the prop-

erty of being first-degree homogeneous functions of the portfolio weights. This means that if the

portfolio weights are multiplied by a strictly positive scalar k, then the performance and risk mea-

sures are multiplied by k (i.e., Pp(kw) = kPp(w) and Rp(kw) = kRp(w) for k > 0). Examples

1We present our framework to align the performance and risk contributions at the component level. An alternative
is to do this at the factor level. We refer the interested reader to Boudt and Peeters (2013) and Roncalli and Weisang
(2016) for an introduction to the methodology to compute and optimize the risk contributions at the factor level.
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include all types of excess portfolio returns as performance measures and portfolio volatility, VaR

and ES under the assumption of elliptically symmetric return distributions and modified downside

risk measures under the Cornish-Fisher expansion as risk measures. From Euler’s homogeneous

function theorem, it follows that first-degree homogeneity is a useful property for performance

and risk measures, as it implies the following aggregation results:

Pp(w) =
N∑
i=1

wi∂iPp(w)

Rp(w) =
N∑
i=1

wi∂iRp(w) ,

where we denote the partial derivative ∂
∂wi

by ∂i. In the literature on performance and risk budget-

ing, the term:

CPi (w) ≡ wi∂iPp(w) , (2)

is called the component contribution to the portfolio performance, and:

CRi (w) ≡ wi∂iRp(w) , (3)

is the component risk contribution (see, e.g., Boudt et al., 2008).

From the definition of τP ,Rp (w) as the relative performance measure in (1), it follows that the

aggregate balance between the performance and risk contribution is:

Pp(w) = τP ,Rp (w)Rp(w) .

But how is this balanced between the portfolio performance and risk distributed across the different

positions? To answer this question, we need to investigate the balance in the performance and risk
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contribution at the component level. To do so, let us define the Component Performance/Risk

Contribution of asset i as:

CPRCi(w) ≡ CPi (w)− τP ,Rp (w)CRi (w) .

Due to the first-degree homogeneity property and Euler’s theorem, we have that the sum of all

component performance/risk contributions is always zero:

N∑
i=1

CPRCi(w) = 0 . (4)

As an aggregate measure of the dispersion in balance between the performance and risk contribu-

tions, we propose to use the following Performance/Risk Contribution Concentration measure for

portfolios invested in multiple assets2:

PRCC(w) ≡ 1

2N2

N∑
i=1

N∑
j=1

{[
CPi (w)− τP ,Rp (w)CRi (w)

]
−
[
CPj (w)− τP ,Rp (w)CRj (w)

]}2

,

(5)

where we scale with 1/(2N2) because of the property that the CPRCi’s add up to zero in (4),

which implies that many terms in the PRCC(w) cancel out. In fact, as we show in Appendix A, it

is equivalent to define the PRCC as the average squared value of the CPRCi’s:

PRCC(w) ≡ 1

N

N∑
i=1

[
CPi (w)− τP ,Rp (w)CRi (w)

]2
=

1

N

N∑
i=1

[CPRCi(w)]2 . (6)

In practice, we use the computationally simpler expression (6) to calculate the PRCC, but for ease

of interpretation, we refer to (5) as the main definition of the PRCC. Indeed, the most natural

2In the trivial case of a portfolio fully invested in a single asset, there is of course no dispersion and the PRCC is
zero. Throughout the paper, we assume the portfolios to be invested in at least two assets.
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interpretation of the PRCC measure is that it measures the concentration in the mismatch between

performance and risk contributions of financial portfolios. The higher the PRCC is, the more

concentrated the portfolio is in terms of positions where the performance contribution diverges

from the risk contribution scaled by the portfolio’s relative performance ratio.

2.2. The PRCC as a measure of robustness to perturbations in the optimality of the weights

The PRCC is thus a measure for the aggregate imbalance between the component performance

and risk contributions. In this section, we show that it is also a measure for the sensitivity of the

portfolio performance and risk with respect to small changes in the portfolio weights. In fact,

when the portfolio weights are determined on the basis of performance and risk, they should be

seen as estimates, due to the estimation uncertainty in the portfolio performance and risk. There

is thus a mismatch between the actual weight vector w and the weight vector the investor would

choose if there were no estimation error. Let us denote the latter by w[. It is desirable that the

estimation error in the portfolio weights has only limited influence on the portfolio performance

and risk, and thus that Pp(w) ≈ Pp(w[) andRp(w) ≈ Rp(w
[). We formalize below the impact of

incremental weight perturbations and show that the PRCC can be directly interpreted as a measure

of robustness of the portfolio performance and risk to those weights’ perturbations.

We use the additive perturbation model to quantify the effect of small errors on the portfolio

performance. It consists of considering the change in the portfolio performance and risk when the

portfolio weight vector w changes to w̃ ≡ w + εei, with ε an infinitesimal small positive number

and ei the ith basis vector of dimension N × 1.

It is desirable that this small perturbation has little or no impact on the evaluation of the per-

formance/risk contribution of the different assets in the portfolio. In other words, that:

∂Pp(w)

∂wi
− τP ,Rp (w)

∂Rp(w)

∂wi
≈ 0 .

Such a property would indicate robustness of the portfolio performance and risk to estimation error
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in the weights (i.e., Pp(w) ≈ Pp(w[) andRp(w) ≈ Rp(w
[)).

By the definitions of the component performance and risk contributions in (2) and (3), this de-

sire for robustness of the performance to small perturbations in the portfolio weights is equivalent

to the condition that the PRCC is close to zero.

As such, we thus obtain a multiple-criteria portfolio optimization problem: Maximize perfor-

mance, minimize risk and minimize PRCC.3 In the next section, we recommend to simplify the

problem by considering only preferences for the value of the portfolio’s relative performance (as a

summary for the balance between maximum performance and minimum risk) and the value of the

PRCC. In the special case of maximizing the relative performance, the PRCC is zero and there is

no trade-off between the two objectives. In fact, as we show in Appendix B, for the maximum

relative performance portfolio, we have that the performance and risk contributions are optimally

aligned in the sense of an equality between the performance contribution and the risk contribution,

scaled by the portfolio’s relative performance ratio:

CPi (w∗) = τP ,Rp (w∗)CRi (w∗) , (7)

for all i = 1, . . . , N and where w∗ ≡ argmaxw∈CFI
τP,Rp (w), with CFI ≡ {w ∈ RN |w′ι = 1}

the set of portfolio weights satisfying the full-investment constraint. Large values of the PRCC

thus indicate active bets in terms of deviating performance/risk contributions from those of the

maximum relative performance portfolio.

3There exist several alternative approaches for reducing the impact of estimation error in the optimized portfolio
weights. The first one is to use shrinkage methods or resampling approaches in the estimation (see, e.g., Ledoit and
Wolf, 2008; Michaud and Michaud, 2008). A second solution is to impose bound constraints on the portfolio weights
(see, e.g., Jagannathan and Ma, 2003).
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2.3. The PRCC diagram for visualizing intra-portfolio alignment of performance and risk contri-

butions

As argued above, it is desirable that the portfolio relative performance is not highly sensitive

to small weight perturbations. We find it useful to visualize this sensitivity in a scatter plot of

the component risk contributions against the component performance contributions, together with

the line through the origin with slope equal to the portfolio’s relative performance. The portfolio

components that are on this line correspond to positions for which the alignment at the position

level between risk and performance is identical to the alignment at the aggregate portfolio level.

As an illustration, consider a portfolio of four assets. Their performance contributions and

risk contributions are given by 1.4, 1.6, 1.7, 2.1 and 1, 2, 2.5, 3, respectively. Figure 1 shows

the corresponding PRCC diagram. In this example, the portfolio aggregate performance and risk

values are 6.8 and 8.5, respectively. The portfolio relative performance is therefore 0.8 (unit

of performance per unit of risk). The portfolio components that are on this line correspond to

positions for which the alignment at the position level between performance and risk is identical

to the alignment at the aggregate portfolio level. In our example, this is the case for asset 2.

When the performance/risk contribution couple is above the line, the position contributes more to

portfolio performance per unit of risk than the total portfolio (e.g., asset 1), and vice versa when

the couple is below the line (e.g., assets 3 and 4). At the aggregate portfolio level, the sum of all

CPRC is by construction exactly zero as stated by (4). The PRCC value is 0.14.

[Insert Figure 1 about here]

3. Choice of risk measure and the PRCC

In this section we first focus on the volatility as the risk measure and derive alternative repre-

sentations of the PRCC for specific risk-based portfolios. We then discuss the implementation of

the PRCC with downside risk measures.
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3.1. The volatility-based PRCC

The Sharpe ratio is certainly the most often used performance measure in portfolio analysis.

As an ex-post measure of performance, it reflects the excess return compensation received per

unit of volatility risk taken. To be an ex-ante target, we need the forecast of portfolio return and

volatility. More formally, we consider a portfolio invested in N assets with vector of weights

w ≡ (w1, . . . , wN)′. We denote µ ≡ (µ1, . . . , µN)′ as the vector of expected (arithmetic) returns

and µ̃ ≡ (µ̃1, . . . , µ̃N)′ as the vector of expected excess (arithmetic) returns over the risk-free

rate. We further define the N × N covariance matrix of (arithmetic) returns by Σ. Then the

portfolio’s expected excess return can be written as µ̃p(w) ≡ w′µ̃ and the portfolio volatility is

given by σp(w) ≡
√

w′Σw. Both measures are first-degree homogeneous. For the Sharpe ratio,

the performance contribution of asset i is given by:

Cµ
i (w) ≡ wiµ̃i ,

and the component volatility contribution of asset i is given by:

Cσ
i (w) ≡ wi∂iσp(w) = wi

[Σw]i
σp(w)

.

The PRCC for the portfolio with a Sharpe ratio target τµ,σp (w) is given by:

PRCC(w) ≡ 1

N

N∑
i=1

[
Cµ
i (w)− τµ,σp (w)Cσ

i (w)
]2
. (8)

The general expression of the PRCC in (8) evaluates the mismatch between the performance and

risk contributions of a fully invested portfolio with weights w. In Appendix C, we derive specific

formulas of the volatility-based PRCC for the minimum downside risk portfolio4, the minimum

4The portfolio minimizes a downside risk measure belonging to the family of risk measures of the form w′µ −
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variance portfolio, the inverse volatility portfolio, the equally-weighted portfolio, the equal-risk-

contribution portfolio and the maximum diversification portfolio. The resulting expressions for

the PRCC are presented in Table 1.

[Insert Table 1 about here]

The analysis shows that, for the minimum downside risk portfolio, the value of the PRCC is

independent of the cross-sectional variation in the expected returns. It is only the total portfolio

risk that determines the value of the portfolio’s PRCC. In contrast, for the minimum variance

and equal-risk-contribution portfolios, the percentage risk contributions have no influence on the

PRCC, wthe value of which is a function of the percentage return contributions. Finally, we see in

Table 1, that for the maximum diversification portfolio, the PRCC is a function of the variability of

the spread between the assets’ individual Sharpe ratios and the ratio between the weighted average

return and the weighted average volatility, with weights corresponding to the portfolio weights.

3.2. Downside risk-based PRCC

The general definition of the PRCC requires first-degree homogeneous functions of perfor-

mance and risk. For the former, we use the portfolio excess return throughout the paper. For the

latter, we investigate here the use of a downside risk measure. We hereby follow the convention of

referring to downside risk as a positive number and using low-probability terminology (see, e.g.,

Daníelsson, 2011, Subsection 4.3.1). We focus the analysis on downside risk measures that can be

written as a linear combination of the portfolio expected return and volatility:

Rp(w) ≡ −µp(w) + cp(w)σp(w) ,

where cp(w) depends on the distribution of portfolio returns. Table 2 presents common choices

of cp(w) leading to an estimator of the portfolio VaR and ES, obtained when assuming either a

cZ
√

w′Σw, such as the VaR and ES of the portfolio under the assumption of an elliptically symmetric distribution.
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Gaussian distribution, a Student-t distribution, the Cornish-Fisher approximation, or the historical

estimation methodology (see, e.g., Praetz, 1972; Boudt et al., 2008; Martin and Arora, 2015).

Throughout the paper, we use VaR and ES computed at the 5% loss probability.

[Insert Table 2 about here]

4. Optimizing the PRCC of a risk-based portfolio

By definition, the weights of a risk-based portfolio do not depend on an estimate of expected

returns. They thus have the advantage that estimation error in the (noisy) expected return estimates

has no influence on the portfolio weights. Their weakness lies in the model risk implied, since,

as shown by Ardia and Boudt (2015) among others, it is only under specific conditions on the

expected returns that the risk-based portfolio is an efficient investment decision. Moreover, when

the risk-based portfolio weights are based on estimates of the risk parameters (such as the covari-

ance or the Value-at-Risk), they are still sensitive to estimation error. For this reason, we propose

here to reach a compromise between the advantages of risk-based portfolios, and their disadvan-

tages, by using the PRCC criterion to modify the risk-based portfolio weights. The modification

aims at improving the weights by tilting them in the direction for which the performance and risk

contributions are better aligned. By doing so, the weights violate less the first-order condition of

the maximum Sharpe ratio portfolio (implying a zero value for the PRCC) and are more robust

to estimation error, as explained in Section 2.2. To preserve the interpretation of the risk-based

portfolio weights and limit the impact of estimation error in the expected returns, we restrict the

weight modifications in two ways. First, we require that the weights’ modification does not alter

the relative performance of the portfolio compared with the risk-based benchmark. Second, we

impose an upper-bound constraint on the mean squared value of the weight differences induced by

the optimization, and refer to this as the tracking error constraint.

More formally, our optimization framework considers an investor who has a risk-based ref-

erence portfolio w? with relative performance equal to τ ?p . The investor seeks to optimize the
13



portfolio weights by aligning his performance and risk contributions (i.e., minimizing his portfo-

lio’s PRCC), under the constraint that the portfolio relative performance ratio equals τ ?p and the

optimized portfolio weights are sufficiently close to the weights of the reference portfolio.

The first constraint thus determines the balance between performance and risk at the aggregate

portfolio level by setting a target value on the relative performance ratio. In our context of aligning

the performance and risk contributions, imposing a target value for the relative performance ratio

is natural, since it fixes the parameter τp in the PRCC criterion and therefore facilitates the iden-

tification of portfolios for which the performance and risk contributions are matched. The target

value for τp is of course crucial, as it determines the balance between performance and risk at the

aggregate portfolio level. The higher this target level is, the more risky the optimized portfolio

tends to be. An important caveat is that, in the presence of estimation error, it can be expected that

the higher the target level is, the more sensitive the optimized portfolio is to estimation error.

The second constraint can be interpreted as a tracking error constraint on the active weights.

As in Brandt et al. (2009), we write this tracking error constraint on the portfolio weights as:

1

N

N∑
i=1

(wi − w?i )2 ≤ ζ2 ,

where we set ζ at 10% for the base case in our empirical application. Under this constraint, the

PRCC optimization can thus be seen as shrinking the predetermined risk-based portfolio weights

towards a state in which the performance and risk contribution portfolios are aligned. The con-

straint limits the impact of estimation error on the optimized portfolio weights, as in Bera and

Park (2008), and ensures that the optimized weights can be interpreted as enhancements to the

risk-based portfolio weights.

In addition to the target value constraint for the portfolio relative performance and the tracking

error constraint, we require the portfolio to be fully invested and we do not allow for short posi-

tions. This leads to the following optimization problem, taking the risk-based portfolio weights
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w? as input, and transforming them into PRCC modified risk-based portfolio weights:

minimize
w

PRCC(w)

subject to τp(w) = τ ?p√√√√ 1

N

N∑
i=1

(wi − w?i )2 ≤ ζ

w′ι = 1

wi ≥ 0 ∀i

wi < 1 ∀i .

(9)

The strict inequality constraint that wi < 1 ensures that the portfolios are invested in at least two

assets (see Footnote 2 on page 7).

From a computational viewpoint, the derivation of the PRCC modified risk-based portfolio

weights is a nonlinear optimization problem. When the PRCC has smooth first and second order

derivatives (with respect to w), this problem can be easily solved using sequential quadratic pro-

gramming. This is the case when the performance measure is the portfolio mean and the portfolio

risk measure is the portfolio volatility or the VaR (or ES) computed under the assumption of the

Gaussian or Student-t distribution, or when using the Cornish-Fisher approximation (i.e., modified

VaR and modified ES).5

5. Illustration in asset allocation

Risk-based portfolios are increasingly used in the construction of equity portfolios and in asset

allocation. For sake of clarity in our presentation, we choose to illustrate the use of the PRCC in

asset allocation, because of the typically lower dimension of a realistic asset allocation portfolio

compared with a realistic equity optimization problem. Our goal is to determine the weights of the

5In the application, we optimize our portfolios using the R package donlp2 (Tamura, 2007).
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portfolio invested in six asset classes: (i) developed markets equity, (ii) emerging markets equity,

(iii) US government bond, (iv) US investment grade corporate bond, (v) real estate and (vi) gold.

We start the illustration by introducing the monthly return data used for the period 1988-2015.

We then use the PRCC to analyze and modify six risk-based portfolios: (1) the minimum down-

side risk portfolio, (2) the minimum variance portfolio, (3) the inverse volatility portfolio, (4) the

equally-weighted portfolio, (5) the equal-risk-contribution portfolio, and (6) the maximum diver-

sification portfolio. The main analysis uses volatility as a risk measure and the Sharpe ratio as

relative performance measure. To illustrate the use of a downside risk measure, we also con-

sider the modified VaR as risk measure, together with the corresponding modified Sharpe ratio

as relative performance measure. We first present our in-sample results and conclude with an

extensive out-of-sample performance evaluation using rolling estimation windows of three years

and monthly portfolio rebalancing. Throughout the analysis, we obtain the estimates for the ex-

pected (excess) returns and covariance matrix using the standard sample mean and covariance of

the monthly arithmetic (excess) returns of the six assets.6

5.1. Data

The sample ranges from January 1988 to August 2015. We use the end-of-month values on the

total return index of the MSCI World index, the MSCI Emerging Markets index, Bloomberg US

Government bond (1-10 year) index, BofA Merrill Lynch US Corp Master Total return index, All

REITS Total index and Gold Fixing price 3 p.m (London time) in the London Bullion Market. All

returns computed are arithmetic returns, based on the USD value of the indices. We take the US

one-month Treasury bill rate from the database of Kenneth French as the risk-free asset.7

6The use of rolling estimation windows reflects industry practice when the frequency of rebalancing is monthly.
Alternatively, more complex estimators could be considered that use higher frequency data (see e.g. Boudt and Zhang
(2015)) or by considering a parametric approach to modelling the time-variation in the return series (see e.g. Boudt
et al. (2012)).

7The MSCI World index tracks the performance of large and mid-cap equities over 23 devel-
oped market countries: https://www.msci.com/market-cap-weighted-indexes. The data
of All REITS Total index is retrieved from: https://www.reit.com/investing/index-data/
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The summary statistics on the buy-and-hold investments in each of six assets are reported in

Table 3. Among the six assets considered, the MSCI Emerging Markets index has the highest

annualized excess return (9.77%), followed by the NAREIT index (7.55%). On the risk side, the

Bloomberg US Government Bond index has the lowest level of annualized volatility (3.16%) and

drawdown (3.5%). Over the period, the two bond indices have the most attractive Sharpe ratio

(0.23). The investment in the gold index is the least attractive in terms of average return and

Sharpe ratio performance. In some cases, it may be valuable to include an investment in gold to

the portfolio, because, as can be seen in Panel B of Table 3, it is a great diversifier in the portfolio.

Its correlation with the five other asset classes is below 0.2. The highest correlation is observed

between the returns of the two equity indices (0.73). Finally, note that the US Government bond

had negative correlations with the MSCI World index (-0.09) and the MSCI Emerging market

index (-0.15) over our period, which is marked by the financial crisis and possible flights to safety.

[Insert Table 3 about here]

5.2. In-sample performance and PRCC of risk-based portfolios

Given the large heterogeneity in performance of the various asset classes, it is now relevant

to study how the choice of risk-based portfolio allocation affects portfolio performance. The re-

sults are reported in Panel A of Table 4. In terms of in-sample annualized returns, we see that

the equally-weighted portfolio has the highest return (around 5%), while the minimum variance

portfolio offers only an average return of 2.66%. The equal-risk-contribution portfolio is the sec-

ond best in terms of annualized returns (3.58%). Its volatility is 4.55%, which is in between

the 3.01% volatility of the minimum variance portfolio and the 8.92% volatility of the equally-

weighted portfolio. The Sharpe ratio of the maximum Sharpe ratio portfolio is twice the Sharpe

monthly-index-values-returns. For the US Corp Master Total return index and gold spot, the data is
collected from the Federal Reserve Bank of St. Louis, while the risk-free rate data used is the one from K. French
data website, available at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.
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ratio of the equally-weighted portfolio. In our sample, maximizing the Sharpe ratio and minimiz-

ing the downside risk or variance leads to similar portfolios with a high allocation to bonds. The

maximum Sharpe ratio portfolio allocates to both US government bonds (85%) and investment

grade corporate bonds (5%), while the minimum downside risk portfolio and minimum variance

portfolio only invest in the government bonds (93%).

[Insert Table 4 about here]

The results on portfolio performance are as expected. The main novelty in Table 4 is the col-

umn with PRCC† values, for which high values indicate concentrated bets in terms of volatility

and expected return contributions that are not aligned with the portfolio’s Sharpe ratio. We see

that the minimum variance and minimum downside risk portfolios are close to optimal in terms

of a low value of the PRCC, while the inverse volatility, equally-weighted, equal-risk-contribution

and maximum diversification portfolios have a monthly PRCC value that is higher than 0.00075.

In annualized terms, this corresponds to a PRCC value of 0.11, as obtained by multiplying the

monthly PRCC value with 144 (i.e., 122). Table 5 shows the annualized performance and risk

contributions that lead to the annualized value of the PRCC. Interestingly, we see that for the

four mentioned portfolios with a large PRCC value, this is caused by the investments in the eq-

uity, NAREIT and Gold asset classes, which cause too much volatility compared with their return

contribution, while the position in bonds contributes relatively more to return than it does to risk.

Because of the nonlinear dependence of the PRCC on porfolio weights, it is not possible to predict

how the PRCC modification will change the weights in the individual position. We analyze this

empirical question next.

[Insert Table 5 about here]

5.3. In-sample gains from optimizing the PRCC

Let us now investigate how the PRCC modification to risk-based weights changes the portfolio

performance and weights. Taking volatility as our risk measure and setting ζ = 10%, the in-sample
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performance is shown in Panel B of Table 4, while the weights of the PRCC optimized portfolios

are shown in the right part of Table 5. Remember also that an important constraint in the PRCC

modification is that the portfolio needs to have the same Sharpe ratio, as can be seen in Table 4.

It follows that the PRCC modification comes either at the price of a higher volatility (which is

the case for the minimum downside risk, minimum variance, the equally-weighted portfolio) or a

lower return (which is the case for the equally-weighted and maximum diversification portfolio).

Another constraint is the 10% upper bound on the tracking error in terms of weights compared to

the benchmark portfolio. We see in the column ‘TE‘ that this constraint is binding for the inverse

volatility weighted, the equal-risk-contribution and the max diversification portfolios. Finally, it is

of interest to see that the direction of the weight changes due to the PRCC modification depends

on the risk-based portfolio considered. For the equally-weighted portfolio, we see, e.g., that a

better equilibrium between the performance and risk contributions is obtained by overweighting

equities and real estate, while for the maximum diversification portfolio, the weight to bonds is

substantially increased. In case of the equal-risk-contribution portfolio, we see that the PRCC

modified portfolio invests approximately the same weights in bonds, but instead of concentrating

50% of the weight in the government bond and only 20% in the corporate bonds, the PRCC

modified equal-risk-contribution portfolio invests around 35% in both of them.

[Insert Figure 2 about here]

We further visualize these changes in performance and risk contribution in Figure 2 for the

equally-weighted and equal-risk-contribution portfolio. Note that the slope of the line in each plot

corresponds to the portfolio’s Sharpe ratio. The steeper the line, the higher the value of the Sharpe

ratio. Henceforth, we call this the Sharpe ratio allocation line, since each point corresponds to a

performance contribution that equals the portfolio’s Sharpe ratio multiplied with its risk contribu-

tion.

Consider first the upper plot, showing that for the equally-weighted portfolio, the annualized
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Sharpe ratio equals 0.56. In spite of the equal weight allocation, the performance and risk con-

tributions are heterogeneous across the stocks, with occasional large deviations from the line cor-

responding to a performance contribution that equals the portfolio’s Sharpe ratio, multiplied with

the volatility contribution. Interestingly, the PRCC modification tends to lead to more disperse

risk and performance contributions, but they are better aligned and on average closer to the Sharpe

ratio allocation line.

In the bottom plot, we see that, in case of the equal-risk-contribution portfolio, the risk contri-

butions are of course identical for all assets, leading to a vertical line of performance contributions,

and a high value for the PRCC. The PRCC modification of the equal-risk-contribution portfolio

leads to portfolio weights with heterogeneous risk contributions across the assets, and performance

contributions that are more aligned to the volatility contributions, since the value of the annualized

PRCC drops from 0.12 to 0.06.

Let us now consider two more robustness analyses in Panels C and D of Table 4. The first one

is with respect to the upper bound on the tracking error of the PRCC optimized portfolios com-

pared with their benchmark. In the main analysis, the bound ζ is set to 10%, which is binding for

the inverse volatility weighted, equally-weighted, equal-risk-contribution and maximum diversifi-

cation portfolios. In Panel C we restrict the PRCC optimization even further by setting ζ = 5%.

Obviously, the resulting PRCC is higher than in the case of ζ = 10%. However, even allowing for

relatively minor changes in the weights, we see that the PRCC can be substantially reduced.

Finally, in Panel D, we consider the case of an investor who used the Cornish-Fisher modified

VaR (mVaR) as the measure of risk in quantifying the portfolio’s PRCC and its relative perfor-

mance in terms of the modified Sharpe ratio. Compared with the benchmarks in Panel A, we

see that, except for the inverse volatility portfolio, all other PRCC modified risk-based portfolios

have higher average returns (2.8%-5.8% versus 2.6%-5.0%) at the price of a higher modified VaR

(1.01%-4.62% versus 0.96%-3.99%). For these portfolios, their volatilities are also higher than the

benchmarks (3.12%-10.41% versus 3.01%-8.92%). The 10% tracking error constraint is binding
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for the inverse volatility, equal-risk-contribution and maximum diversification portfolios. Com-

paring Panel B with Panel D, we find that the effect of deciding to optimize the PRCC has a larger

effect in our sample than the choice of using modified VaR instead of volatility in the definition of

the PRCC and relative performance measure.

5.4. Out-of-sample gains from optimizing the PRCC

To assess the out-of-sample performance from optimizing the PRCC, we implement an invest-

ment strategy that rebalances the portfolios at the end of the month. At each rebalancing date,

all parameters needed for the calculation of the PRCC and the portfolio optimization are esti-

mated using the 36 most recently observed monthly returns (i.e., on a rolling-window basis). The

relative performance targets are set equal to those of the risk-based portfolio rules. In terms of

performance measures, we report, for all strategies: (i) the cumulative value, (ii) the annualized

geometric return, (iii) the annualized excess return, (iv) the annualized volatility, (v) the Sharpe

ratio, (vi) the portfolio skewness, (vii) the portfolio kurtosis, (viii) the maximum drawdown, (ix)

the 5% modified VaR, (x) the corresponding modified Sharpe ratio, and (xi) the average of the

tracking error of the PRCC modified portfolios compared with their risk-based benchmark portfo-

lio. The out-of-sample period ranges from January 1991 to August 2015 for a total of 296 monthly

observations.

Results are presented in Table 6. Consider first the out-of-sample performance of the bench-

mark risk-based portfolios in Panel A, and compare them with the maximum (modified) Sharpe

ratio portfolios in Panel E. We find that the risk-based portfolios are successful in achieving the

proposed investment style out-of-sample. As predicted, the minimum variance portfolio and min-

imum downside risk portfolio have the lowest level of volatility and drawdown (3% and 5%, re-

spectively), and that the volatility of the equal-risk-contribution portfolio (5.85%) is in between the

volatility of the minimum variance portfolio (2.95%) and the equally-weighted portfolio (9.12%).

We further observe in Table 6 that, for our sample, the highest Sharpe ratio is not achieved by

the maximum Sharpe ratio portfolios in Panel E, but by the low risk portfolios (minimum down-
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side risk and minimum variance portfolios) in Panel A. This can be explained by the presence

of estimation error in the expected returns, leading to a poor out-of-sample performance of the

maximum relative performance portfolios. The PRCC modified risk-based portfolios are partially

safeguarded against the estimation risk because of the balancing objective between performance

and risk contributions, and the tracking error constraint on the portfolio weights. In terms of abso-

lute performance, the equally-weighted portfolio has the highest end-value ($7.01 for $1 invested

in 1991). It also has the highest drawdown (31.64%) of all portfolios considered.

[Insert Table 6 about here]

Panel B of Table 6 shows that the PRCC modification leads to a substantial improvement in

the performance of the equally-weighted portfolio. The annualized geometric return increases

from 8.22% to 8.76%, while its annualized volatility and max drawdown decrease from 9.12%

and 31.64% to 8.17% and 27.95%, respectively. This performance improvement effect is con-

sistent with the expectation in Kritzman et al. (2010) that optimization must be able to improve

performance of a naively diversified portfolio, like the equally-weighted portfolio. For the other

risk-based portfolios, the effect of the PRCC modification is to increase absolute performance at

the cost of an increase in risk. This trade-off effect is in line with the constraint on the equality of

estimated Sharpe ratio between the traditional risk-based portfolio and the PRCC modified port-

folio. Note also in the last column ("TE") that the PRCC modification leads to the smallest weight

changes for the minimum downside risk and minimum variance portfolios, while for the equally-

weighted portfolio, the average tracking error is 9.98, indicating that for almost all rebalancing

dates, the upper 10% constraint is binding.

In Panel C of Table 6 we investigate the effect of restricting the tracking error constraint further

by setting ζ to 5%. Such a stricter constraint is desirable when the portfolio mangers sets a higher

priority to similarity of the PRCC modified weights to the risk-based weights. We see that the

resulting performance is in between the benchmark risk-based portfolios and the PRCC modified
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risk based portfolio with ζ = 10%. The main conclusions still hold, namely that the PRCC modi-

fication leads to an improvement of both performance and risk of the equally-weighted portfolio,

while for the other portfolios, there is an improved absolute performance at the price of a higher

risk. The PRCC modification either leads to a similar or improved relative performance.

All results discussed above are when the PRCC is implemented using volatility as the risk

measure and the Sharpe ratio as the relative performance measure. Panel D of Table 6 reports the

out-of-sample performance when the 5% modified Value-at-Risk is used as risk measure, together

with the corresponding modified Sharpe ratio. When considering the modified VaR, we now see

that the PRCC modification increases performance and decreases the downside risk for the inverse

volatility weighted, equally-weighted and maximum diversification portfolio. For the other port-

folios, the absolute performance improves at the price of slightly higher modified Value-at-Risk,

but the relative performance is either similar or better.

The bottom line results of the out-of-sample study can thus be summarized as follows. Firstly,

the PRCC modification improves the performance of the equally-weighted portfolio on all per-

formance dimensions considered. For the other risk-based portfolios, the PRCC modification

improves the absolute performance, but typically also increases the risk. These results are robust

to tightening the tracking error constraint from ζ = 10% to ζ = 5%, and to the use of modified

Value-at-Risk rather than volatility as the risk measure.

6. Conclusion

Risk-based portfolios have the computational and practical advantages of not requiring a return

forecast. We show that this may lead to imbalances in terms of a disparity between the performance

contribution per unit of risk contribution for the various portfolio positions. To measure this imbal-

ance, we propose the Performance/Risk Contribution Concentration (PRCC) measure. It has the

additional interpretation of measuring the robustness of the portfolio performance and risk with
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respect to small weight perturbations. We also show how to improve the balance between the per-

formance and risk contributions of a reference portfolio by minimizing the portfolio PRCC under

the constraint of achieving the same relative performance, and that the portfolio weights must be

close enough to the benchmark weights. The proposed PRCC modified risk-based portfolio has

the potential to strike a balance between investors who believe in the construction of optimized

portfolios using return forecasts (see, e.g., Kritzman et al., 2010), and investors who emphasize

the difficulty in estimating expected returns and recommend to use portfolio allocations that do

not require expected return estimates (see, e.g., DeMiguel et al., 2009).

We analyze the usefulness of the PRCC for the asset allocation decision to invest among equi-

ties, bonds, real estate, and gold. We find that, of all portfolios considered, the inverse volatility

weighted, equally-weighted, equal-risk-contribution, and maximum diversification portfolios have

the highest value of PRCC. Optimizing the PRCC of risk-based portfolios is especially beneficial

when considering the equally-weighted portfolio: it increases the performance and reduces the

risk. For the other risk-based portfolios, we find that the PRCC modification tends to yield similar

or improved values for the relative performance, by increasing total performance at the price of a

higher risk.
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Table 1: Simplified representation for the volatility-based PRCC measure of risk-based portfolios
This table presents expressions of the PRCC for six widely used risk-based portfolios. Details of the formu-
las can be found in Appendix C. We use σ ≡ (σ1, . . . , σN )

′, ξ ≡ (1/σ1, . . . , 1/σN )
′, ι is a N × 1 vector

of ones, Σ and R are the N ×N covariance and correlation matrices, respectively.

Portfolio rule PRCC(w∗)

Minimum downside risk portfolio

w∗ ≡ argminw∈CFI

{
−w′µ+ cZ

√
w′Σw

}
1
N
· [τµ,σp (w

∗
)−cZ]

2

σ
2
p(w

∗
)

·
N∑
i=1

{
w∗i
[
σ2
p(w

∗)− [Σw∗]i
]}2

Minimum variance portfolio

w∗ ≡ argminw∈CFI

{
w′Σw

}
1
N
·
N∑
i=1

{
w∗i
[
µ̃i − µ̃p(w∗)

]}2
Inverse volatility portfolio

w∗ ≡ ξ/ξ′ι 1
N
· 1

(ξ
′
ι)

2 ·
N∑
i=1

[
µ̃i
σi
− τµ,σp (w∗) [Rι]i√

ι
′
Rι

]2
Equally-weighted portfolio

w∗ ≡ ι/N 1

N
3 ·

N∑
i=1

[
µ̃i − τµ,σp (w∗) [Σι]i√

ι
′
Σι

]2
Equal-risk-contribution portfolio

w∗ ≡ argminw∈CFI

{
N∑
i=1

N∑
j=1

[
Cσ
i (w)− Cσ

j (w)
]2} 1

N
·
N∑
i=1

[
w∗i µ̃i − µ̃

′
w
∗

N

]2
Maximum diversification portfolio

w∗ ≡ argmaxw∈CFI

{
w
′
σ√

w
′
Σw

}
1
N
·
N∑
i=1

[
w∗i σi

(
µ̃i
σi
− µ̃

′
w
∗

σ
′
w
∗

)]2
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Table 2: Expressions for the volatility multiplier
The table presents expressions for the volatility multiplier cp(w) and its partial derivative ∂icp(w) for
various downside risk measures of the formRp(w) ≡ −µp(w)+cp(w)σp(w). zα is the α-quantile and φ(·)
is the density function of the standard Gaussian distribution. T−1α,ν is the α-quantile and tν(·) is the density of
the Student-t distribution with ν degrees freedom. gα(w) is the α-quantile obtained with the Cornish-Fisher
expansion. The portfolio skewness and kurtosis are denoted by sp(w) and kp(w), respectively. Expressions
for the partial derivatives of the skewness and kurtosis are presented in Appendix D. The historical VaR
estimation is detailed in Appendix E.

Downside risk measure cp(w) ∂icp(w)

Panel A: Value-at-Risk (VaR)

Gaussian VaR (GVaR) −zα 0

Student-t VaR (tVaR) −T−1α,ν

√
ν−2
ν

0

Modified VaR (mVaR) −gα(w) −∂igα(w)

Historical VaR (HVaR) HVaRα+µp(w)

σp(w)
1

σp(w)

[
CHVaRα
i (w)

wi
+ µi − cp(w) [Σw]i

σp(w)

]
Panel B: Expected Shortfall (ES)

Gaussian ES (GES) 1
α
φ(zα) 0

Student-t ES (tES) 1
α

√
ν
ν−2tν

(√
ν−2
ν
T−1α,ν

)
0

Modified ES (mES) 1
α
φ(gα(w))

[
1 + 1

6
g3α(w)sp(w) See Appendix D

+ 1
72

(
g6α(w)− 9g4α(w) + 9g2α(w) + 3

)
s2p(w)

+ 1
24

(
g4α(w)− 2g2α(w)− 1

)
kp(w)

]
Historical ES (HES) HESα+µp(w)

σp(w)
1

σp(w)

(
CHESα
i (w)

wi
+ µi − cp(w) [Σw]i

σp(w)

)
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Table 3: Descriptive statistics of asset returns
This table presents summary statistics of the monthly returns for the six assets in our universe. In Panel A,
we report the cumulative terminal value of a $1 investment ($), the annualized geometric returns (GR, in
percent), the annualized excess returns (Mean, in percent), annualized standard deviation (Sd, in percent),
Sharpe ratio (SR), skewness (Sk), kurtosis (Ku), the maximum drawdown (MDD, in percent), the 5% modi-
fied Value-at-Risk (mVaR, in percent), and the corresponding modified Sharpe ratio (mSR). Panel B reports
the correlation between the monthly asset returns. The signs ***,** and * indicate whether the Pearson
correlation coefficient is significantly different from zero at the 1%, 5% and 10% levels, respectively. The
six asset classes considered are the MSCI World index-developed countries (Eq-DE), the MSCI Emerg-
ing markets index (Eq-EM), the US Government bond index (Bo-GO), the US corporate bond master index
(Bo-CO), NAREIT, and the Gold spot index (Gold). The sample period ranges from January 1988 to August
2015 for a total of 332 monthly observations.

Panel A: Buy-and-hold strategy
Asset $ GR Mean Sd SR Sk Ku MDD mVaR mSR

Eq-DE 7.53 7.57 5.20 14.94 0.10 −0.61 1.37 53.65 6.97 0.06
Eq-EM 16.78 10.73 9.77 23.30 0.12 −0.59 1.64 61.44 10.83 0.08
Bo-Go 4.75 5.80 2.45 3.16 0.22 −0.01 0.23 3.46 1.02 0.20
Bo-Co 7.21 7.40 4.05 5.19 0.23 −0.80 4.30 16.07 2.05 0.16
NAREIT 12.71 9.62 7.55 17.48 0.12 −0.84 8.00 67.89 7.71 0.08
Gold 2.34 3.13 1.06 15.69 0.02 0.13 1.22 47.37 6.79 0.01

Panel B: Correlation between assets
Asset Eq-DE Eq-EM Bo-Go Bo-Co NAREIT

Eq-EM 0.73∗∗∗

Bo-Go −0.09 −0.15∗∗∗

Bo-Co 0.29∗∗∗ 0.22∗∗∗ 0.68∗∗∗

NAREIT 0.54∗∗∗ 0.45∗∗∗ 0.01 0.36∗∗∗

Gold 0.05 0.16∗∗∗ 0.10∗ 0.15∗∗∗ 0.06
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Table 4: In-sample performance and tracking error results
This table presents the in-sample performance and tracking error results for the benchmark risk-based port-
folios, the PRCC modified risk-based portfolios and the maximum Sharpe ratio portfolio. Panel A shows
portfolio performance of the risk-based portfolios. Panels B-D show the corresponding performance statis-
tics for the PRCC modified risk-based portfolios. The baseline implementation in Panel B uses volatility
as risk measure in the PRCC and relative performance, and sets ζ = 10%. Panel C reports to results when
ζ = 5%. We do not report the results for the minimum variance and minimum downside risk portfolio,
since the results are identical as in Panel B. Panel D uses the modified VaR as risk measure in the PRCC
and relative performance. Panel E reports results for the maximum Sharpe ratio portfolio. The performance
measures are the same as defined in Table 3. We also report the values of the PRCC using volatility as the
risk measure (PRCC†) and mVaR as the risk measure (PRCC‡). The last column reports the tracking error
(TE) of the PRCC modified portfolio weights compared with the corresponding risk-based benchmark. The
sign <0.01 indicates when the number is between 0 and 0.01%. Except for the SR and mSR, all numbers
are reported in percentage points. The sample period ranges from January 1988 to August 2015 for a total
of 332 monthly observations.

Performance measures
Mean Sd SR PRCC† mVaR mSR PRCC‡ TE

Panel A: Risk-based portfolios
Min downside risk 2.72 3.01 0.26 < 0.01 0.96 0.24 < 0.01
Min variance 2.66 3.01 0.26 < 0.01 0.96 0.23 < 0.01
Inverse volatility weighted 3.82 4.89 0.23 0.08 1.97 0.16 0.16
Equally-weighted 5.02 8.92 0.16 0.08 3.99 0.10 0.11
Equal-risk-contribution 3.58 4.55 0.23 0.09 1.80 0.17 0.18
Max diversification 3.14 3.96 0.23 0.11 1.51 0.17 0.25

Panel B: PRCC modified risk-based portfolios (volatility and ζ = 10%)
Min downside risk 2.88 3.19 0.26 < 0.01 1.09 0.22 0.02 3.61
Min variance 2.75 3.11 0.26 < 0.01 1.01 0.23 < 0.01 3.10
Inverse volatility weighted 3.77 4.83 0.23 0.04 1.92 0.16 0.07 10.00
Equally-weighted 5.86 10.43 0.16 0.04 4.66 0.10 0.07 7.59
Equal-risk-contribution 3.65 4.65 0.23 0.04 1.83 0.17 0.09 10.00
Max diversification 2.51 3.16 0.23 < 0.01 1.02 0.21 < 0.01 10.00

Panel C: PRCC modified risk-based portfolios (volatility and ζ = 5%)
Inverse volatility weighted 3.64 4.67 0.23 0.05 1.85 0.16 0.10 5.00
Equally-weighted 5.54 9.87 0.16 0.05 4.41 0.10 0.07 5.00
Equal-risk-contribution 3.51 4.47 0.23 0.06 1.75 0.17 0.12 5.00
Max diversification 2.61 3.28 0.23 0.04 1.11 0.20 0.07 5.00

Panel D: PRCC modified risk-based portfolios (mVaR and ζ = 10%)
Min downside risk 2.89 3.12 0.27 < 0.01 1.01 0.24 < 0.01 3.78
Min variance 2.84 3.12 0.26 < 0.01 1.02 0.23 < 0.01 3.85
Inverse volatility weighted 3.77 4.88 0.22 0.04 1.94 0.16 0.08 10.00
Equally-weighted 5.81 10.41 0.16 0.04 4.62 0.10 0.06 8.98
Equal-risk-contribution 3.64 4.66 0.23 0.04 1.84 0.17 0.09 10.00
Max diversification 3.28 4.11 0.23 0.06 1.58 0.17 0.13 10.00

Panel E: Other benchmark portfolios
Max Sharpe ratio 3.19 3.30 0.28 0 1.08 0.25 0.02
Max modified Sharpe ratio 2.99 3.14 0.28 < 0.01 0.98 0.25 0
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Table 5: In-sample attribution analysis
This table presents theresults of the in-sample attribution analysis of annualized PRCC for traditional bench-
marks (left-part) and the PRCC modified counter-parts (right-part). For each strategy, the table reports the
optimized weight vector w∗, the contributions to the annualized excess portfolio return (CMean

i ≡ 12w∗i µ̃i),
the annualized portfolio standard deviation (CSd

i ≡
√
12wi[w

∗Σ]i/σp(w
∗)), and the component perfor-

mance/risk contribution (CPRCi ≡ C
Mean
i − (

∑n
i=1 C

Mean
i /

∑n
i=1 C

Sd
i )CSd

i ). All reported numbers are
expressed in percentage points. The six asset classes considered are the MSCI World index-developed
countries (Eq-DE), the MSCI Emerging markets index (Eq-EM), the US Government bond index (Bo-GO),
the US corporate bond master index (Bo-CO), NAREIT and the Gold spot index (Gold). The in-sample
period ranges from January 1988 to August 2015 for a total of 332 monthly observations.

Traditional benchmark portfolios PRCC modified benchmark portfolios
Eq-DE Eq-EM Bo-GO Bo-CO NAREIT Gold Eq-DE Eq-EM Bo-GO Bo-CO NAREIT Gold

Panel A: Minimum downside risk portfolio
w∗ 3.16 2.30 93.10 0 0.59 0.86 5.04 0 86.99 0 6.19 1.78

CMean
i 0.16 0.22 2.28 0 0.04 < 0.01 0.26 0 2.13 0 0.47 0.02

CSd
i 0.10 0.09 2.77 0 0.02 0.02 0.26 0 2.35 0 0.52 0.06
CPRCi 0.07 0.14 −0.23 0 0.03 −0.01 0.02 0 < 0.01 0 < 0.01 −0.03

Panel B: Minimum variance portfolio
w∗ 3.77 1.66 93.25 0 0.07 1.25 9.63 0.08 89.01 1.14 0.14 0

CMean
i 0.20 0.16 2.28 0 < 0.01 0.01 0.50 0.01 2.18 0.05 0.01 0

CSd
i 0.11 0.05 2.81 0 < 0.01 0.04 0.57 < 0.01 2.47 0.05 < 0.01 0
CPRCi 0.10 0.12 −0.20 0 < 0.01 −0.02 −0.01 < 0.01 −0.01 < 0.01 < 0.01 0

Panel C: Inverse volatility weighted portfolio
w∗ 9.05 5.80 42.75 26.03 7.74 8.62 9.49 0 28.51 45.06 8.80 8.14

CMean
i 0.47 0.57 1.05 1.05 0.58 0.09 0.49 0 0.70 1.83 0.66 0.09

CSd
i 0.94 0.90 0.58 1.01 0.90 0.57 0.86 0 0.47 1.99 1.03 0.49
CPRCi −0.26 −0.13 0.60 0.27 −0.12 −0.35 −0.17 0 0.33 0.27 −0.13 −0.30

Panel D: Equally-weighted portfolio
w∗ 16.67 16.67 16.67 16.67 16.67 16.67 9.86 19.89 14.81 12.67 31.99 10.77

CMean
i 0.87 1.63 0.41 0.68 1.26 0.18 0.51 1.94 0.36 0.51 2.42 0.11

CSd
i 2.01 3.27 0.04 0.41 2.11 1.09 1.14 3.79 0.01 0.30 4.71 0.48
CPRCi −0.27 −0.21 0.39 0.44 0.08 −0.43 −0.13 −0.19 0.36 0.35 −0.23 −0.16

Panel E: Equal-risk-contribution portfolio
w∗ 7.84 5.22 50.36 19.65 6.93 10.01 9.39 0 35.37 38.07 8.84 8.34

CMean
i 0.41 0.51 1.23 0.80 0.52 0.11 0.49 0 0.87 1.54 0.67 0.09

CSd
i 0.76 0.76 0.76 0.76 0.76 0.76 0.84 0 0.60 1.66 1.03 0.53
CPRCi −0.19 −0.09 0.64 0.20 −0.07 −0.49 −0.17 0 0.40 0.24 −0.14 −0.33

Panel F: Maximum diversification portfolio
w∗ 6.01 4.89 72.05 0 6.28 10.77 0.23 0.04 92.38 4.77 0.15 2.43

CMean
i 0.31 0.48 1.76 0 0.47 0.11 0.01 < 0.01 2.26 0.19 0.01 0.03

CSd
i 0.50 0.63 1.27 0 0.61 0.94 < 0.01 < 0.01 2.89 0.18 < 0.01 0.09
CPRCi −0.08 −0.03 0.76 0 −0.01 −0.63 0.01 < 0.01 −0.03 0.05 0.01 −0.04
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Table 6: Out-of-sample performance results
This table presents the out-of-sample performance results for the risk-based portfolios, their PRCC mod-
ification, and the maximum (modified) Sharpe ratio portfolio. All reported statistics are as defined in Ta-
bles 3–4. The out-of-sample period ranges from January 1991 to August 2015, for a total of 296 monthly
observations.

$ GR Mean Sd SR Sk Ku MDD mVaR mSR TE

Panel A: Risk-based portfolios
Min downside risk 3.73 5.48 2.64 3.03 0.25 −0.68 2.60 4.86 1.10 0.20
Min variance 3.56 5.29 2.45 2.95 0.24 −0.51 1.75 4.57 1.05 0.19
Inverse volatility weighted 5.40 7.07 4.22 4.94 0.25 −1.25 5.82 14.76 2.06 0.17
Equally-weighted 7.01 8.22 5.59 9.12 0.18 −1.18 6.79 31.64 4.08 0.11
Equal-risk-contribution 4.44 6.23 3.48 5.85 0.17 −3.29 29.54 24.62 2.48 0.12
Max diversification 4.15 5.93 3.10 3.99 0.22 −0.68 2.08 7.93 1.57 0.16

Panel B: PRCC modified risk-based portfolios with volatility as risk measure; ζ = 10%
Min downside risk 4.12 5.91 3.06 3.49 0.25 −0.62 2.35 5.84 1.29 0.20 5.34
Min variance 3.76 5.52 2.68 3.30 0.23 −0.57 1.41 3.99 1.24 0.18 6.07
Inverse volatility weighted 5.67 7.29 4.43 5.10 0.25 −1.37 10.76 17.48 2.02 0.18 9.33
Equally-weighted 7.94 8.76 6.01 8.17 0.21 −0.83 4.65 27.95 3.44 0.14 9.98
Equal-risk-contribution 4.99 6.74 3.96 5.96 0.19 −3.28 29.07 28.28 2.51 0.13 9.52
Max diversification 4.46 6.25 3.41 4.16 0.24 −0.08 0.91 5.79 1.46 0.19 8.06

Panel C: PRCC modified risk-based portfolios with volatility as risk measure; ζ = 5%
Min downside risk 3.95 5.73 2.88 3.29 0.25 −0.75 3.10 5.16 1.22 0.20 3.51
Min variance 3.62 5.35 2.52 3.12 0.23 −0.51 1.32 3.85 1.14 0.18 3.60
Inverse volatility weighted 5.30 6.99 4.14 4.96 0.24 −1.14 6.35 16.97 2.02 0.17 4.96
Equally-weighted 7.34 8.42 5.72 8.54 0.19 −1.09 6.06 30.19 3.75 0.13 5.00
Equal-risk-contribution 4.57 6.35 3.60 5.84 0.18 −3.42 30.41 27.34 2.47 0.12 5.00
Max diversification 4.26 6.05 3.21 3.93 0.24 −0.39 0.82 7.04 1.47 0.18 4.59

Panel D: PRCC modified risk-based portfolios with mVaR as risk measure; ζ = 10%
Min downside risk 4.05 5.83 2.98 3.34 0.26 −0.39 1.71 5.06 1.17 0.21 4.90
Min variance 3.86 5.62 2.79 3.41 0.24 −0.62 2.31 4.72 1.27 0.18 6.04
Inverse volatility weighted 5.83 7.41 4.52 4.73 0.28 −0.09 1.44 12.26 1.63 0.23 9.25
Equally-weighted 7.56 8.55 5.81 8.22 0.20 −0.73 4.01 28.69 3.46 0.14 9.85
Equal-risk-contribution 5.04 6.78 4.01 5.99 0.19 −3.25 28.35 28.82 2.54 0.13 9.42
Max diversification 4.48 6.27 3.42 4.08 0.24 −0.40 1.42 5.62 1.51 0.19 7.80

Panel E: Other benchmark portfolios
Max Sharpe ratio 5.51 7.16 4.36 6.04 0.21 −0.36 2.63 12.72 2.35 0.15
Max modified Sharpe ratio 5.01 6.75 3.92 4.97 0.23 −0.38 2.21 10.28 1.89 0.17
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Figure 1: Illustration of the PRCC diagram
The figure presents the performance contribution (vertical axis) and risk contribution (horizontal axis) of
four assets (the four dots labeled by A1-A4) in a stylized portfolio. These assets have performance contribu-
tions of 1.4, 1.6, 1.7 and 2.1. Their risk contributions are 1, 2, 2.5 and 3. The slope of the line corresponds
to the relative performance ratio of the portfolio which is equal to 0.8. The PRCC measure is 0.14.
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Figure 2: PRCC-based weight modification in case of the equally-weighted and equal-risk-
contribution portfolios
The plots present performance contributions (vertical axis) and risk contributions (horizontal axis) of assets
in risk-based portfolios (i.e., Benchmark ptf.) and their PRCC modified portfolios (i.e., PRCC ptf.) of two
representative portfolios (the equally-weighted and equal-risk-contribution portfolios) reported in Table 5.
The slope of the line corresponds to the Sharpe ratio of the portfolio.
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Appendix A. Simplification of the PRCC formula

Let ai ≡ CPi (w) − τP ,Rp (w)CRi (w). The PRCC is proportional to the sum of squared dif-
ferences between couples in {a1, . . . , aN}. The simplification uses that

∑N
i=1 ai = 0, implying

that: (
N∑
i=1

ai

)2

=
N∑
i=1

a2i + 2
N−1∑
i=1

N∑
j=i+1

aiaj = 0 ,

and thus:

2
N−1∑
i=1

N∑
j=i+1

aiaj = −
N∑
i=1

a2i . (A.1)

It follows that:

N∑
i=1

N∑
j=1

(ai − aj)2 = 2

[
N−1∑
i=1

N∑
j=i+1

(ai − aj)2
]

= 2

[
(N − 1)

N∑
i=1

a2i − 2
N−1∑
i=1

N∑
j=i+1

aiaj

]

= 2

[
(N − 1)

N∑
i=1

a2i +
N∑
i=1

a2i

]

= 2N
N∑
i=1

a2i ,

where we use (A.1) in the last equality.

Appendix B. PRCC of the maximum relative performance portfolio

The maximum relative performance portfolio maximizes τP ,Rp (w) ≡ Pp(w)

Rp(w)
under a full invest-

ment constraint. The corresponding Lagrangian is:

L(w, l) ≡
Pp(w)

Rp(w)
− l(w′ι− 1) ,

with l ∈ R. From the first-order conditions, the portfolio weights need to be such that:

∂iL(w∗, l) =
1

R2
p(w

∗)

[
Rp(w

∗)∂iPp(w∗)− Pp(w∗)∂iRp(w
∗)
]
− l

=
1

Rp(w
∗)

[
∂iPp(w∗)− τP ,Rp (w∗)∂iRp(w

∗)
]
− l = 0 .
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Multiplying both sides by w∗i , we have 1
Rp(w

∗
)

[
CPi (w∗)− τP ,Rp (w∗)CRi (w∗)

]
− lw∗i = 0, and thus:

CPi (w∗)− τP ,Rp (w∗)CRi (w∗) = Rp(w
∗)lw∗i . (B.1)

Since
∑N

i=1

[
CPi (w∗)− τP ,Rp (w∗)CRi (w∗)

]
= 0, it follows from (B.1) that Rp(w

∗)lι′w∗ = 0.

Under a full investment constraint, ι′w∗ = 1 and Rp(w
∗) > 0, therefore l = 0. Combining this

with (B.1), we obtain:

CPi (w∗)− τP ,Rp (w∗)CRi (w∗) = 0 ,

for all i. The PRCC measure is thus zero for the maximum relative performance portfolio.

Appendix C. Volatility-based PRCC for risk-based portfolios

Minimum downside risk portfolio. As in Boudt et al. (2008) and Roncalli (2015), we assume here
a downside risk measure that can be written as:

Rp(w) ≡ −w′µ+ cZ

√
w′Σw ,

with cZ a constant. The Lagrangian corresponding to the minimum downside risk portfolio under
a full investment constraint is:

L(w, l) ≡ −w′µ+ cZ

√
w′Σw − l(w′ι− 1) ,

with l ∈ R. From the first-order conditions the portfolio weights need to be such that:

− µi + cZ
[Σw∗]i
σp(w

∗)
= l . (C.1)

Multiplying both sides by w∗i and taking the sum, we get:

N∑
i=1

w∗i

[
−µi + cZ

[Σw∗]i
σp(w

∗)

]
= l

N∑
i=1

w∗i = l ,

because of the full investment constraint. In vector notation, this is equivalent to l = −µ′w∗ +

cZ
σ
2
p(w

∗
)

σp(w
∗
)
. Since µ̃ ≡ µ − rf , where rf is the risk-free rate, we obtain l = −µ̃p(w∗) − rf +

cZσp(w
∗) = σp(w

∗)
[
−τµ,σp (w∗) + cZ

]
− rf . Combining this with (C.1), we have:

µi = cZ
[Σw∗]i
σp(w

∗)
+ σp(w

∗)
[
τµ,σp (w∗)− cZ

]
+ rf .
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Equivalently, µ̃i = cZ
[Σw

∗
]i

σp(w
∗
)
+σp(w

∗)
[
τµ,σp (w∗)− cZ

]
. Hence, the Performance/Risk contribution

of asset i is:

Cµ
i (w∗)− τµ,σp (w∗)Cσ

i (w∗) = w∗i

{
cZ

[Σw∗]i
σp(w

∗)
+ σp(w

∗)[τµ,σp (w∗)− cZ ]− τµ,σp (w∗)
[Σw∗]i
σp(w

∗)

}
=
[
τµ,σp (w∗)− cZ

] [
w∗i σp(w

∗)− Cσ
i (w∗)

]
=
[
τµ,σp (w∗)− cZ

]
· 1

σp(w
∗)
· w∗i

[
σ2
p(w

∗)− [Σw∗]i
]
.

The PRCC measure in (8) is thus:

PRCC(w∗) =
1

N

[
τµ,σp (w∗)− cZ

]2
σ2
p(w

∗)
·
N∑
i=1

{
w∗i
[
σ2
p(w

∗)− [Σw∗]i
]}2

.

Minimum variance portfolio. The minimum variance portfolio minimizes the portfolio variance
σ2
p(w) = w′Σw under the full investment constraint w′ι = 1. The corresponding Lagrangian is:

L(w, l) ≡ w′Σw − l(w′ι− 1) ,

with l ∈ R. From the first-order conditions, it follows that Σw∗ = 1
2
lι. Since σ2

p(w
∗) =

(w∗)′Σw∗ = 1
2
lι′w∗ and because of the full investment constraint ι′w∗ = 1, it follows that

1
2
l = σ2

p(w
∗) and thus Σw∗ = σ2

p(w
∗)ι. Hence the risk contribution of asset i isCσ

i ≡ w∗i
[Σw

∗
]i

σp(w
∗
)

=

w∗i σp(w
∗). Using this result, we can thus rewrite PRCC in (8) as:

PRCC(w∗) =
1

N

N∑
i=1

[
Cµ
i (w∗)− τµ,σp (w∗)w∗i σp(w

∗)
]2

=
1

N

N∑
i=1

{
w∗i [µ̃i − µ̃p(w∗)]

}2
,

since τµ,σp (w∗) ≡ µ̃p(w
∗)/σp(w

∗).

Inverse volatility weighted portfolio. Let us define ξi ≡ 1/σi and ξ ≡ (ξ1, . . . , ξN)′. Then, the
weights of the inverse volatility weighted portfolio are given by w ≡ ξ/ξ′ι. The covariance
matrix can be decomposed as Σ ≡ DRD, where D is a diagonal matrix containing the variances
(σ1, . . . , σN)′ and R is the correlation matrix. Using Dξ = ι, the portfolio volatility is:

σp(w
∗) ≡

√
(w∗)′Σw∗ =

√
ξ′

ξ′ι
DRD

ξ

ξ′ι
=

1

ξ′ι

√
ι′Rι .

Component risk contribution of asset i is then:

Cσ
i ≡ w∗i

[Σw∗]i
σp(w

∗)
=

1

ξ′ι

1

σi

[DRDξ]i√
ι′Rι

=
1

ξ′ι

[Rι]i√
ι′Rι

.
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Then, the PRCC of the inverse volatility weighted portfolio can be rewritten as:

PRCC(w∗) =
1

N

1

(ξ′ι)2
·
N∑
i=1

[
µ̃i
σi
− τp(w∗)

[Rι]i√
ι′Rι

]2
.

Equally-weighted portfolio. For the equally-weighted portfolio w∗ ≡ ι
N

, the portfolio risk is:

σp(w
∗) ≡

√
(w∗)′Σw∗ =

√
1

N
ι′Σ

1

N
ι =

1

N

√
ι′Σι .

The component risk contribution of asset i is:

Cσ
i ≡ w∗i

[Σw∗]i
σp(w

∗)
=

1

N

[Σι]i√
ι′Σι

.

Then, the PRCC of the equally-weighted portfolio can be rewritten as:

PRCC(w∗) =
1

N

N∑
i=1

[
1

N
µ̃i − τµ,σp (w∗)

1

N

[Σι]i√
ι′Σι

]2
=

1

N3 ·
N∑
i=1

[
µ̃i − τµ,σp (w∗)

[Σι]i√
ι′Σι

]2
.

Equal-risk-contribution portfolio. The equal-risk-contribution portfolio aims at equalizing the

component-risk-contributions: Cσ
i (w∗) = Cσ

i (w∗) ∀i, j. As
N∑
i=1

Cσ
i (w∗) = σp(w

∗), it follows

that Cσ
i (w∗) =

σp(w
∗
)

N
. Hence, the component performance/risk contribution of asset i is:

CPRCi(w
∗) = Cµ

i (w∗)− τµ,σp (w∗)
σp(w

∗)

N
= w∗i µ̃i −

µ̃′w∗

N
.

So the PRCC measure in (8) can be rewritten as:

PRCC(w∗) =
1

N

N∑
i=1

[
w∗i µ̃i −

µ̃′w∗

N

]2
.

Maximum diversification portfolio. The maximum diversification portfolio maximize the diversi-
fication ratio w′σ/

√
w′Σw, where σ is the vector of volatilities. The corresponding Lagrangian

under a full investment constraint is:

L(w, l) ≡ w′σ√
w′Σw

− l(w′ι− 1) ,
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with l ∈ R. From the first-order conditions, it follows that:

σp(w
∗)σi −w∗

′
σ [Σw

∗
]i

σp(w
∗
)

σ2
p(w

∗)
= l . (C.2)

Multiplying both sides by w∗i and taking the sum, we get:

σp(w
∗)σ′w∗ − σ′w∗σp(w∗)

σ2
p(w

∗)
= l

N∑
i=1

w∗i = l .

Since the left-hand side of the equation is zero and because of the full investment constraint ι′w∗ =
1, it follows that l = 0 and thus, given (C.2) we obtain:

σp(w
∗)σi − σ′w∗

[Σw∗]i
σp(w

∗)
= 0 .

Equivalently, [Σw
∗
]i

σp(w
∗
)

=
σp(w

∗
)σi

σ
′
w
∗ . Using this result, we can rewrite PRCC in (8) as:

PRCC(w∗) =
1

N

N∑
i=1

[
w∗i

(
µ̃i − τµ,σp (w∗)

[Σw∗]i
σp(w

∗)

)]2
=

1

N

N∑
i=1

[
w∗i σi

(
µ̃i
σi
− µ̃

′w∗

σ′w∗

)]2
.

For the maximum diversification portfolio, the PRCC measure is thus zero when all assets have
the same Sharpe ratio. Indeed, when σi is proportional to µi, maximizing the diversification ratio
is equivalent to maximizing the portfolio’s Sharpe ratio.

Appendix D. Modified VaR and ES

Let us denote the co-skewness matrix as:

M3 ≡ E
[
(r− µ)(r− µ)′ ⊗ (r− µ)′

]
,

and co-kurtosis matrix:

M4 ≡ E
[
(r− µ)(r− µ)′ ⊗ (r− µ)′ ⊗ (r− µ)′

]
,

where r ≡ (r1, . . . , rN)′, µ ≡ (µ1, . . . , µN)′ and where ⊗ stands for the Kronecker product (see,
e.g., Jondeau and Rockinger, 2006). Define mq ≡ E

[
(rp −w′µ)q

]
as the q-th centered portfolio

moment, then ∂imq is its partial derivative with respect to wi. We have that:

m2 = w′Σw ∂im2 = 2[Σw]i
m3 = w′M3(w ⊗w) ∂im3 = 3[M3(w ⊗w)]i
m4 = w′M4(w ⊗w ⊗w) ∂im4 = 4[M4(w ⊗w ⊗w)]i .
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The portfolio skewness sp(w) and excess kurtosis kp(w) and their partial derivatives are then given
by:

sp(w) ≡ m3/m
3/2
2 ∂isp(w) = (2m

3/2
2 ∂im3 − 3m3m

1/2
2 ∂im2)/2m

3
2

kp(w) ≡ m4/m
2
2 − 3 ∂ikp(w) = (m2∂im4 − 2m4∂im2)/m

3
2 .

Let zα ≡ Φ−1(α), then define:

gα(w) ≡ zα +
1

6
(z2α − 1)sp(w) +

1

24
(z3α − 3zα)kp(w)− 1

36
(2z3α − 5zα)s2p(w) .

We have:

∂igα(w) =
1

6
(z2α − 1)∂isp(w) +

1

24
(z3α − 3zα)∂ikp(w)− 1

18
(2z3α − 5zα)sp(w)∂isp(w) .

According to Zangari (1996) and Martin and Arora (2015), the modified VaR is then defined as:

mVaRα(w) ≡ −w′µ− σ(w)gα(w) .

It is straightforward to calculate the marginal contribution of asset i in mVaRα:

∂imVaRα(w) = −µi −
[Σw]i
σp(w)

gα(w)− σp(w)∂igα(w) .

The modified ES was introduced in Boudt et al. (2008). We use the equivalent notation of Martin
and Arora (2015):

mESα(w) ≡ −µp(w)

+
1

α
φ(gα(w))

[
1 +

1

6
g3α(w)sp(w) +

1

72

(
g6α(w)− 9g4α(w) + 9g2α(w) + 3

)
s2p(w)

+
1

24

(
g4α(w)− 2g2α(w)− 1

)
kp(w)

]
σp(w) .

40



Applying the property φ′(z) = −zφ(z), we obtain:

∂imESα(w) = −µi

+
1

α

[
φ(gα(w))

[Σw]i
σp(w)

− σp(w)gαφ(gα(w))∂igα(w)

] [
1 +

1

6
g3α(w)sp(w)

+
1

72

(
g6α(w)− 9g4α(w) + 9g2α(w) + 3

)
s2p(w) +

1

24

(
g4α(w)− 2g2α(w)− 1

)
kp(w)

]
+

1

α
φ(gα)σ(w)

[
1

2
g2α∂igαsp(w) +

1

6
g3α∂isp(w)

+
1

36

(
g6α(w)− 9g4α(w) + 9g2α(w) + 3

)
sp(w)∂isp(w)

+
1

12

(
g5α(w)∂igα(w)− 6g3α(w)∂igα(w) + 3gα(w)∂igα(w)

)
s2p(w)

+
1

24

(
g4α(w)− 2g2α(w)− 1

)
∂ikp(w) +

1

6

(
g3α(w)∂igα(w)− gα(w)∂igα(w)

)
kp(w)

]
.

The partial derivative of the volatility multiplier for mES in Table 2 is given by:

∂icp(w) =

+
1

α
[−gαφ(gα(w))∂igα(w)]

[
1 +

1

6
g3α(w)sp(w)

+
1

72

(
g6α(w)− 9g4α(w) + 9g2α(w) + 3

)
s2p(w) +

1

24

(
g4α(w)− 2g2α(w)− 1

)
kp(w)

]
+

1

α
φ(gα)

[
1

2
g2α∂igαsp(w) +

1

6
g3α∂isp(w) +

1

36

(
g6α(w)− 9g4α(w) + 9g2α(w) + 3

)
sp(w)∂isp(w)

+
1

12

(
g5α(w)∂igα(w)− 6g3α(w)∂igα(w) + 3gα(w)∂igα(w)

)
s2p(w)

+
1

24

(
g4α(w)− 2g2α(w)− 1

)
∂ikp(w) +

1

6

(
g3α(w)∂igα(w)− gα(w)∂igα(w)

)
kp(w)

]
.

Appendix E. Historical VaR and ES estimations

We follow Harmantzis et al. (2006) to define the historical Value-at-Risk (HVaR) and the
historical Expected Shortfall (HES). Let rt|Tp (w) be the portfolio return at period t (given the
information set up to T ). We rank the vector by the order statistics (denoted in brackets) as:
r(1)|Tp (w) ≤ r(2)|Tp (w) ≤ . . . ≤ r(T )|Tp (w). The α quantile function F−1(α) is then estimated by:

F−1(α) ≡ r(t)|Tp (w), α ∈
(
t− 1

T
,
t

T

]
.
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Then estimations of HVaR and HES are defined as:

HVaRα ≡ −F−1(α) ,

and:

HESα ≡ −
1

bαT c

bαT c∑
t=1

r(t)|Tp (w) ,

where bxc denotes the largest integer less than or equal to x. The component HVaR of asset i can
be directly derived as wir

(t)|T
i |rp(w) ≡ −F−1(α). Epperlein and Smillie (2006) show that such

methodology suffers from the noise and the estimation using the kernel estimators is preferred.
Let K(a; b) ≡ max (1− |a/b| , 0) be the triangular kernel function. The component HVaR is then
estimated as:

CHVaRα
i (w) ≡ HVaRα

∑T
t=1K(rt|Tp (w) + HVaRα;h)r

t|T
i∑T

t=1K(rt|Tp (w) + HVaRα;h)rt|Tp (w)
,

where h ≡ 2.575σp(w)T−
1
5 and rt|Ti is the return of asset i at time t (given the information set up

to T ).
We follow Yamai and Yoshiba (2002) to estimate the component HES directly as E[wiri|rp(w) ≤

F−1(α)]:

CHESα
i (w) ≡ − 1

bαT c

bαT c∑
t=1

wir
(t)|T
i I[wir

(t)|T
i |r(t)|Tp (w) ≤ F−1(α)] ,

where I[·] is the indicator function.
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