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Abstract

This article proposes a convenient parametrization for the popular class of (discrete-time)

essentially-affine term structure models of Duffee (2002), and Ang and Piazzesi (2003). First, I

show that if bond prices are determined by N latent state variables, all their pricing information

must be present in the short end of the term structure, i.e., one can rotate the model to an ob-

servationally equivalent form with exactly N short maturity forward rates as factors. Second, the

risk-neutral transition of the rotated model is conveniently parametrized by N unrestricted real

numbers (contained in a companion matrix), and only one additional parameter is needed to specify

the risk neutral drift. Third, the resulting state-space representation makes it easy to estimate the

model either by the Kalman filter (in one step), or treating N linear combinations of observable

bond prices (or yields) as observable factors. Finally, I interpret some difficulties in fitting the

essentially-affine term structure models to the data, using the standard set of Fama-Bliss discount

bonds as example. The problem is the existence of (spanned) factors that significantly predict term

structure movements but are virtually impossible to detect from the shortest-maturity forward

rates, which is (by the results of this paper) inconsistent with no arbitrage within the discussed

class of models.
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1 Introduction

The class of affine term structure models has been extremely popular in many applications, such

as yield forecasting, or fixed-income risk management. Although there exists no single specification

that fits the data perfectly, the consensus appears to be that an empirically successful model should

feature at least three factors, and a flexible specification of the prices of risk. Another requirement,

although not directly linked to model performance, is usually analytical tractability.

One class of models that satisfies these requirements is due to Duffie and Kan (1996). Citing

Duffee (2012), this class includes both homoskedastic (Gaussian) and heteroskedastic models. Dai

and Singleton (2000) and Duffee (2002) combine this affine class with linear dynamics of the un-

derlying state vector to produce the completely affine and essentially affine classes respectively. One

of the conclusions in Duffee (2002) is that only the Gaussian models in this class are sufficiently

flexible to generate plausible forecasts of future yields. The model of Duffee (2002) is specified in

continuous time. A discrete-time counterpart, the main object of this study, was introduced by

Ang and Piazzesi (2003).

There are two well-known problems associated with bringing these models to the data. One

is lack of identification if the model is formulated in terms of latent factors, as explained by Dai

and Singleton (2000), or Collin-Dufresne et al. (2008). This problem originates in the possibility

of performing ”invariant transformations” of the factors (and some parameters simultaneously)

that leave all bond prices unchanged. Ruling out all such transformations may be very difficult in

practice.1 One solution to the identification problem is to use a subset of observed bond prices (or

yields) as factors, along the lines of Duffie and Kan (1996), which however necessitates imposition

of highly non-linear parameter restrictions (sometimes called Duffie-Kan restrictions), which essen-

tially guarantee that the yield-based factors are consistent with the model. Under this solution, one

therefore falls into the other practical difficulty of finding a convenient parametrization under which

the restrictions are easy to implement, and do not result in badly-behaved likelihood functions.

In this paper I propose a relatively straightforward solution to the problems of identification and

estimation. In the spirit of Duffie and Kan (1996), I use an observationally equivalent representation

in terms of term structure observables. The somewhat surprising result is that under the assumption

1See Babbs and Nowman (1999), Collin-Dufresne et al. (2008), Aı̈t-Sahalia and Kimmel (2010).
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of no arbitrage (which is at the heart of every affine term structure model), all pricing information

about the latent factors spanning the term structure must also be contained in the shortest-maturity

forward rates. This result is a discrete-time counterpart of Collin-Dufresne et al. (2008) (CGJ

henceforth), who show that every continuous-time model with Nf latent factors is observationally

equivalent to one in which the factors are the first Nf derivatives of the term structure, evaluated at

maturity zero. The discrete-time case, although conceptually similar, appears slightly more general,

and differs in mathematical details (the case studied by CGJ could be obtained in the limit). From

the practical point of view, it is also much easier to implement. CGJ actually attempt to measure

the derivatives at maturity zero by extrapolating polynomial splines fitted to the shortest-maturity

segments of empirical principal component loadings. Using discretely-spaced forward rates has the

advantage that the model can be estimated by Kalman filter together with the factors, i.e., in a fully

self-consistent way, without introducing measurement errors at the stage of factor measurement.2

As explained below, it is also possible to estimate the model under the assumption that some

portfolios of bonds (or yields) are priced without errors, for example the empirical PCA factor

scores.3 Overall, the canonical representation specified in terms of the short-maturity forward

rates is not at all restrictive, which of course follows from the observational equivalence.

A related advantage of specifying the model in terms of the short-maturity forward rates is

that the the risk-neutral dynamics can be represented by a companion matrix, and conveniently

parametrized by only Nf (unrestricted) real numbers, which allows to call the proposed represen-

tation canonical. All free parameters are contained in the last row of the matrix, with all other

parameters being either 0, or 1 (above the diagonal). The structure of the companion matrix re-

flects the fact that under no arbitrage, forward rates of longer maturities move one-to-one with

risk-adjusted expectations of future forward rates. In this setup, the Duffie-Kan restrictions take

the simplest possible form, and are imposed automatically. To complete the specification, one also

needs to parametrize the risk-neutral drift, which turns out to be a function of factor covariance

matrix, and one extra parameter.

2The only conceptual issue with short-maturity forward rates is how to choose the sampling frequency, but in
practice this choice is dictated by the structure of the data. Discrete-time models can always be specified using the
shortest maturities available in a given sample.

3In principle, one could assume that the short-maturity forward rates themselves are observed without error.
This would produce a perfect model fit at the shortest maturities, at the cost of potentially large errors on the other
side of maturity spectrum.
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A related canonical representation of affine models, helpful in maximizing estimation efficiency,

was proposed by Joslin et al. (2011) (from now on, JSZ), who parametrize the risk-neutral dynamics

in terms of the multiset of Nf eigenvalues, and one additional parameter governing the Q-expected

long-run behavior of the short rate. The total number of free identifiable parameters under both

formulations is thus the same, and both result in maximum model flexibility. However, the eigen-

value parametrization may lead to some practical problems if some eigenvalues are repeated or

complex, and these cases need to be considered separately at the estimation stage.4 In contrast,

the companion parametrization is defined in terms of the coefficients of the characteristic polyno-

mial of the risk-neutral transition matrix, which encode exactly the same information as its roots

(the eigenvalues). Working with the coefficients appears more natural, and easier to implement,

since they form an ordered set of unrestricted real numbers, making it possible for the optimization

algorithm to compare all cases based on their respective likelihood values.5

To illustrate the convenience of the proposed normalization, I estimate a standard unrestricted

three-factor specification on the monthly set of Fama-Bliss discount bonds (Fama and Bliss (1987)),

both by the Kalman filter (with endogenous factors), and using empirical PCA scores as (observed)

factors. In addition to the full sample spanning June 1956 – July 2015, I use a sub-sample from

Cochrane and Piazzesi (2005) (CP), i.e., January 1965 – December 2003.6 One advantage of the

Fama-Bliss set is that it is constructed without prior application of smoothing methods, which

makes it particularly well suited for model estimation by Kalman filter. As reported by Cochrane

and Piazzesi (2005, 2009), it also appears that smoothing methods may partly remove important

information about bond risk premia. On the other hand, a slight disadvantage of the Fama-Bliss

set is that the shortest-maturity forward rate corresponds to one year holding period, which is quite

long. Also, there are only five maturities in total, with the longest one corresponding to five years.

4The article of JSZ leaves an impression that the case of repeated eigenvalues may be empirically relevant. Their
online supplement (Joslin et al. (2010)) shows that the arbitrage-free Nelson-Siegel specification of Christensen et al.
(2011) features a repeated eigenvalue under the JSZ normalization. Since such case is borderline, one should also
allow the possibility of complex eigenvalues. All these cases are consistent with no arbitrage, and it is difficult to rule
them out based on economic arguments alone.

5Joslin et al. (2011) note the possibility of companion-form parametrization in footnote 22, attributing it to CGJ.
Indeed, the transition matrix of the continuous-time model of CGJ is exactly in this form, but (as explained above)
they do not make full use of this fact. The main point of JSZ is on the irrelevance of no-arbitrage restrictions for
forecasting, which can be shown using any normalization, if the factors are observable – see also the discussion below.

6The latter choice avoids the recent zero-bound period, and well as the period prior to 1965, for which the data
may be less accurate. The CP sample contains vast majority of empirically-detectable variation in bond risk premia,
as shown by Radwański (2010).

4



The estimation results, combined with the clarity offered by the canonical companion form,

shed some light on the empirical difficulties that researchers face when trying to fit no-arbitrage

models to the data. As emphasized by Cochrane and Piazzesi (2005), a robust feature of the Fama-

Bliss set is that the yield differential between maturities of four and five years significantly helps

to forecast excess bond returns. This differential is present in the third principal component of

observed data, which contributes very little to the overall variance of bond prices. At the same

time it is classified as genuine by the Kalman filter, exactly due to the predictive content. On

the other hand, the general results of this paper imply that any factor present in long maturities

must also show up as some linear combination of the first three forward rates. The only way in

which the estimation procedure is able to explain the existence of the large yield differential on

the long end of maturity spectrum is to associate an extreme eigenvalue (under Q) to a small

factor that leaves the short-maturity rates virtually unchanged. The estimates of this eigenvalue

are robustly below minus two in all sub-samples studied, and are significantly higher in magnitude

if the model is estimated under the assumption of observable factors. In other words, if one accepts

the assumption of linear factor structure in Fama-Bliss data with three factors, then the constant-

volatility model of Ang and Piazzesi (2003) faces considerable difficulties in reconciling important

part of predictability evidence with the assumption of no arbitrage. This also has consequences

for forecasting the term structure. If the four-to-five year yield differential really predicts future

bond prices (Cochrane and Piazzesi (2005)), then imposing an affine structure on the data cannot

improve these forecasts. At best, the model will imply a large anomalous eigenvalue, as discussed.

Attempts to estimate the model under ”reasonable” eigenvalue restrictions will only make the

model’s forecasting performance worse.

Finally, to offer a more concrete application of the canonical companion form, I use its computa-

tional efficiency to address a question of whether it is safe to assume observability of the factors for

the purpose of term structure forecasting. The key finding of JSZ, that imposing no arbitrage does

not by itself help to predict bond prices, is derived under the assumption that there exist Nf a priori

known linear combinations of yields that are priced without errors, and thus reveal the factors. In

practice, the combinations of yields can be obtained by principal component analysis, but other

choices are possible, e.g., one can use a subset of constant-maturity yields. Intuitively, if factors are

observable, then under the model assumption of VAR factor dynamics, one can do no better then
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running a VAR on observed portfolios of yields in order to predict their future values. Estimation

of the risk-neutral parameters is then reduced to minimizing the pricing errors on combinations of

yields that are not assumed to be error-free.7 Since it can safely be assumed that factors are never

actually observed without error, a natural question is how severe the induced error-in-variable bias

may be. I use the benchmark set of parameter estimates obtained by the Kalman filter on the full

set of Fama-Bliss forward rates (as described above) to generate 300 artificial data sets of the same

size, with additional 5 years of observations used to compute the forecast errors. I then re-estimate

the model twice, using the Kalman filter, and under the assumption that the empirical PCA scores

can be used as observed factors. It turns out that both estimation strategies offer very similar

forecasting performance, and significantly beat the benchmark random-walk forecasts.8

1.1 Literature Overview

This part of the Introduction contains the most important references to the literature, and a more

in-depth discussion of the papers most closely related to the current research.

The literature on affine term structure models usually credits the most important early develop-

ments to Vasicek (1977), and Cox et al. (1985). These models were usually specified in continuous

time, and their main advantage was analytical tractability. Early models featured the short rate as

the only state variable, counterfactually predicting perfect correlation between bond prices across

maturities. Multifactor models became more popular in the 90’s, for example, Litterman and

Scheinkman (1991) showed that three factors appear to explain the cross section of yields with

great precision. Duffie and Kan (1996) are credited for introducing the class of multifactor affine

models. On the other hand, the evidence of bond return predictability, especially due to Fama and

Bliss (1987), and Campbell and Shiller (1991), and later Cochrane and Piazzesi (2005), spanned

interest in models able to match the time variation in bond risk premia. One modeling strategy

that achieves such time variation is to incorporate stochastic volatility in factor dynamics, as in

the completely-affine class of Dai and Singleton (2000). The alternative strategy is to model the

factors as homoskedastic, while letting the Sharpe ratios vary over time by linking them to a subset

7A similar estimation strategy, prescribing a VAR on observable factors, was proposed by Hamilton and Wu
(2012).

8This is true under perfect conditions, guaranteed by the design of the experiment. Still, one method may be
favored over the other in the real data, based on their relative robustness with respect to real-world failures of model
assumptions.
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of factors, as in the essentially-affine class of Duffee (2002). In the model of Duffee (2002), the risk

premia can in principle be linked to all state variables, which permits a full separation of the ob-

jective, and the risk-neutral dynamics. Most of these models are specified and solved in continuous

time. The discrete-time version of the essentially-affine model of Duffee (2002) was proposed by

Ang and Piazzesi (2003), building on earlier results of Backus and Zin (1994).9

Flexibly specified models pose practical difficulties with model identification. Specification

in terms of latent state variables makes it possible to transform the factors, and simultaneously

change a subset of parameters in a way that leaves all pricing implications unchanged. Intuitively,

the likelihood function is exactly flat in the subset of parameters subject to such changes. One

approach to the identification problem, proposed by Dai and Singleton (2000), relies on imposing

parameter normalizations that rule out all such invariant transformations. The paper of CGJ points

to some difficulties with this approach, and argues that a superior way to insure identification is to

rotate the latent factors into a set of variables that have economic meaning, and can (in principle)

be measured in a model-independent way. Although CGJ argue that the level, slope and curvature

at maturity zero are such model-independent variables, it is evident that all of them are functions

of the observed term structure, which is exactly what a model should explain, so that a truly

model-independent measurement is not guaranteed. In effect, they essentially work under the

assumption of observable factors, which can be thought of as another way of securing parameter

identification, dual to the approach of Dai and Singleton (2000), and already present in Duffie

and Kan (1996), as CGJ acknowledge in the abstract. The main contributions of the current

paper relative to CGJ are (i) in showing that their main result can be generalized to a discrete-

time formulation, and used to better understand the implications of the no-arbitrage assumption

in relation to the weaker assumption of linear factor structure, and (ii) in using the convenient

properties of the companion-form parametrization to develop an easily implementable framework

for estimating Gaussian affine models, using information in all bond prices, with the possibility of

estimating economically-interpretable factors (short-maturity forward rates) simultaneously with

model parameters.

Moving to model estimation, it is well known that bond prices move together in only few dimen-

9Further developments in the literature have mostly been about finding alternatives to Gaussian models with
linear factor dynamics. Examples include Leippold and Wu (2002), Duarte (2004), Cheridito et al. (2007), Le et al.
(2010), Filipović et al. (2015).
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sions, and that there are some stable patterns underlying the shapes that the yield curve usually

takes. Estimation of term structure models is therefore all about finding the factors, their dynam-

ical properties, and factor loadings that together with the factors determine the yields.10 Early

methods of term structure fitting by McCulloch (1975), Nelson and Siegel (1987), and Svensson

(1995) completely ignore the time-series aspect. Diebold and Li (2006) add dynamic considera-

tions by interpreting the parameters of these fitted curves as time-varying latent factors. Another

popular approach rests on principal component analysis of yields, as motivated by Litterman and

Scheinkman (1991). An important feature of all these methods is that one does not need the as-

sumption of no arbitrage, which is the main difference with respect to the class of no arbitrage

models, of which the affine class is by far the most popular.

Indeed, the most important piece of motivation behind the development of the affine class of

Duffie and Kan (1996) was to provide a tractable framework consistent with no arbitrage. As

explained above, model estimation under this assumption can pose serious challenges, even if one

has solved the identification problem (either by parameter normalizations, or by expressing the fac-

tors in terms of observable variables), which is due to the presence of complicated cross-sectional

restrictions on factor loadings. Part of the important contribution of JSZ is in showing that the

risk-neutral dynamics of a model expressed in terms of portfolios of yields can be parametrized by

a small set of parameters, without giving up model flexibility. As already mentioned in the main

part of this introduction, the parametrization in terms of eigenvalues can in principle be difficult

to implement due to the necessity of comparing several special cases of eigenvalue configurations.

Moreover, virtually all results of JSZ are derived under the assumption that the factors can be

expressed in terms of given combinations of yields. While the results of the current paper indicate

that this assumption appears inconsequential in practical forecasting applications if one uses the

PCA components as factors (at least in ”laboratory” setup, in which the data generating process

is consistent with the affine model), it clearly faces conceptual difficulties. Since the no-arbitrage

assumption takes the form of Duffie-Kan restrictions affecting model-implied factor loadings, us-

ing the empirical principal-component loadings (which do not satisfy the Duffie-Kan restrictions

exactly) is technically inconsistent with no arbitrage. In other words, under the assumption of

10The fact that the term structure observables like (log) bond prices, yields, or forward rates are all affine functions
of the same state vector, and all pricing implications of an affine model can be summarized in terms of either of them,
allows me to use these terms interchangeably in the contexts in which no confusion can arise.
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observable PCA factors, one only achieves relative pricing of portfolios measured with errors in

terms of the PCA scores, and the identity of the latter (together with their dynamics) is learned

by means of purely statistical techniques.

Seen through the lens of this discussion, the canonical model written in terms of the shortest-

maturity forward rates offers an additional advantage, namely, (iii) it can be helpful in deciding

on whether the factors measured from the real data can be easily (or not) reconciled with the

assumption of no arbitrage. As mentioned before, this may be problematic in the case of four-to-

five year yield differential.

The most common estimation method applied to no-arbitrage models is Maximum Likelihood

(ML), which motivates the usual assumption that shocks are conditionally Gaussian.11 As pointed

by Joslin et al. (2011) and Hamilton and Wu (2012), a subset of parameter estimates consistent

with ML can be obtained using linear regressions if factors are observable. The article of Adrian

et al. (2013) goes even further, and advocates a three step regression based procedure.12

2 Canonical Companion Form

The goal of this section is to formalize the most important concepts, and to derive the main results.

I first explain the relation between linear factor structure and the assumption of no arbitrage, and

then follow with the derivation of the companion-form parametrization.

2.1 Linear Factor Structure, and the Role of No-Arbitrage

It is assumed that the term structure is sampled at regular time intervals ∆t, and that the risk-free

rate corresponds to maturity ∆m. By notational convenience, variables measured at two consecutive

dates (maturities) are indexed by t and t+1 (m and m+1). I will also assume that ∆t = ∆m, with

no loss of generality at this stage.13 The term structure will generally be characterized in terms of

log bond prices bmt , and continuously compounded forward rates14

11Chen and Scott (1993) is an early example.
12Adrian et al. (2013) also assume observable factors. They do not explicitly impose the Duffie-Kan restrictions,

which is precisely the reason for the obtained simplification. However, they report that the restrictions are satisfied
by the estimated parameters to a high degree of accuracy.

13One needs to abandon this convention at stage of practical implementation, when it is necessary to conform to
the structure of the data.

14Continuously compounded yields and log bond prices are related to the forward rates in (1) by linear identities
bmt ≡ −

∑m
k=1 f

k
t , ymt ≡ − 1

m
bmt .

9



fmt ≡ bm−1
t − bmt . (1)

The term structure at any point in time is determined by several underlying causal factors that

are not directly observable. It is usually assumed that these latent factors span the term structure

in a linear way, and their evolution can be modeled by a VAR process. In this paper I focus on the

specifications in which the VAR is of order one (with Gaussian innovations), and all factors show

up in the term structure. These assumptions can be summarized in

Assumption 1 Linear Factor Structure with Nf Spanning Factors

a) There exists a set of Nf latent state variables (factors) Xt, such that the forward rates at every

date t, and maturity m, are given by affine functions of the state vector15

fmt = fm0 + fm1
′Xt. (2)

b) The factors follow a first-order Gaussian vector auto-regression

Xt+1 = µPX +AP
XXt + εPX ,t+1 (3)

with innovation covariance matrix ΣX .

c) The vectors fm1
′ form a matrix FM×Nf

that is full rank for some finite maturity M .

The assumption of first-order VAR is without loss of generality, because one can always re-

define the lagged state variables into a set of additional contemporaneous factors. The assumption

of Gaussian shocks is commonly made in applications, essentially for analytical tractability. On

the other hand, assumption c) requires that there are exactly Nf dimensions in which the term

structure can move. This rules out the possibility that some factors are not present in the term

structure, and only affect its dynamics through the VAR process. The current paper shares this

assumption with many others, notably JSZ, and CGJ, although the main results could be extended

15Without loss of generality, the state variables are linearly independent, i.e., there does not exist any linear
combination of the members of Xt that results in a constant with probability one.
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to the case in which c) needs not hold.16

The assumption above does not rule out arbitrage by itself. It is well known that no arbitrage is

equivalent to the existence of a strictly-positive pricing kernel, whose growth rate is referred to as

the stochastic discount factor (SDF). The focus of this paper is on the case in which the SDF takes

the essentially-affine form introduced by Duffee (2002), which achieves a great degree of flexibility

in modeling the risk premia.

Assumption 2 No Arbitrage, with Essentially-Affine SDF

There is no arbitrage, and the stochastic discount factor takes the form

Mt+1 = exp

{
−f1

t −
1

2
ΛΣXΛ′ − ΛεPX ,t+1

}
, (4)

Λt = Λ0 + Λ1Xt. (5)

The consequence of the above assumption is that the factor loadings fm0 , and fm1 in Assumption

1 are no longer free, but instead linked across maturities. This can be summarized in the following

standard result, proven in Appendix A.

Result 1 Under Assumptions 1 and 2, the log zero-coupon bond prices are given by affine functions

of the latent factors, bmt = bm0 + bm1
′Xt, with coefficients

bm1
′ = bm−1

1
′AQ
X − f

1
1
′, (6)

bm0 = bm−1
0 − f1

0 + bm−1
1

′µQX +
1

2
bm−1
1

′ΣX b
m−1
1 , (7)

µQX ≡ µ
P
X − ΣXΛ0, (8)

AQ
X ≡ A

P
X − ΣXΛ1. (9)

16The possibility of hidden latent factors was pointed out by Duffee (2011b). Intuitively, such factors are consistent
with no arbitrage if they predict the future risk-free rate, while at the same time determine the risk premia in a way
that exactly offsets the former effect. In many implementations, macroeconomic variables that help predict the term
structure are explicitly included into the state vector. See (for example) Ang and Piazzesi (2003), or Joslin et al.
(2014). Another case in which b) is violated (this time by construction) is when the factors are reverse-engineered
from the term structure, and modeled through VAR with lag order greater than one. This case is considered in Joslin
et al. (2013).
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As a consequence, the loadings of forward rates in (2) satisfy the so-called Duffie-Kan restrictions

fm1
′ = f1

1
′
(
AQ
X

)m−1
, (10)

fm0 = f1
0 − bm−1

1
′µQX −

1

2
bm−1
1

′ΣX b
m−1
1 . (11)

Another well-known result states that under no-arbitrage there exists a risk-neutral probability

measure Q with the property that all traded assets are valued as if investors were risk-neutral, but

formed expectations based on the probabilities under Q. In other words, all implications of the two

assumptions above can be summarized in the following model

Xt+1 = µPX +AP
XXt + εPX ,t+1, (12)

Xt+1 = µQX +AQ
XXt + εQX ,t+1, (13)

f1
t = f1

0 + f1
1
′Xt. (14)

The system (12)-(14) can be referred to as a generic form of a no-arbitrage Gaussian dynamic

term structure model (GDTSM).17 The explicit form of the SDF (4) is no longer needed once the

Q dynamics is defined. Appendix A shows that this model leads to exactly the same solutions for

bond prices (6)-(7) and forward rates (10)-(11). In particular, the model implies a linear factor

structure in bond prices and forward rates. Since the solutions depend on the exogenous loadings

of the risk-free rate with respect to the factors, the latter must be specified as part of the model

through equation (14). Since the no-arbitrage assumption is part of the model, it is evident that

the model is equivalent to assumptions 1 and 2 taken together.

Estimating the model is equivalent to finding parameters that determine µPX , AP
X , µQX , AQ

X , f1
0 ,

f1
1 , and ΣX . In order to forecast the term structure one also needs to know the state vector.

2.2 Companion-Form Parametrization

The generic model (12)-(14) with latent factors has too many parameters, not all of which are

identifiable.18 One potential solution is implicit in JSZ, who derive their main findings based on

17Many papers start with this specification, for example JSZ.
18See the Introduction, and references therein.
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the fact that there exists an invariant factor transformation under which the matrix AQ
X takes a

Jordan form, parametrized by the eigenvalues. Unfortunately, the eigenvalue parametrization has

an impractical property that one needs to know the configuration of the eigenvalues (their algebraic

multiplicities, and whether they are complex or not) prior to model estimation. Moreover, the

factors rotated into the Jordan form do not have economic meaning, which may lead to some

difficulties with their interpretation, as discussed by Collin-Dufresne et al. (2008).

This section develops the companion-form parametrization (in discrete-maturity setup) that

helps to circumvent these practical disadvantages by allowing the model to be efficiently estimated

together with the factors, i.e., in a way fully consistent with no arbitrage. I first show that if

the term structure is sampled in discrete maturity intervals, then it is in principle possible to

rotate the factors in such a way that the first Nf shortest-maturity forward rates carry the same

pricing information as the latent factors themselves. I then show that the risk-neutral transition

matrix under this rotation takes a simple companion form, under which the model can be estimated

by an unrestricted search for Nf real parameters.19 I complete the section by showing that the

parametrization of the risk-neutral drift µQX requires exactly one extra parameter, and state this

result in a closed-form.

Proposition 1 Every discrete-time GDTSM with exactly Nf latent factors Xt is observationally

equivalent to a GDTSM of the form

Yt+1 = µPY +AP
YYt + εPY,t+1, (15)

Yt+1 = µQY +AQ
YYt + εQY,t+1, (16)

f1
t = e1

′Yt, (17)

where Yt is a vector of Nf short-maturity forward rates (with the risk-free rate in the first position,

s.t. e1 = [1, 0, . . . , 0]′), and the covariance of the innovations ΣY .

Proof. As shown in Appendix B, it is enough to prove the existence of an invertible affine trans-

formation Yt = α+ βXt, with Yt being the vector of Nf shortest-maturity forward rates.

19The approach of CGJ also implies a companion form of the risk-neutral transition matrix. However, their
continuous-time formulation makes it difficult to notice (and appreciate) the practical advantage of this fact. Although
probably less elegant, the discrete-time setup can be considered more general, as the continuous time version obtains
in the special case ∆m→ 0.
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Let µ(t) = tn−cn−1t
n−1−· · ·−c1t−c0 be the minimal polynomial of the transition matrix under

the risk-neutral measure, i.e., the lowest-degree monic polynomial satisfying µ(AQ
X ) = 0Nf×Nf

.20 If

the degree of this polynomial is n, its defining property implies

(
AQ
X

)n
= cn−1

(
AQ
X

)n−1
+ · · ·+ c1

(
AQ
X

)
+ c0I. (18)

Pre-multiplying (18) by f1
1
′, post-multiplying by the vector of latent factors Xt, and using the

solution for the forward rates (10), one obtains

fn+1
t = cn−1f

n
t + · · ·+ c1f

2
t + c0f

1
t + µ. (19)

The constant µ encompasses all fixed terms, and is defined to make the two sides equal. The key

implication of (19) is that all variation in the n-th forward rate must be fully explained by the

variation in forward rates of lower maturities. Multiplying both sides of (18) by AQ
X , repeating

similar steps, and using (19) leads to the conclusion that also the variation in fn+2
t must be fully

explained by the same set of forward rates. By induction, all forward rates must be spanned by

f1
t , . . . , f

n
t . It follows that n ≥ Nf , or otherwise the term structure could only move in fewer

dimensions than Nf , contrary to the assumption that all latent factors have effect on forward

rates. On the other hand, the degree of the minimal polynomial is bounded by Nf , because every

square matrix satisfies its characteristic polynomial, which always has degree equal to Nf . The

only possibility is therefore that n = Nf (and the minimal polynomial equals the characteristic

polynomial).21

It follows that all variation in the latent factors must also be present in the first Nf shortest-

maturity forward rates. We can stack these forward rates in vector Yt, and define α and β through

Yt = α+ βXt, i.e., α and β consist of model-implied factor loadings. This transformation is affine,

and it is evident by now that β must be invertible, which constructively proves the existence of the

invariant factor rotation of the required form.

Given that the latent factors can be rotated into the vector Yt, one can now investigate the

20A polynomial is called monic if the coefficient at the highest-degree term is normalized to one.
21The well-known fact that every matrix satisfies its characteristic polynomial is known as Cayley-Hamilton the-

orem. See, for example, Atiyah and Macdonald (1969), or Birkhoff and Mac Lane (1966).
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effect of this transformation on model parameters. By Proposition 1, one is allowed to start with

the formulation (15)-(17) directly. In particular, the functional forms of the solutions (6)-(7) and

(10)-(11) remain valid, but with parameters corresponding to the rotated model. In particular,

(11) written for the first Nf forward rates (m ∈ {1, . . . , Nf}) takes the form

0 = −bm−1
1

′µQY −
1

2
bm−1
1

′ΣYb
m−1
1 , (20)

which follows from the fact that these forward rates now play the role of factors, implying fm0 = 0.

The coefficients bm1 take a particularly simple form under the rotated model,

bm1
′ = [1, . . . , 1, 0, . . . , 0], (21)

with ones filling the first m places.22 It follows that Nf -1 equations (20) with m ∈ {2, . . . , Nf}

recursively determine the first Nf -1 components of the risk-neutral drift vector µQY in terms of

the entries of the covariance matrix ΣY alone. Defining jm ≡ 1
2b
m
1
′ΣYb

m
1 (with j0 = 0), it is

straightforward to show that the m-th element of µQY is just ∆jm ≡ jm − jm−1.23

The last term of µQY can be identified by considering the constant µ in (19), which by construction

equals

µ = f
Nf+1
0 −

(
cNf−1f

Nf

0 + · · ·+ c1f
2
0 + c0f

1
0

)
.

Since all f0 terms in the round bracket are zero, it must be that µ = f
Nf+1
0 . Now, equation (11)

can be applied to the Nf+1-th forward rate,

µ = −bNf

1
′µQY − j

Nf ,

which together with previously-found components of µQY and the form of b
Nf

1 given in (21) implies

that the last element of µQY is ∆jm + µ.

The transition matrix AQ
X can easily be identified as the companion matrix of the minimal

22I slightly abuse the notation by re-using the symbols for factor loadings like fm
0 or bm1 in the context of models

with different sets of factors.
23For m = 1, equation (20) becomes an identity, containing no information about µQ

Y .
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polynomial µ(t) from the proof of proposition (1), i.e.,

AQ
X =



0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0

. . . . . . . . .
. . . 1

c0 c1 c2 . . . cNf−1


(22)

The first Nf -1 rows reflect the fact that forward rates predict under Q their lower-maturity coun-

terparts, which can be seen in condition (10). The last row contains the coefficients of the minimal

polynomial µ(t), as implied by (19).

All of these findings can be summarized as a proposition:

Proposition 2 If the generic model with latent factors Xt is transformed into the form of Propo-

sition (1) (with first Nf model-implied forward rates as new factors Yt), then

a) The risk-neutral drift is µQY = [∆j1, . . . ,∆jNf−1,∆jNf + µ]′, where

∆jm =
1

2
bm1
′ΣYb

m
1 −

1

2
bm−1
1

′ΣYb
m−1
1

bm1 = [1, . . . , 1, 0, . . . , 0], (ones in m first positions)

and µ is a free parameter.

b) The risk-neutral transition matrix AQ
X is in companion form (22).

Proposition 2 shows that in order to parametrize the risk-neutral dynamics of every GDTSM,

one needs to specify Nf (Nf + 1)/2 parameters of the Cholesky decomposition of the covariance

matrix, plus Nf + 1 additional free numbers. Although it appears tempting to restrict µ = 0 based

on the special structure of the drift, there seems to be no economic argument supporting this.

3 Empirical Implementation

This section starts with a discussion of the data, followed by two maximum-likelihood estimation

strategies for the model in the companion form. The first employs Kalman filtering in order to
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estimate the factors together with model parameters. The second rests on the (assumed) possibility

of observing the factors with no error through empirical PCA scores.

3.1 Data

The data employed in the empirical analysis are the Fama and Bliss (1987) discount bonds from

CRSP. The set consists of five full-year maturities between one and five years, sampled at monthly

frequency. The maximal sample used in this paper spans June 1956 – July 2015. One advantage

of this set is that no smoothing methods are applied at its construction stage, which is especially

important from the point of view of the current study.24 Important prior applications of Fama-Bliss

data include Fama and Bliss (1987), and Cochrane and Piazzesi (2005, 2009), who study the failure

of the Expectations Hypothesis. The latter study show that the yield-forecasting factor constructed

from Fama-Bliss forward rates also captures bond return predictability in another well-known data

set of Gürkaynak et al. (2007), constructed by the method of Svensson (1995).

Arguably, the long time span may result in problems if there are important structural breaks

in the data-generating process. For this reason I also use a subset of the data corresponding to

the study in Cochrane and Piazzesi (2005), i.e., spanning January 1965 – December 2003. It is

known that the time variation in empirical bond risk premia was particularly pronounced in that

sample. Moreover, this choice avoids the most recent period (starting from 2009), in which the

short-maturity interest rates have remained very close to the zero bound.25 I refer to this subset

simply as the CP sample.

3.2 Estimation by Kalman Filter

The model in companion form leads to the state-space representation

Yt+1 = µPY +AP
YYt + εPY,t+1, (23)

bot = B0 +B1Yt + vt, (24)

24The detailed description of the data construction is provided on http://www.crsp.com/products/

documentation/fama-bliss-discount-bonds-%E2%80%93-monthly-only.
25I do not explicitly model the zero bound, although the results could likely be extended to that case. A list of

representative papers that explicitly take the zero bound into account can be found in the Introduction.
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in which bot is a vector of noisy observations of bond prices at time t, and B0, B1 are model-implied

coefficients satisfying no arbitrage. I assume that the covariance matrix R of the measurement

errors vt is diagonal, with equal variances σ2
v of individual terms. The state-space representation

could equivalently be defined in terms of other term-structure observables (forward rates, yields),

but this would require a modification of the measurement error covariance matrix in order to reflect

the particular transformation of the data.26

The parameters are estimated by ML, using Kalman filter to compute the sequence of observable

innovations for every set of parameter values, and choosing the set of parameters that maximizes the

log likelihood function. Appendix C presents the standard recursive steps needed to compute the

likelihood. I use the stationary version of the filter, which is consistent with the constant-volatility

structure of the model.

The set of parameters is Θ = {θµ, θA, θΣ, µ, c, θR}, in which θµ and θA are vectors of parameters

of the P dynamics, corresponding to µPY and AP
Y , respectively. θΣ consists of parameters governing

the innovation covariance matrix ΣY (obtained by the Cholesky decomposition), µ and c are pa-

rameters of the Q dynamics under the companion parametrization (see Proposition 2), and θR is a

vector that determines the noise covariance matrix (in the current context, just one number σ2
v).

I assume three factors, which results in 23 parameters (under the assumption that only one

parameter determines R).27 It is well known that success of numerical search algorithms often

depends on the right choice of the starting parameter values. To obtain initial estimates of θµ,

θA, and θΣ, I use an unconstrained VAR on the shortest-maturity forward rates, which are the

noisy versions of the true factors under the companion parametrization. The staring values for

parameters in the c vector (coefficients of the minimal polynomial of AQ
X ) are obtained as follows. I

first perform the principal-component analysis of the unconditional covariance matrix of all observed

forward rates, store the factor loadings fm1
′, and exploit the Duffie-Kan restrictions (10) in the form

fm1
′ = fm−1

1
′AQ to estimate the columns of the transition matrix AQ by linear regressions (with no

constant terms). The initial value of c is then obtained by computing the characteristic polynomial

26The elements of vt, to which I refer to as measurement errors, in fact summarize all deviations of measured bond
prices from their model-implied values, occurring for any reason, e.g., micro-structure effects. It is unclear what data
transformation should be considered canonical in the sense of being consistent with a diagonal R matrix. I assume
that this is true for bond prices, because they reflect most directly what should matter to investors. The model can
be estimated under arbitrary R matrix, at the cost of introducing new unknown parameters. The experience of the
author suggests that estimation results are quite insensitive to the particular choice of R.

27With two (four) factors, this number would become 13 (35).
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of AQ.28 The initial value of µ is set to zero, which appears to be a natural choice given the

structure of the risk-neutral drift in Proposition 2. Finally, the variance of the measurement error

is set such that the implied standard deviation of each component of vt is 10 basis points.

The numerical optimization is performed using the Nelder-Mead algorithm, implemented in

Matlab function fminsearch. In the case of the 3-factor model estimated on the full sample, the

procedure converges in about 2-3 minutes, depending on computer speed. 29

The results for the benchmark three-factor model estimated using all data are presented in

Table 1. Panel A. displays the drift, transition matrix, and the covariance matrix of innovations for

the estimated monthly P dynamics. Panel B. contains the same information in annualized form,

which makes it more comparable with the annual Q dynamics, presented in Panel C. Of special

importance is the companion matrix AQ
Y , with all parameters contained in the last row. These

parameters are the coefficients of its minimal (and at the same time characteristic) polynomial,

c0, c1, and c2. The estimated values are not easy to interpret directly. Mathematically, c0 is the

determinant of AQ
Y , and c2 is its trace. All three numbers are considerably away from the starting

values computed from empirical PCA loadings, which took more extreme values of -4.3, 10.4, and

-5.3, respectively (not reported in the table).

Panel D. of Table 1 shows the magnitudes of the pricing errors between the observed, and the

model-implied bond prices (in logs). The errors are reasonably small, ranging between 6.8-19.4

basis points, depending on maturity and the method used to compute them (root-mean-square vs.

mean-absolute-value). This panel also shows the estimated noise standard deviation of 19.3 b.p.

These pricing errors are comparable to other studies fitting affine models to Fama-Bliss data, e.g.,

Cochrane and Piazzesi (2009).

The eigenvalues implied by these estimates are shown in panel E., in decreasing order. Not

surprisingly, all of them are positive for the P dynamics, and below one. The annualized values are

the 12-th powers of the respective monthly numbers. The two positive eigenvalues of the Q dynamics

28One can use the Matlab function charpoly. The characteristic polynomial is invariant to changes of basis, and
therefore independent of invariant factor transformations. If the PCA factors were the true factors, and if the model
exactly satisfied the no-arbitrage restrictions, the regressions used to obtain AQ would fit perfectly, and the empirical
characteristic polynomial would uncover the true parameters.

29I set the maximum numbers of iterations, and function evaluations to 10000, and the tolerance level to 1e-3.
If the procedure does not converge within these limits, the resulting parameters are used as starting values for the
next iteration, until convergence. The numerical optimizer of Matlab is quite popular among other authors. For a
technical discussion of the convergence properties of the Nelder-Mead algorithm, see Lagarias et al. (1998).
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are slightly higher than their P counterparts, suggesting positive risk premia for the innovations to

the associated dimensions of factor movements. On the other hand, one of the eigenvalues under

Q is negative (and large in absolute value), which is somewhat counter-intuitive, although by itself

not inconsistent with no arbitrage. As will be discussed later, the negative eigenvalue appears to

be a robust property of the data, and simply indicates that the model faces difficulties in fitting

the term structure with a more ”reasonable” number.

The dashed lines in every sub-figure of Figure 2 show the canonical factors, i.e., the three

shortest-maturity forward rates estimated by the Kalman filter in the full set of Fama-Bliss data

(the lines are shifted by 50 b.p. relative to observed forward rates in order to improve readability).

Evidently, the estimated factors closely track their noisy counterparts, confirming the reliability of

the filtering procedure.

Table 2 shows the results obtained by the Kalman filter on the CP sample. It appears that the

parameters of the P dynamics, both in monthly, and in annualized terms, are quite similar to their

full-sample estimates. Also, the Q dynamics does not differ by much, which is also true for the

pricing errors (which are marginally smaller). The large negative eigenvalue of AQ
Y is present also

in the CP sub-sample.

3.3 Estimation Under Observable Factors

The literature on term structure modeling appears to have reached a consensus that the factors can

be treated as observable for the purpose of model estimation and forecasting. For example, Joslin

et al. (2011), and Hamilton and Wu (2012) mostly work under the assumption that there are exactly

Nf known linear combinations of observed yields that the model is able to price without error. In

other words, measuring some well-chosen linear combinations of term structure observables uncovers

the factors. Intuitively, if factors are observable, no filtering is needed to extract information about

the precise position of the state vector, which significantly reduces computational complexity of

the problem.

Suppose that such combinations indeed exist, and that one knows the matrix W that produces a

vector of bond (or yield) portfolios Pt priced without error. In applications, W usually corresponds

to the (orthogonal) principal-component loadings, or to some well-chosen constant-maturity yields.

The assumption of no errors on Pt is equivalent to a statement that there exists an invariant
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transformation allowing to re-state the model in terms of Pt instead of the original factors.

In particular, the baseline model can be stated in terms of the first Nf shortest-maturity forward

rates, i.e., using the companion-form parametrization, and rotated into a model with observable

bond portfolios as factors. For concreteness, assume that the W matrix consists of PCA loadings, in

which case Pt have the interpretation of empirical PCA factor scores. Based on the results of Joslin

et al. (2011), and Hamilton and Wu (2012), the ML parameter estimates governing the conditional

expectation of the factors Pt under the P measure can be recovered by OLS, running an unrestricted

VAR on these factors, without resorting to numerical search.30 As a result, the assumption pins

down both the factors, and their P dynamics before other parameters are found. The estimation

of the model is then reduced to finding the innovation covariance matrix, parameters controlling

the conditional factor expectations under Q, and the covariance matrix of the measurement errors.

Intuitively, this is performed by finding parameters that produce model-implied bond prices (or

yields) that are assumed to be measured with error, in terms of the observed factors.

The companion-form parametrization is particularly convenient also in the context of observable

factors, and Appendix D formally derives the likelihood function.31 The initial parameters for the

Q dynamics are found in exactly the same way as for the Kalman filter case. The starting value

of the innovation covariance matrix can be computed from the VAR residuals of measured PCA

scores. In fact, it is possible (and also numerically efficient) to parametrize the likelihood directly

in terms of the dynamics (and covariance) of the PCA factors, which is the way in which I proceed.

The results are displayed in Table 3 (full sample), and 4 (CP sample). Panels A. of these

tables report the estimated monthly P dynamics of empirical PCA scores, to which I will refer

by their traditional names, i.e., level, slope, and curvature. Panels B. present the annualized

dynamics. An interesting property of the transition matrices is that they are approximately upper-

triangular, implying that the slope and the curvature predict the level, but not the other way.

Another consequence of this structure is that the diagonal elements essentially correspond to the

eigenvalues, which is confirmed in panels E. The estimated Q dynamics are qualitatively similar to

the Kalman filter cases, although the numbers look more extreme. Also the negative eigenvalues of

30OLS residuals can also be used to construct a very good set of starting values for the parameters that define
factor innovation covariance matrix.

31The steps in Appendix D can also be regarded as an alternative explanation of the main result in JSZ, namely
that under observable factors estimating the risk-neutral parameters by itself does not improve the ability of the
model to predict the term structure factors.
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the risk-neutral transition matrices are much greater in absolute values, reaching -13.3, and -5.6,

depending on the sample. The estimated covariance matrices of forward-rate factor innovations

(ΣY) imply larger conditional volatilities than under the Kalman filter, which is consistent with

the interpretation that 100% of factor innovations must be considered genuine, and not due to

measurement errors.

Interestingly, the pricing errors reported in panels D. of both tables are slightly lower than their

Kalman filter counterparts. Especially the 5-year bond appears to be explained with virtually no

error. As will be explained below, this seemingly perfect precision is a consequence of the special

role that curvature plays under the assumption of observable factors, and is related to the presence

of an extreme eigenvalue in the spectrum of the estimated Q dynamics.

Finally, Figure 2 presents the time-series plots of the model-implied forward rates of maturities

one, two, and three years (dotted lines), inverted from the PCA factors using a model-implied

mapping. Also in this case the factors are almost perfectly aligned with the observed forward rates.

3.4 Interpreting the Anomalous Eigenvalue

A large negative eigenvalue associated with the estimated Q dynamics appears to be a persistent

feature of the data, independently of whether the model is estimated by the Kalman filter, or under

the assumption of observable factors. The top of Figure 3 displays the loadings of all forward rates

with respect to the three PCA factors extracted from the data, and the two other rows of that

figure present analogous loadings implied by the estimated models, under both sets of assumptions

discussed. The dotted lines correspond to the loadings on the smallest factor, responsible for

0.32%-0.52% of the total variance in bond prices.

Interestingly, the dotted lines in all pictures feature a large jump between maturities of four

and five years, which is not associated by any clear pattern in the short-maturity loadings relative

to the other factors. In other words, there is a factor that only affects long-maturity forward rates,

while being barely distinguishable from the other factors if one looks at the shortest maturities in

isolation. This is especially true in the graphs at the bottom of Figure 3, which correspond to the

estimation method that is instructed (by its design) to treat the empirical PCA scores as given,

and only adjust model parameters (the Q dynamics) in order to produce factor loadings consistent

with the Duffie-Kan restrictions. The role of the anomalous factor is then only to produce the spike
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on the last bond price relative to the dashed line (the slope factor). This can only be achieved by

prescribing a very large eigenvalue, making use of the fact that model-implied factor loadings are

power functions of maturities.

On the other hand, by the theoretical results of this paper, such factor behavior is difficult to

reconcile with no arbitrage, because all information about the state variables should be detectable

from short-maturity forward rates. Why is the anomalous factor not classified as noise, at least by

the Kalman filter? The answer is that it contains important information about the future behavior

of the yield curve. Indeed, the return-forecasting factor of Cochrane and Piazzesi (2005) loads

heavily on the four-to-five yield differential, as emphasized by these authors.32 The anomalous

factor must be therefore accepted as a robust feature of the data, and using Kalman filter at the

estimation stage cannot help significantly.33

These findings may shed some light on the question of whether assuming no arbitrage can

help forecast the term structure. One can (correctly) argue that assuming no arbitrage should in

principle improve forecasts, because it summarizes very strong incentives of market participants.

At the same time, several papers, notably Joslin et al. (2011), and Duffee (2011a) dispute the

usefulness of no-arbitrage assumptions in real-world forecasting applications. Based on the results

of this paper, these arguments can even be extended to saying that imposing no arbitrage (or more

precisely, restricting ”unreasonable” parameter values at the estimation stage) may even lead to

worse forecasts. Clearly, in the current context this implication probably mostly follows from model

inflexibility, and should not be taken as strong evidence of arbitrage in historical data.34

4 Simulated Out-of-Sample Performance

It can be argued that the assumption of observable factors may lead to a bias in OLS factor dynamics

due to errors in variables. On the other hand, if the W matrix (that determines observable portfolios

of yields) is constructed from the PCA decomposition of the unconditional covariance matrix, and

32See Cochrane and Piazzesi (2005), p. 146, and Fig. 2 on p. 141.
33Kalman filter collects predictive information also from the smaller empirical factors in observed bond prices that

are classified as pure noise by the PCA. This explains why the dotted lines in the middle row of Figure 3 are less
smooth. Intuitively, the lower magnitudes of the eigenvalues are possible because the factor loadings feature more
visible oscillations, which makes the factor somewhat better visible in the shortest maturities.

34It is possible that the anomalous results would largely go away if one had access to a richer data set with more
maturities. This possibility, if true, would be a warning against model over-fitting by specifying a three-factor model
in a data set with only 5 maturities. To my defense, such practice is standard in the literature.
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if bond prices really follow a linear factor structure, then one may hope to obtain relatively good

factor estimates in this way.

So are there any practical advantages of estimating the model together with the factors (and

their corresponding loadings), in a way fully consistent the model, and with no arbitrage at the

same time? This section addresses this issue by performing Monte-Carlo simulations, which is

feasible thanks to the computational efficiency of the estimation methods under the companion

parametrization.

4.1 Artificial Data

Seemingly, the most natural way to assess the out-of-sample performance of two estimation methods

would be to perform a rolling-window estimation in the real data. The results of such exercise would,

however, be hard to interpret. For example, the assumption of parameter stability is likely to be

violated due to structural breaks. Also, the exact nature of the measurement error, and the precise

number of factors (possibly time-varying) are unknown. These are only a few examples of violations

of model assumptions which may favor one method over the other, depending on which of them

happens to be more robust under given circumstances.

In order to assess the severity of the bias, I therefore simulate 300 panels of bond prices, using

the baseline parameter values taken from Table 1. Every artificial data set is of the same size as

the full Fama-Bliss sample, plus extra 60 months used to compute out-of-sample forecast errors.

To every sample I add i.i.d. noise generated under the assumption of diagonal covariance matrix,

with variances equal across maturities.

In every simulated sample the model is estimated twice, without and with the assumption of

observable factors, as explained in the previous section.

In the first case, the estimation procedure relies on Kalman filtering, with first estimating a

VAR on noisy short-maturity forward rates to obtain the starting values of the P dynamics. In the

second case, I first obtain a PCA decomposition of the unconditional covariance of (noisy) bond

prices, and use the associated factor loadings to construct bond portfolios supposedly measured

without error. I then compute their VAR dynamics by OLS, and store the innovation covariance

matrix in order to use it as a starting value for the ML estimate. The starting parameter values

of the Q dynamics are computed in the same way under both methods, which also share the same
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initial value of measurement error variance.35 The forecast errors are defined as differences between

the realized (noise-free) log bond prices, and their model-based forecasts.

4.2 Out-of-Sample Results

Table 6 presents the root mean square errors (RMSE) over all simulations, for all bond maturities

between one and five years, and selected horizons between one month and five years. Panels

A., B., and C. correspond to the Kalman filter, ML with observable factors, and random walk,

respectively. Both estimation methods produce forecasts that are superior to the random walk,

especially at short horizons (1-3 months), and for short-maturity bonds (1-2 years), although the

gain disappears in other cases. Table 6 presents comparative benefits of using pairs of forecasting

methods relative to each other. The most important information from the point of view of this

study is contained in panel C. It can be seen that both methods under investigation are able to

produce almost equally precise forecasts. There seems to be a marginal benefit in using Kalman

filter for short-term forecasts of the one-year bond, but in other cases the benefit disappears.

Table 7 and Table 8 are constructed in an identical way, but present the mean absolute forecast

errors (MAE), and confirm all conclusions drawn above. Summing up, this exercise has not provided

a conclusive argument for the uniform acceptance of one estimation method over the other.

5 Concluding Remarks

In this paper, I build on the insights of Joslin et al. (2011) (JSZ), and Collin-Dufresne et al. (2008)

(CGJ) to develop a canonical parametrization (and estimation strategy based on it) for the very

popular class of Gaussian Dynamic Term Structure Models (GDTSM) with essentially-affine prices

of risk of Duffee (2002), and Ang and Piazzesi (2003), specified in discrete time.

The convenience of the proposed parametrization rests upon the proven result that if there is no

arbitrage, and if the term structure is driven by Nf spanning factors, then all the information about

the factors must be contained in the shortest end of the maturity spectrum. In the limiting case,

studied by CGJ, the factor dynamics can be mapped into the dynamics of the first Nf derivatives

of the term structure evaluated at maturity zero. In the discrete-time case, all information about

35I use the same value as in the case of real-data estimation, i.e., 1e-6.
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the factors must be contained in the first Nf shortest-maturity forward rates.

This leads to a natural parametrization of the Q dynamics in terms of the coefficients of the

characteristic polynomial of the transition matrix. Actually, if the model is stated in terms of

the short-maturity forward rates as factors, then its Q transition dynamics assumes the form of

a companion matrix (associated with the characteristic polynomial), in which only the last row is

unrestricted, and all other entries fixed to 0 or 1 by the Duffie-Kan restrictions. The characterization

of the risk-neutral dynamics can be completed by specifying one extra parameter governing the risk-

neutral drift of the factors (in addition to the factor covariance matrix).

The companion-form parametrization is akin to the eigenvalue parametrization employed by

JSZ. Both of them minimize the number of parameters that can be identified from the data, while

at the same time preserve full model flexibility. The companion-form parametrization is arguably

easier to implement, because one does not need any prior knowledge of how the characteristic

polynomial factorizes. If the eigenvalues are repeated (or complex) the mathematical form of the

Q transition matrix changes, and these cases have to be considered separately at the estimation

stage. It is also unclear whether one can achieve smooth transition between these cases during a

numerical evaluation of the likelihood function. 36

Due to the relatively low number of unknown parameters, the model can be efficiently estimated

by the Kalman filter, in which case the factors and factor loadings are fully consistent with the

no-arbitrage restrictions imposed by the model on the data. While this approach appears to

be computationally efficient (in the set of Fama-Bliss bond prices), it is possible to increase the

estimation speed even more by assuming that factors are observable. For example, one can use the

principal components of bond prices (or yields) in an attempt to uncover the factors, thus avoiding

Kalman filtering. This method can be applied irrespective of the chosen canonical form, since one

can always back out the fundamental factors from the model-implied mapping between the PCA

scores and the underlying factors, for example the short-maturity forward rates.37

Consistent with the main point of JSZ, under the assumption of observable factors it should

36Apart from this property of estimation convenience, the companion-form parametrization is more useful if one
wishes to impose extra conditions on the characteristic polynomial. For example, a condition that the determinant of
AQ is zero can be easily imposed on the model in companion form, since the determinant is simply one of the param-
eters. On the other hand, any constraints on the eigenvalues would be easier to impose under the JSZ normalization.
I do not consider any such additional constrains in the current paper.

37Although the factors under the canonical companion form are the shortest-maturity forward rates, one needs
not assume that they are measured without error.
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be impossible to improve factor predictions over those obtained by an unrestricted VAR, at least

if the model is true in the given data set.38 Since it is only slightly more time-intensive to apply

the Kalman filter, a natural question is whether it is worth to make the simplifying assumption

of observable factors, which is guaranteed not to hold exactly in any given data. To address this

question, I perform a Monte-Carlo analysis of the forecasting performance of the two just-described

estimation strategies. To put both methods on equal grounds, I simulate many data sets using

benchmark parameter values estimated in the real data, and add noise to the generated bond

prices. The results indicate that both Kalman filtering, and estimation under observable factors

offer virtually identical out-of-sample precision.

However, this conclusion may change in real-world applications, because some model assump-

tions may fail. For example, the canonical companion form provides the lens through which one

can see problems with fitting essentially-affine models to the well-known set of Fama-Bliss discount

bonds, in which small factors that predict bond returns seem to only be present in long-maturity

forward rates, without significantly (if at all) affecting the short end. Based on the results of the

current paper, this can only be reconciled with essentially-affine model structure if one is ready

to accept extreme eigenvalue estimates associated with such factors. The well-known bond return

forecasting factor of Cochrane and Piazzesi (2005) relies significantly on such small empirical fac-

tors. This does not necessarily imply that a large part of the predictability evidence was due to

arbitrage possibilities.39 Rather, it signals that the current workhorse no-arbitrage framework may

need further development.

38Appendix D of this paper can be seen as an alternative proof of this fact.
39However, the recent financial crisis has proven that even well-established no-arbitrage relations may fail under

conditions of market stress.
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Appendix A Solving Generic GDTSM

This appendix summarizes the standard steps in solving a Gaussian term structure model starting

from the form with explicit stochastic discount factor (SDF), and then shows that the model can

be equivalently stated in terms of the risk-neutral dynamics of the factors.

Explicit SDF

Assume that the dynamics of the latent factors Xt, and the risk-free rate are

Xt+1 = µPX +AP
XXt + εPX ,t+1, (25)

f1
t = f1

0 + f1
1
′Xt, (26)

and the SDF is of the form

logMt+1 ≡ mt+1 = −f1
t −

1

2
ΛΣXΛ′ − ΛεPX ,t+1, (27)

Λt = Λ0 + Λ1Xt. (28)

Solving the model is equivalent to finding closed-form solutions for zero-coupon bond prices for

every maturity m. Normalizing the face value of every bond to one, it is conjectured (and later

verified) that the log zero-coupon bond prices are affine in the latent state vector,

bmt = bm0 + bm1
′Xt. (29)

The one-period return accruing to the holder of a bond is

rmt+1 = bm−1
t+1 − b

m
t

= bm−1
0 − bm0 + bm−1

1
′µPX +

(
bm−1
1

′AP
X − bm1 ′

)
Xt + bm−1

1
′εPX ,t+1, (30)

which follows from (29), together with the factor dynamics (25).
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The asset-pricing condition for log-normally distributed returns is40

EP
t

(
mt+1 + rmt+1

)
+

1

2
V art

(
mt+1 + rmt+1

)
= 0. (31)

Substituting 27 and 30 into (31), and using the condition that the pricing equation must hold for

every possible value of the state vector, one obtains a system of recursive conditions

bm1
′ = bm−1

1
′
(
AP
X − ΣXΛ1

)
− f1

1
′,

bm0 = bm−1
0 − f1

0 + bm−1
1

′
(
µPX − ΣXΛ0

)
+

1

2
bm−1
1

′ΣX b
m−1
1 .

In order to guarantee that the shortest-maturity bond price corresponds to the assumed form of

the risk-free rate f1
t , one needs to define b00 = 0 and b01

′ = 0′ as part of the solution, which at the

same time allows to solve the recursions for every maturity m.

If one defines µQX ≡ µPX − ΣXΛ0 and AQ
X ≡ AP

X − ΣXΛ1, these conditions take the form

bm1
′ = bm−1

1
′AQ
X − f

1
1
′, (32)

bm0 = bm−1
0 − f1

0 + bm−1
1

′µQX +
1

2
bm−1
1

′ΣX b
m−1
1 . (33)

It follows that the forward rates are of the form fmt = fm0 + fm1
′Xt, with loadings

fm1
′ = f1

1
′
(
AQ
X

)m−1
, (34)

fm0 = f1
0 − bm−1

1
′µQX −

1

2
bm−1
1

′ΣX b
m−1
1 . (35)

Risk-Neutral Factor Dynamics

No-arbitrage GDTSMs are sometimes stated in terms of the risk-neutral dynamics of the factors.

Define the Q expectation EQ
t (zt+1) of a generic random variable zt+1 as EQ

t (zt+1) ≡ EP
t (zt+1) +

Covt (mt+1, zt+1), where mt+1 is the log SDF.41

The VAR factor dynamics (25), after subtracting and adding the term ΣXΛt defined in (28),

40This is a special case of the condition that the price Pt of a payoff Pt+1 must satisfy Pt = EP
t (Mt+1Pt+1) if the

SDF is Mt+1.
41Intuitively, the objective expected value under P is being adjusted due to risk, as measured by the covariance

with the SDF.

29



becomes

Xt+1 =
(
µQX − ΣXΛ0

)
+
(
AQ
X − ΣXΛ1

)
Xt + εPX ,t+1 + ΣX (Λ0 + Λ1Xt) .

Using the definitions of µQX and AQ
X as in (32)-(33), and defining a new shock εQX ,t+1 ≡ εPX ,t+1+ΣXΛt,

the previous equation can be written more compactly as

Xt+1 = µQX +AQ
XXt + εQX ,t+1, (36)

where the shock is Gaussian, with zero expectation under Q. By the Girsanov’s theorem, the

covariance of εQX ,t+1 is ΣX , i.e., the risk adjustment only affects the expected values.

The asset-pricing condition (31) can similarly be re-written in terms of the risk-neutral expected

value. Using EP
t (mt+1) + 1

2V art (mt+1) = −f1
t (the one-period risk-free bond satisfies the pricing

condition), and EQ
t

(
rmt+1

)
= EP

t

(
rmt+1

)
+ Covt

(
mt+1, r

m
t+1

)
, (31) takes a simpler form

EQ
t

(
rmt+1

)
− f1

t +
1

2
V art

(
rmt+1

)
= 0. (37)

This condition is nothing else then the requirement that under the risk-neutral measure, the ex-

pected return on every bond must equal the risk-free rate, up to the convexity adjustment due to

the log-Normal formulation.

The generic no-arbitrage GDTSM can now be stated as a collection of three equations

Xt+1 = µPX +AP
XXt + εPX ,t+1 (38)

Xt+1 = µQX +AQ
XXt + εQX ,t+1 (39)

f1
t = f1

0 + f1
1
′Xt. (40)

Since the Q dynamics and the risk-neutral pricing condition (37) simply follow from re-defining

the expected value, the bond prices and forward rates implied by the model must be exactly of the

form (32)-(33), and (34)-(35). The latter claim can also be confirmed directly, by substituting the

conjectured form of the bond pricing formula into (37), and using (39) to compute the expectations.
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Appendix B Invariant Transformations

This appendix explains the idea of invariant transformations, and shows that two models are obser-

vationally equivalent (i.e., share the same predictions for the term-structure observables) whenever

there exists an invariant transformation between their respective sets of factors.

Start with a model in the generic form

Xt+1 = µPX +AP
XXt + εPX ,t+1,

Xt+1 = µQX +AQ
XXt + εQX ,t+1,

f1
t = f1

0,X + f1
1,XXt,

with shock covariance matrix ΣX .

Assume that there exists a vector of factors Yt, related to Xt by an invertible affine transforma-

tion (called invariant transformation) Yt = α+βXt. It follows that Xt = β−1(Yt−α). Substituting

this into the original model, we obtain a representation in terms of the new factors,

Yt+1 = µPY +AP
YYt + εPY,t+1,

Yt+1 = µQY +AQ
YYt + εQY,t+1,

f1
t = f1

0,Y + f1
1,YYt.

The relationships between the new and old model parameters are

AX
Y = βAX

Xβ
−1, for X ∈ {P,Q}

µXY = βµXX + (I −AX
Y)α, for X ∈ {P,Q}

f1
1,Y = f1

1,Xβ
−1,

f1
0,Y = f1

0,X − f1
1,Yα,

ΣY = βΣXβ
′.

Similarly, if the bond prices (or other term structure observables) are affine in X with bt =
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f1
0,X + f1

1,XXt, then they are also affine in the transformed state vector Y, with coefficients

f1
1,Y = f1

1,Xβ
−1,

f1
0,Y = f1

0,X − f1
1,Yα.

By construction, these formulas for the bond prices are consistent with no-arbitrage in both models.

Both formulations are therefore observationally equivalent.

Appendix C Estimation by Kalman Filter

Propositions 1 and 2 show that every no-arbitrage GDTSM can be transformed into one in which

the factors are the shortest-maturity forward rates Yt, and the transition matrix under Q is in

companion form (22). The state-space representation of the model is

Yt+1 = µPY +AP
YYt + εPY,t+1, (41)

bot = B0 +B1Yt + vt, (42)

where bot is a vector of noisy observations of the term structure at time t, B0, B1 are model-implied

coefficients (satisfying the no arbitrage restrictions), and vt is an i.i.d. vector of measurement errors

with covariance matrix R, independent of factor innovations εPY,t+1. The covariance matrix of εPY,t+1

is ΣY .

The Kalman filter iteratively estimates the forward rates in Yt based on the history of observed

bond prices. Define Ŷt ≡ E(Yt|bo1, . . . , bot−1) as the (prior) estimate of the state vector, and Σ̂t ≡

E[(Yt − Ŷt)(Yt − Ŷt)′] as the matrix measuring the uncertainty in the estimate. At every point in

time the filter computes the innovation at ≡ bot − B0 − B1Ŷt, and uses it to update the current

state, and to form next period’s prior Ŷt+1, according to the transition equation (41). The filter

equations also include the updating rule for transforming innovations into updates of the state, and

the description of the time evolution of the uncertainty matrix Σ̂t, as summarized below.42

Suppose one knows the initial (multivariate Gaussian) distribution of the state vector, Y1 ∼

42A very good presentation of the Kalman filter is contained in Ljungqvist and Sargent (2012), p. 56.
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N(Ŷ1, Σ̂1), and observes a sample of bond prices bo1, . . . , b
o
T . The filter equations are:

at = bot −B0 −B1Ŷt, (43)

K̂t = AP
YΣ̂tB

′
1(B1Σ̂tB

′
1 +R)−1, (44)

Ŷt+1 = µPY +AP
Y Ŷt, (45)

Σ̂t+1 = ΣY + K̂tRK̂
′
t + (AP

Y − K̂tB1)Σ̂t(A
P
Y − K̂tB1)′. (46)

In the current application, the filter can be initiated with the first Nf shortest-maturity forward

rates observed at the very beginning of the sample. If one uses the stationary version of the filter

by first iterating equations (44) and (46) until convergence (for a given set of parameters), the

matrices K̂, and Σ̂ become constant (equal their steady-state values), and filtering is reduced to

computing the innovations (43), and predicting the state (45).43

The likelihood of observing the data for a fixed set of model parameters is the same as the

likelihood of observing a sequence of innovations at. For a Gaussian model with Nf factors, the

log-likelihood function implied by the stationary filter is

L = −
TNf

2
log 2π − T

2
log |Ω| − 1

2

T∑
t=1

atΩ
−1a′t, (47)

where Ω is the covariance matrix of innovations, Ω = R+B1Σ̂B′1 (as is evident from (43)).

The model is estimated by finding a set of parameters that produce the innovations that are

the most likely, given the assumed model structure, and the observed data.

Appendix D Estimation Under Observable Factors

This appendix discusses GDTSM estimation under the assumption that there exist exactly Nf

known linear combination of term-structure observables (yields, forward rates, or discount bonds

prices) explained by the model perfectly. Keeping the other assumptions and notation consistent

with Appendix C, and working with log bond prices, the state-space representation under the

43Anderson et al. (1996) summarize the conditions under which the steady-state filter can be applied.
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companion-form parametrization defined in Propositions 1 and 2 is

Yt+1 = µPY +AP
YYt + εPY,t+1, (48)

bot = B0 +B1Yt + vt. (49)

The extra assumption of observable factors (referred to as ”Case P” by Joslin et al. (2011)) can be

summarized as follows.

Assumption 3 For a Nf -factor model, there exist exactly Nf a priori known linear combinations

of observed bond prices that uncover the factors, i.e., there exists a matrix W such that

Wvt = 0, (50)

Without loss of generality, it can be assumed that the rows of W have unit norm, and that they

are linearly independent.44 One can define the bond portfolios given by W as Pt ≡Wbot . In appli-

cations, W is usually chosen as the PCA loading matrix, corresponding to the scores of maximum

unconditional variance, and the portfolios Pt correspond to the PCA factor scores.45

By Assumption 3, the observation equation (49) can be used to measure the factors in every

given sample,

Pt = Wbot = WB0 + (WB1)Yt. (51)

The above equation effectively defines an invariant transformation that can be used to express the

model in terms of the bond portfolios as factors. On the other hand, the other bond portfolios

(priced with error) are still informative about model parameters. To find all observable implications

of the model under Assumption 3, define W⊥ as a matrix consisting of orthonormal rows spanning

the null space of W . This matrix is also known a priori, and can be used to derive the state-space

44One can always re-scale the bond prices such that the normalization holds. Linear independence of the rows is
a necessary consequence of the assumption.

45This choice is particularly convenient for the reason that the rows of W are orthonormal, and the resulting
factors are unconditionally uncorrelated in every given sample. Other choices of W are possible. For example, one
could use bond prices of several selected maturities as observable factors.
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representation of the rotated model,

Pt+1 = µPP +AP
PPt + εPP,t+1, (52)

b⊥t = H0 +H1Pt + v⊥t , (53)

where the parameters are related to those of the original model through

µPP = WB1µ
P
Y + [I − (WB1)AP

Y(WB1)−1], (54)

AP
P = (WB1)AP

Y(WB1)−1, (55)

H0 = W⊥B0 −W⊥B1(WB1)−1WB0, (56)

H1 = W⊥B1(WB1)−1. (57)

The covariance matrices of the random terms in (52) and (53) are, respectively

ΣP ≡ (WB1)ΣY(WB1)′, (58)

R⊥ ≡W⊥R(W⊥)′. (59)

Since the factors in the new transition equation (52) are observable, one does not need to use

the Kalman filter. Moreover, by the standard result of Zellner (1962) (used in the same context by

Joslin et al. (2011)), the maximum-likelihood estimates of coefficients µPP , and AP
P coincide with

their OLS estimates, and do not depend on the covariance matrix ΣP , which allows to exclude

many model parameters from the numerical search. For example, in the case of a 3-factor model,

the dimensionality of the parameter space drops by 12, which greatly reduces the estimation time.

Recall that under the companion-form parametrization, one is interested in finding Θ =

{θµ, θA, θΣ, µ, c, θR}, where θµ and θA determine the conditional expectation in (48), θΣ is the

vectorized triangular matrix in the Cholesky decomposition of ΣY , µ and c parametrize the con-

ditional Q dynamics of factors Yt, and θR describes the noise covariance matrix. The rest of this

Appendix describes the construction of the log-likelihood function, and shows that it does not

depend on θµ, and θA.
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Given the equivalence of the state-space representations (48)-(49), and (52)(53) under Assump-

tion 3, the probability of observing a given sample of bond prices {bot}t∈(1,...,T ), conditional on the

parameters in Θ, can be factored into

prob({bot}|Θ) = prob({Pt}|Θ)× prob({b⊥t }|{Pt}; Θ). (60)

In light of (52), the first term on the right is the likelihood of observing the sequence of (T-1) VAR

innovations to the observable bond portfolios. The log of this term, suppressing the 2π part, is

L1 ≡ −
(T − 1)

2
log |ΣP | −

1

2

T−1∑
t=1

(Pt+1 − µPP −AP
PPt)Σ−1

P (Pt+1 − µPP −AP
PPt)′, (61)

where ΣP is given in (58). As noted above, µPP and AP
P can be estimated by OLS, and treated as

fixed in every given sample. Effectively, this part of the log likelihood only depends on parameters

that determine ΣP , i.e., Θ1 ≡ {θΣ, c}, as is evident from (58).

The other term in the factorization (60) is the probability of observing the sequence of T

realizations of v⊥t , for given Pt, and model parameters that determine H0, H1, and R⊥, as indicated

by (53). The log of this probability is (again ignoring the constant part)

L2 ≡ −
T

2
log |R⊥| − 1

2

T∑
t=1

(b⊥t −H0 −H1Pt)(R⊥)−1(b⊥t −H0 −H1Pt)′. (62)

Equations (56), (57), and (59) indicate that in order to compute this part of the likelihood, one only

needs to know the model-implied bond pricing matrices B0 and B1.46 Under the companion-form

parametrization, the latter only depends on c. To find B0, one first needs to find the risk-neutral

drift µQY , which according to Proposition 2 depends on parameters θΣ, and µ. Given the risk-neutral

drift, one is able to complete the solution of model-implied bond prices by finding B0. Overall, the

second part of the likelihood is parametrized by Θ2 ≡ {θΣ, c, µ, θR}.

The total log likelihood is the sum of (61) and (62), and the corresponding parameter set is

Θ1 ∪Θ2, which does not depend on θµ and θA.

46Consistent with Assumption 3, the matrix W of bond portfolios measured without error is known. The matrix
W⊥ can be defined given W , and also treated as known (for example, using Matlab function null).
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Appendix E Tables

Table 1: Parameter values estimated by Maximum Likelihood (with Kalman filtering) for
a three-factor model, using the full sample of Fama-Bliss bonds (June 1956 – July 2015).

A. Monthly Dynamics (P)
µPY AP

Y ΣY

0.0003 0.8802 0.1952 -0.0861 1e-5 × 0.2043 0.1432 0.1009
0.0007 -0.0695 1.1786 -0.1211 0.1432 0.1242 0.1070
0.0012 -0.0999 0.3282 0.7563 0.1009 0.1070 0.1075

B. Annualized Dynamics (P)
µPY AP

Y ΣY

0.0039 0.0476 1.4826 -0.6447 1e-4 × 0.1950 0.1544 0.1241
0.0071 -0.4559 2.1303 -0.7962 0.1544 0.1394 0.1244
0.0102 -0.5844 2.0422 -0.6007 0.1241 0.1244 0.1198

C. Annual Dynamics (Q)

µQY AQ
Y ΣY

0.0000 0 1 0 1e-4 × 0.1950 0.1544 0.1241
0.0000 0 0 1 0.1544 0.1394 0.1244
0.0074 -1.7034 3.8287 -1.2272 0.1241 0.1244 0.1198

D. Pricing Errors, and Noise Std

RMSE (b.p.)
15.3 12.6 19.4 10.8 9.5 Noise St.Dev. (b.p.)

MAPE (b.p.) 19.3
11.8 9.2 14.2 7.0 6.8

E. Eigenvalues

Monthly P Dynamics
0.991 0.929 0.895

Annualized P Dynamics
0.899 0.415 0.262

Annual Q Dynamics
0.922 0.658 -2.807

37



Table 2: Parameter values estimated by Maximum Likelihood (with Kalman filtering)
for a three-factor model, using the Cochrane and Piazzesi (2005) sample of Fama-Bliss
bonds (January 1965 – December 2003).

A. Monthly Dynamics (P)
µPY AP

Y ΣY

0.0017 0.8020 0.3022 -0.1354 1e-5 × 0.4161 0.2841 0.2066
0.0015 -0.0730 1.0762 -0.0278 0.2841 0.2286 0.1777
0.0020 -0.2153 0.5527 0.6342 0.2066 0.1777 0.1586

B. Annualized Dynamics (P)
µPY AP

Y ΣY

0.0157 -0.0340 0.8544 -0.0964 1e-4 × 0.2946 0.2231 0.1791
0.0158 -0.4000 1.1158 0.0441 0.2231 0.1948 0.1714
0.0171 -0.5849 1.2286 0.1201 0.1791 0.1714 0.1618

C. Annual Dynamics (Q)

µQY AQ
Y ΣY

0.0000 0 1 0 1e-4 × 0.2946 0.2231 0.1791
0.0000 0 0 1 0.2231 0.1948 0.1714
0.0072 -1.5063 3.6892 -1.2688 0.1791 0.1714 0.1618

D. Pricing Errors, and Noise St. Dev.

RMSE (b.p.)
14.7 12.6 18.6 10.5 9.0 Noise St.Dev. (b.p.)

MAPE (b.p.) 18.7
11.2 9.4 13.3 6.6 6.6

E. Eigenvalues

Monthly P Dynamics
0.9814 0.9267 0.6042

Annualized P Dynamics
0.798 0.401 0.002

Annual Q Dynamics
0.9471 0.5707 -2.787
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Table 3: Parameter values estimated by Maximum Likelihood (under the assumption of
observable PCA factors) for a three-factor model, using the full sample of Fama-Bliss
bonds (June 1956 – July 2015).

A. Monthly Dynamics of PCA factors (P)
µPP AP

P ΣP

-0.0044 0.9931 -0.1056 -0.1467 1e-3 × 0.6881 0.0004 0.0038
-0.0011 0.0005 0.9441 0.0665 0.0004 0.0159 0.0005
0.0010 -0.0001 0.0039 0.5966 0.0038 0.0005 0.0069

B. Annualized Dynamics of PCA factors (P)
µPP AP

P ΣP

-0.0486 0.9185 -0.9145 -0.4668 1e-2 × 0.7691 -0.0042 0.0005
-0.0085 0.0038 0.5029 0.0947 -0.0042 0.0111 0.0003
0.0024 -0.0002 0.0058 0.0032 0.0005 0.0003 0.0011

C. Annual Dynamics of Forward-Rate Factors (Q)

µQY AQ
Y ΣY

0.0001 0 1 0 1e-3 × 0.1903 0.1574 0.1325
0.0002 0 0 1 0.1574 0.1507 0.1420
0.0340 -8.120 20.412 -11.731 0.1325 0.1420 0.1434

D. Pricing Errors, and Noise St. Dev.

RMSE (b.p.)
12.9 10.3 16.6 10.7 1.3 Noise St.Dev. (b.p.)

MAPE (b.p.) 17.9
10.0 7.6 11.8 7.8 0.9

E. Eigenvalues

Monthly P Dynamics
0.992 0.946 0.596

Annualized P Dynamics
0.910 0.512 0.002

Annual Q Dynamics
0.906 0.673 -13.310
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Table 4: Parameter values estimated by Maximum Likelihood (under the assumption of
observable PCA factors) for a three-factor model, using the Cochrane and Piazzesi (2005)
sample of Fama-Bliss bonds (January 1965 – December 2003).

A. Monthly Dynamics of PCA factors (P)
µPP AP

P ΣP

-0.0080 0.9869 -0.1165 -0.8163 1e-4 × 0.9519 -0.0271 0.0047
-0.0009 0.0008 0.9457 0.0413 -0.0271 0.0195 0.0022
0.0008 -0.0002 0.0003 0.4450 0.0047 0.0022 0.0084

B. Annualized Dynamics of PCA factors (P)
µPP AP

P ΣP

-0.0956 0.8506 -0.9695 -1.3475 1e-2 × 1.0367 -0.0298 -0.0002
-0.0079 0.0068 0.5076 0.0330 -0.0298 0.0137 0.0004
0.0014 -0.0003 0.0006 0.0005 -0.0002 0.0004 0.0010

C. Annual Dynamics of Forward-Rate Factors (Q)

µQY AQ
Y ΣY

0.000 0 1 0 1e-3 × 0.3060 0.2331 0.1894
0.000 0 0 1 0.2331 0.1984 0.1766
0.004 -3.285 8.296 -4.059 0.1894 0.1766 0.1676

D. Pricing Errors, and Noise Std

RMSE (b.p.)
14.0 11.2 17.3 8.6 0.6 Noise St.Dev. (b.p.)

MAPE (b.p.) 18.6
10.9 8.4 11.8 6.0 0.5

E. Eigenvalues

Monthly P Dynamics
0.985 0.948 0.445

Annualized P Dynamics
0.831 0.528 0.000

Annual Q Dynamics
0.982 0.594 -5.635
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Table 5: Root mean squared errors (RMSE; in basis points) for out-of-sample
forecasts at various horizons in 300 simulated data sets, obtained by three dif-
ferent methods (ML with Kalman filtering, ML with observable factors, and
random walk). The data were generated by a three-factor model with pa-
rameters as in Table 1. Every artificial panel of bonds contains 758 monthly
observations on 5 annual maturities (as in the full Fama-Bliss data set), plus
60 months used to compute the forecast errors.

A. RMSE (KF)
1m 3m 6m 1y 2y 3y 4y 5y

1y 16 25 34 48 61 70 80 82
2y 26 43 61 88 113 133 151 159
3y 34 58 85 122 160 191 217 233
4y 44 75 110 156 205 248 280 305
5y 52 89 131 183 244 296 335 369

B. RMSE (ML-OF)
1m 3m 6m 1y 2y 3y 4y 5y

1y 16 26 36 49 61 69 77 78
2y 26 43 62 88 113 131 146 151
3y 34 58 86 122 160 189 210 220
4y 44 75 110 156 205 245 271 288
5y 53 90 132 183 244 293 325 349

C. RMSE (RW)
1m 3m 6m 1y 2y 3y 4y 5y

1y 23 31 39 54 66 75 83 87
2y 31 45 63 89 114 134 150 160
3y 37 60 86 123 162 190 215 234
4y 46 75 110 156 208 247 278 306
5y 55 92 135 184 251 298 336 374
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Table 6: Relative gains (in percents) for out-of-sample forecasts presented in
Table 5. Each number is computed as the difference between two RMSEs
corresponding to two different forecasting models, relative to the RMSE of the
reference model.

A. RMSE, Gain of KF Over RW (%)
1m 3m 6m 1y 2y 3y 4y 5y

1y 32.6 18.9 12.2 10.2 8.2 6.0 4.6 5.1
2y 15.8 4.4 2.0 1.7 0.9 1.0 -0.5 0.5
3y 9.3 2.8 0.3 0.5 1.2 -0.4 -0.9 0.5
4y 3.6 0.9 -0.5 -0.1 1.5 -0.3 -0.9 0.5
5y 4.8 2.8 2.4 0.5 2.6 0.7 0.1 1.3

B. RMSE, Gain of ML-OF Over RW (%)
1m 3m 6m 1y 2y 3y 4y 5y

1y 29.8 17.1 8.9 9.3 8.2 7.9 7.9 10.4
2y 15.4 3.9 0.3 1.0 0.7 2.4 2.7 5.8
3y 9.3 2.9 -0.2 0.3 1.1 0.9 2.3 5.8
4y 3.8 0.6 -0.7 -0.4 1.6 0.9 2.6 5.9
5y 3.6 2.0 2.3 0.2 2.6 1.6 3.2 6.5

C. RMSE, Gain of KF Over ML-OF (%)
1m 3m 6m 1y 2y 3y 4y 5y

1y 4.0 2.1 3.6 1.1 0.0 -2.0 -3.6 -5.9
2y 0.5 0.6 1.7 0.7 0.3 -1.4 -3.3 -5.7
3y 0.0 -0.1 0.4 0.3 0.1 -1.3 -3.3 -5.6
4y -0.3 0.3 0.2 0.3 -0.1 -1.2 -3.6 -5.8
5y 1.3 0.8 0.2 0.4 0.0 -1.0 -3.3 -5.6
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Table 7: Mean absolute errors (MAE; in basis points) for out-of-sample fore-
casts at various horizons in 300 simulated data sets, obtained by three different
methods (ML with Kalman filtering, ML with observable factors, and random
walk). The data were generated by a three-factor model with parameters as in
Table 1. Every artificial panel of bonds contains 758 monthly observations on
5 annual maturities (as in the full Fama-Bliss data set), plus 60 months used
to compute the forecast errors.

A. MAE (KF)
1m 3m 6m 1y 2y 3y 4y 5y

1y 13 20 27 39 50 56 62 65
2y 21 35 50 70 92 106 119 126
3y 27 46 69 97 130 153 171 183
4y 35 59 89 125 166 199 222 239
5y 41 70 106 146 198 238 265 290

B. MAE (ML-OF)
1m 3m 6m 1y 2y 3y 4y 5y

1y 13 21 29 40 50 55 61 63
2y 21 34 50 71 93 105 116 121
3y 27 46 70 98 130 151 168 176
4y 35 58 90 125 167 197 217 229
5y 41 70 106 146 198 236 260 277

C. MAE (RW)
1m 3m 6m 1y 2y 3y 4y 5y

1y 18 25 31 42 53 59 64 70
2y 24 36 51 70 92 107 119 129
3y 30 48 69 96 131 153 170 187
4y 36 58 88 122 168 200 219 247
5y 44 72 109 143 200 241 265 301
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Table 8: Relative gains (in percents) for out-of-sample forecasts presented in
Table 7. Each number is computed as the difference between two MAEs cor-
responding to two different forecasting models, relative to the MAE of the
reference model.

A. MAE, Gain of KF Over RW (%)
1m 3m 6m 1y 2y 3y 4y 5y

1y 31.3 18.5 11.3 7.4 6.7 6.1 3.0 6.2
2y 14.2 4.3 3.2 0.2 0.5 0.7 0.0 2.1
3y 9.4 2.7 0.2 -1.1 0.7 -0.4 -0.7 2.1
4y 3.5 -0.4 -0.9 -2.3 1.3 0.3 -1.1 3.1
5y 6.9 2.1 3.3 -2.1 1.3 1.4 0.0 3.7

B. MAE, Gain of ML-OF Over RW (%)
1m 3m 6m 1y 2y 3y 4y 5y

1y 29.8 16.5 7.4 5.6 6.0 8.1 5.4 9.9
2y 14.0 4.7 1.5 -0.7 -0.2 1.9 2.1 6.0
3y 9.3 2.9 -0.6 -1.6 0.3 0.8 1.3 6.1
4y 3.0 -0.1 -1.4 -2.4 1.1 1.3 1.1 7.1
5y 5.2 1.7 2.8 -2.3 1.3 2.2 2.2 7.9

C. MAE, Gain of KF Over ML-OF (%)
1m 3m 6m 1y 2y 3y 4y 5y

1y 2.2 2.4 4.2 1.8 0.7 -2.2 -2.5 -4.1
2y 0.1 -0.4 1.8 0.9 0.7 -1.2 -2.2 -4.2
3y 0.1 -0.3 0.8 0.5 0.3 -1.2 -2.0 -4.3
4y 0.5 -0.3 0.5 0.1 0.2 -1.0 -2.3 -4.3
5y 1.8 0.4 0.5 0.2 0.0 -0.9 -2.2 -4.6
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Appendix F Figures

Figure 1: Forward rates in the Fama-Bliss data set (June 1956 – July 2015).
The first sub-graph displays the historical values, the second shows the model-
implied values obtained from a three-factor model with Kalman filtering (KF),
and the third plots the fitted values from the model estimated by Maximum
Likelihood under the assumption of observable factors (ML-OF).
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Figure 2: Factor values under the canonical companion form. The solid lines
correspond to the actual rates (measured with errors). The dashed lines are
obtained by the Kalman-filter. The dotted lines were found by inverting the
model-implied relationship between the canonical factors and the observed PCA
scores. I shift the series by 50 b.p. for greater clarity.
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Figure 3: Principal component factor loadings, estimated in the whole Fama-
Bliss sample (June 1956 – July 2015; left), and in the sample of Cochrane and
Piazzesi (2005) (January 1965 – December 2003; right). The first row shows
the results of empirical PCA. The middle row displays the loadings implied by
the model estimated by ML, with Kalman filtering. The bottom row contains
the loadings with respect to the empirical PCA factors, but consistent a no-
arbitrage model (estimated by ML under the assumption of observable factors).
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