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Abstract

A portfolio of independent, but not identically distributed, returns is optimized
under the variance risk measure with a ban on short positions, in the high-dimensional
limit where the number N of the different assets in the portfolio and the sample size T
are assumed large with their ratio r = N/T kept finite. To the best of our knowledge,
this is the first time such a constrained optimization is carried out analytically, which
is made possible by the application of methods borrowed from the theory of disor-
dered systems. The no-short-selling constraint acts as an asymmetric `1 regularizer,
setting some of the portfolio weights to zero and keeping the out-of-sample estimator
for the variance bounded, avoiding the divergence present in the non-regularized case.
However, the ban on short positions does not prevent the phase transition in the opti-
mization problem, only shifts the critical point from its non-regularized value of r = 1
to 2, and changes its character: at r = 2 the out-of-sample estimator for the portfolio
variance stays finite and the estimated in-sample variance vanishes, while another crit-
ical parameter, related to the estimated portfolio weights and the condensate density,
diverges at the critical value r = 2. We have performed numerical simulations to sup-
port the analytic results and found perfect agreement for N/T < 2 in the large N limit.
Numerical experiments on finite size samples of symmetrically distributed returns show
that above r = 1 solutions with zero in-sample variance start to sporadically arise, their
probability of appearance increasing as r approaches 2, steeply rising around the crit-
ical point, and becoming nearly one beyond r = 2. A closed formula obtained for this
probability shows that in the large N limit the transition becomes sharp. The zero
in-sample variance solutions are not legitimate solutions of the optimization problem,
as they are infinitely sensitive to any change in the input parameters, in particular
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they will wildly fluctuate from sample to sample. With some narrative license we may
say that the no-short constraint, with prohibiting large compensating positions, takes
care of the longitudinal (length) fluctuations of the optimal weight vector, but does
not eliminate the divergent transverse fluctuations corresponding to a rearrangement
of the composition of the portfolio. We also calculate the distribution of the optimal
weights over the random samples and show that the regularizer preferentially removes
the assets with large variances, in accord with one’s natural expectation.

1 Introduction

Institutional portfolios are often optimized under a ban on short positions. If the dis-
tribution of the returns on the securities making up the portfolio is exactly known,
the optimization is straightforward to carry out. In practice, this distribution is never
known, but has to be inferred from observations in the market. If the available data is
finite, the optimal estimated portfolio weights will be different from their true values,
and the resulting portfolio will suffer from estimation error. This error will be partic-
ularly large if the dimension N of the portfolio (the number of different assets) is not
small relative to the sample size (the length of available time series) T . This problem
has been approached by various numerical methods, see e.g. [1] for an overview. In real
life context of risk management or asset management a purely numerical approach may,
however, be very computationally demanding and, as will be discussed below, may in
addition be also misleading, especially if one lacks a full control over the optimization
algorithm implemented in the risk management package and a good understanding of
the structure of the problem.

Such an understanding can come from an analytic approach. Analytic calculations
of the optimal estimated portfolio have been performed by various groups under the
assumption that the underlying statistical distribution is normal, the objective function
is the variance and the optimization is subject to the budget constraint and, in some
cases, an `2 regularizer [2–15]. The most recent, nonlinear realization of `2 shrinkage
[16–18] has turned out to be particularly effective in suppressing sample fluctuations. A
special approach to portfolio optimization [19–26] rests on the replica method borrowed
from the statistical physics of disordered systems [27]. These papers focused on the
minimal risk portfolio, but [28] treated the full Markowitz problem [29] including the
constraint on the expected return, while in [25, 30] an `2 constraint has been imposed
on the portfolio weights. Such a regularizer can suppress large sample fluctuations
that lead to a high degree of estimation error, especially in the high dimensional setting
where both the dimension N and the sample size T are large. An alternative motivation
for an `2 constraint is to prevent the over-concentration of the optimal portfolio on a
small number of blue chips [30–32], a particularly strong tendency in small markets, and
also by taking into account the market impact of a future liquidation of the portfolio
already at the stage of its composition [21].

Considerations of transaction costs and the technical difficulty of frequent rebalanc-
ing a very large portfolio may make it desirable to reduce the dimension and strive for
a sparse portfolio. This can be achieved by borrowing the popular and very successful
`1 regularization from machine learning [33]. Jagannathan and Ma [4] were the first to
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notice that a ban on short positions improves the stability of estimated optimal port-
folios, and it is clear that the exclusion of short positions can be regarded as a special
case of `1 regularization. Subsequently Brodie et al [34] applied an `1 regularizer on
the portfolio weights in an empirical study of real life portfolios in various markets and
demonstrated its satisfactory performance compared with the 1/N portfolio [14].

To the best of our knowledge, no analytic result exists in the literature for portfolio
optimization under an `1 constraint. The purpose of the present paper is to perform
such an analytic optimization of the variance as the risk measure supplemented with
a special case of the `1 constraint, a ban on negative portfolio weights. The method
that makes this possible is again the replica method. In its simplest form that we
apply here it assumes that return samples of size T are drawn from an N -dimensional
normal distribution. These samples are then regarded as if arising from empirical
observations, and the various quantities of interest are averaged over the ensemble of
the samples. The averaging can be explicitly carried out in the high-dimensional limit
where N and T go to infinity with their ratio r = N/T kept finite. For simplicity,
we will also assume that the expected return of each asset in the portfolio is zero and
seek to determine the global minimal risk portfolio, but we allow the assets to have
different variances in order to be able to study the effect of the no-short constraint
on assets with different volatility. We are considering independent normal variables
and assume that the returns are serially independent (zero autocorrelation). Although
we always speak about the elements of the portfolio as assets, we do not necessarily
mean individual securities; these elements can be viewed as a collection of arbitrary
risk factors as long as their statistical properties conform to the above assumptions.

We also analyze the numerical aspects of this problem and find that in the large
N limit the simulations precisely follow the theoretical curves up to the critical point
N/T = 2. Above this critical point a continuum of zero variance solutions appear.
While these solutions are clearly meaningless, numerical work in this region requires
special care: some solvers (e.g. Matlab’s fmincon) modify the problem in order to
make sure a stable solution exists even when the covariance matrix is less than full
rank. Without a careful study of the algorithm’s description and without anticipating
the instability, it is easy to overlook this phase transition.

To better understand the r = 2 transition, we also performed numerical experiments
on finite N , finite T samples. These studies demonstrated that the zero in-sample
variance solutions start to appear already above r = 1, but initially the probability of
their appearance is very small. As we approach r = 2 from below, this probability starts
to increase, steeply rising to values close to one as we cross the transition point. We
display a closed combinatorial formula for this probability, and support it by extensive
numerical simulations. This probability law is universal, independent of the nature of
the probability distribution of the returns (as long as it is continuous and symmetric),
and shows how the continuous transition goes over into a sharp, step-like one in the
limit N → ∞. Accordingly, the critical value rc = 2 is also universal, independent of
the replica method or the Gaussian assumption about the distribution of returns. The
transition at r = 2 is in several respects similar to the one in the minimax risk measure
described in [35].

The plan of the rest of the paper is as follows. For the sake of establishing a
basis for later comparison and introducing some notation, in Sec. 2 we address the
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trivial problem of optimizing the variance assuming we have complete information,
as if having an infinitely large sample. In Sec. 3 we consider the case of variance
optimization without the no-short constraint, but now for r = N/T finite. Some of
the results here reproduce those known previously, but the distribution of weights is
new, as is also the discussion of the geometry of the phase transition (that in the
unconstrained case takes place at r = 1). Sec. 4 is the central part of the paper. Here,
we perform the optimization of variance with a constraint forbidding short positions,
and derive results for the estimator for the out-of-sample and the in-sample estimator
for the portfolio variance, along with results for the distribution of weights over the
random samples. This constitutes a complete solution of the no-short constrained
problem, the first instance such a solution has been achieved by analytic means. Our
formulae illustrate how a ban on short selling removes some of the assets from the
portfolio, and how an asset’s volatility affects the probability of its elimination. We
identify the phase transition at r = 2 mentioned above, which is different in nature
from the unconstrained one at r = 1 in that a new critical parameter diverges, but the
estimation error stays finite here. Sec. 5 is a summary of the results. Technical details
are relegated to two appendices. Appendix A presents the replica derivation of the
free energy functional for the optimization of the variance supplemented by a generic
constraint, while Appendix B derives the saddle point equations and the distribution
of the weights.

2 Optimizing the variance with complete informa-
tion, r = 0

In this section we present an analytic treatment of the optimization of the variance
of a portfolio composed of N securities with zero expected returns and a diagonal
covariance matrix with given elements σ2

i along the diagonal, i = 1, 2, . . . , N . The risk
σ2
p of the portfolio measured in terms of the variance is

σ2
p =

∑
i

σ2
iw

2
i (2.1)

to be minimized under the budget constraint∑
i

wi = N, (2.2)

where, instead of the usual 1, we normalized the portfolio weights wi to N , in order
to keep them of order unity. (In the following we will consider the dimension N
of the portfolio as a large number, letting it go to infinity when the calculations so
demand.) As the assets are assumed to have zero expected returns, we do not stipulate
a constraint on the expected return of the portfolio, and seek the global minimum pof
the risk.

The optimization problem (2.1), (2.2) is trivial to solve by the method of Lagrange
multipliers. The minimum of
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∑
i

σ2
iw

2
i − λ(

∑
i

wi −N) (2.3)

is at wi = λ/2σ2
i , and the budget constraint fixes the Lagrange multiplier to be

λ =
2N∑
i

1
σ2
i

. (2.4)

The optimal portfolio weights are then obtained as

w∗i =
1

σ2
i

N∑
j

1
σ2
j

(2.5)

and the minimal risk is

σ∗p
2 =

N
1
N

∑
j

1
σ2
j

. (2.6)

For later convenience we define

F =
Tσ∗p

2

2N
=

1

2r

N
1
N

∑
j

1
σ2
j

, (2.7)

and we will refer to this as the “free energy” or the cost function. The factor 1/(2r),
where r = N/T , will then appear also in the Lagrange multiplier λ. If we define λ′ as
the Lagrange multiplier associated with the minimization of the free energy (2.7), we
have that

λ′ =
1

2r
λ =

1

2r

2
1
N

∑
i

1
σ2
i

. (2.8)

In the following we will always use λ′ everywhere, and will omit the prime with no risk
of confusion.

Note that due to the normalization of the weights F is of order N . In the following
it will be convenient to consider the free energy per asset

f =
1

2r

1
1
N

∑
j

1
σ2
j

=
1

2
λ (2.9)

As already evident from (2.3), the Lagrange multiplier associated with the budget
constraint must be positive; a negative value would correspond to no security in the
portfolio at all. Thus λ plays a role analogous to the chemical potential, the quantity
that governs the number of particles in a physical system, and, for brevity, we will refer
to λ as the chemical potential in the following. The positivity of λ is completely trivial
at this point, but it will acquire significance in the computations later: its vanishing
will herald the phase transition.

The optimal weights are the larger the smaller their variance, in particular, if one
of the securities is riskless, its weight takes up the full weight N . Also, if there is a
riskless security in the portfolio, the whole portfolio becomes riskless and σ∗p vanishes.
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Note also that the no-short-selling condition did not have to be stipulated in this
preliminary instance: the weights have worked out to be positive automatically. This
will not remain true when the parameters of the model are estimated on the basis of
finite samples.

The optimization problem as laid out above assumes that we have complete knowl-
edge about the probability distribution of the returns: in particular we know the (zero)
values of the expected returns and the values of the variances σi. In reality, we never
have complete information. What we may have are samples of size T drawn from the
joint distribution of returns, which in our setting is

P ({xit}) =
∏
i

(√
N

2πσ2
i

e−Nx
2
it/2σ

2
i

)
. (2.10)

An important parameter of the problem is the ratio r = N/T . The larger the sample
size T relative to the dimension N , the better the estimates we can make for the
optimal weights and the optimal value of the risk. We expect, therefore, that in the
limit r → 0 we can retrieve the “true” values of the weights as given in (2.5), and the
“true” value of the optimal risk, (2.6).

Present day institutional portfolios are large, with N ’s in the range of hundreds or
thousands, while sample sizes are limited by stationarity considerations to below 1000
(four years worth of daily data) at most, but often much less. Therefore, the value of r
is never really small in practice. This leads to large sample fluctuations, so large indeed
that at a critical value of r the estimation error becomes infinite and the optimization
meaningless. In the case of unregularized variance as risk measure, this critical value
is rc = 1, which is where the estimated covariance matrix loses its positive definiteness
and the first zero eigenvalue appears.

Difficulties of a similar nature appear in countless problems in modern statistics
and machine learning [36]. The remedy is to introduce regularizers, i.e. terms added
to the cost function with the purpose of suppressing the large sample fluctuations. Of
course, regularization will also introduce bias, but the hope is that a reasonable balance
can be struck between bias and fluctuations.

Perhaps the most popular regularizer today is the one based on the `1 norm [37]. Its
appeal was greatly enhanced by the proof by Candès et al. [38] that `1 can successfully
imitate `0, the straight weeding out of the superfluous, irrelevant variables, thereby
strongly reducing the dimension of the problem. In the portfolio context this would
mean reducing the dimensionality by setting the weights to zero of the securities that
are deemed irrelevant, presumably those with the largest volatilities. In the following,
we are going to demonstrate the action of `1 regularization in the special case corre-
sponding to a no-short selling constraint. Before addressing that problem, however, we
wish to present the optimization of variance without the no-short constraint.

3 Unconstrained variance optimization

By “unconstrained” we mean dropping the no-short condition; the budget constraint
will of course be upheld.
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The relevant free energy functional is obtained from (B.9) by setting η1 = η2 = 0
and making use of the identity

W (x) +W (−x) =
x2 + 1

2
, (3.1)

satisfied by the transcendental function W appearing in (B.9) in Appendix B. Then f
works out to be

f = λ−∆q̂0 − ∆̂q0 +
1

2r

q0

1 + ∆
+

q̂0

2∆̂
− λ2

4∆̂

1

N

∑
i

1

σ2
i

. (3.2)

Setting the derivatives of f with respect to the “order parameters” λ, q0, ∆, ∆̂ and q̂0

to zero gives the following saddle-point or stationarity conditions:

λ = 2∆̂

(
1

N

∑
i

1

σ2
i

)−1

, (3.3)

∆̂ =
1

2r

1

1 + ∆
, (3.4)

q̂0 = − q0

2r(1 + ∆)2
, (3.5)

q0 = − q̂0

2∆̂2
+

λ2

4∆̂2

1

N

∑
i

1

σ2
i

, (3.6)

∆ =
1

2∆̂
. (3.7)

Combining (3.3)–(3.7) one can easily see that the cost function f at the saddle point
is equal to

f =
λ

2
. (3.8)

The solution of the saddle point equations is straightforward:

λ =
1− r
r

1
1
N

∑
i

1
σ2
i

, (3.9)

∆ =
r

1− r , (3.10)

q0 =
1

1− r
1

1
N

∑
i

1
σ2
i

, (3.11)

q̂0 = −1− r
2r

1
1
N

∑
i

1
σ2
i

, (3.12)

∆̂ =
1− r

2r
, (3.13)
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and the free energy per asset is

f =
1− r

2r

1
1
N

∑
i

1
σ2
i

. (3.14)

Turning to the distribution of weights, we see from (B.11) and (B.12) that for η1 =

η2 = 0 w
(1)
i = w

(2)
i , so the first term (the δ-peak of the zero weights) in (B.17) vanishes,

while the second term becomes

p(w) =
1

N

∑
i

1

σ
(i)
w

√
2π

exp

−1

2

(
w − w(i)

0

σ
(i)
w

)2
 , (3.15)

where

w
(i)
0 =

λ

2σ2
i ∆̂

=
λr(1 + ∆)

σ2
i

(3.16)

and

σ(i)
w =

√
q0r

σi
. (3.17)

From (3.9) and (3.10) it follows that

w
(i)
0 =

1

σ2
i

N∑
j

1
σ2
j

, (3.18)

the same as in (2.5). Therefore, in the unconstrained optimization case the estimated
weights fluctuate about their true values. This does not remain so once regularization
is switched on.

The order parameters λ, ∆ and q0 have a direct meaning. As already seen in Section
2, λ is the “chemical potential”, the Lagrange multiplier associated with the budget
constraint. As such, it must be positive, and its vanishing signals an instability. In the
present unconstained case, the quantity ∆ is inversely proportional to the in-sample
estimate for the free-energy. It is non-negative by definition, and its divergence is
another signal of the instability that sets in for λ = 0. Finally, q0 is related to the out-
of-sample estimator of the variance. In [22] it was shown for the special case σi = 1,
for all i, that

√
q0 − 1 is the relative estimation error. When the variances of returns

in the portfolio are different, q0 has to be normalized as [28]

q̃0 = q0
1

N

∑
i

1

σ2
i

=
1

1− r , (3.19)

in order to make q̃0 equal to the ratio between the optimal out-of-sample estimator for
the risk of the portfolio (with weights ŵ∗i ) and the risk of the true optimal portfolio
(with weights w∗i )

q̃0 =

∑
ij σijŵ

∗
i ŵ
∗
j∑

ij σijw
∗
iw
∗
j

(3.20)
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so that
√
q̃0 − 1 becomes the relative error associated with the estimation of risk.

Because of the simple proportionality between q0 and q̃0, we will speak about q0 as
(the measure of) the out-of-sample estimation error. The divergence of q0 or q̃0 at
r = 1 is pointing to the same instability as that of ∆ or the vanishing of λ.

3.1 The limit of complete information

When r → 0, the sample size T is much larger than the dimension N , so we have
complete information and should be able to recover the results in Section 2.

This is indeed so: for r → 0 (3.9) and (3.14) duly reproduce (2.4) and (2.7),
respectively. From (3.11) and (3.19) we also see that q̃0 = 1, that is the estimation
error vanishes. Furthermore, (3.10) implies that ∆ vanishes with r. Then from (3.9)
and (3.16) it follows that

w(i) =
1

σ2
i

1
1
N

∑
j

1
σ2
j

(3.21)

is the weight of asset i in the optimal portfolio, in agreement with (2.5).

The width σ
(i)
w of the Gaussian distribution of the weights over the samples goes to

zero with r, so the distribution (3.15) becomes a series of δ-spikes

p(w) =
1

N

∑
i

δ
(
w − w(i)

)
, (3.22)

where δ is the Dirac δ-distribution.

3.2 The high-dimensional case and the instability

If r is not very small, N and T become comparable and we are in the high-dimensional
setting. From (3.9)-(3.11) we see that with increasing r the chemical potential λ
decreases, the estimation error q0 increases, while the cost function f decreases. As a
result of averaging over the samples, the sharp peaks in the distribution of weights in
(3.15) broaden into Gaussians.

As we approach r = 1, ∆ and the relative estimation error q0 grow without bound,
and the width of the Gaussian in (3.15) also diverges, so the different assets are not
resolvable anymore. All these are signatures of an instability, divergent fluctuations
from sample to sample, which we can rightly call a phase transition.

Note that in the same limit r → 1 the chemical potential λ and the free energy f ,
the in-sample estimation of the cost, vanish.

The nature of this phase transition has been analyzed in detail in [28], where it
was found that the eigenvalues of the Hessian (the matrix of the second derivatives
of the replica functional) all vanish at the critical point r = 1. It is then clear that
the results of the present section cannot be continued beyond this point, because the
replica method, relying on a saddle point approximation (see Appendiy A), is bound
to break down where the stability matrix becomes indefinite.

On the other hand, there is nothing to prevent us from considering large dimensions
and relatively small samples, that is a situation when r > 1. What is happening in
this region is the subject of the next subsection.
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3.3 Linear algebraic interpretation of the instability at r = 1

In the simple case of the variance, the root of the instability at r = 1 is quite obvious;
nevertheless it deserves a brief discussion here, especially because similar instabilities
appear in several other risk measures including the Expected Shortfall [19], mean abso-
lute deviation [20], the minimax problem [35], even in a GARCH-based non-stationary
process [39], where they are considerably more difficult to explain. Moreover, we shall
encounter a somewhat similar instability later when we introduce a constraint on short
positions.

Let us consider the minimization of the empirical portfolio variance σ̂2
p with the

matrix of observed returns x. The empirical covariance matrix C is given by

Cij =
1

T

∑
t

xitxjt

and the empirical variance of the portfolio by

σ̂2
p =

1

T

∑
ijt

wixitxjtwj =
1

T

T∑
t=1

(∑
i

wixit

)2

. (3.23)

This is to be minimized over the weights wi subject to the budget constraint
∑
i wi =

N .
The rank of the covariance matrix C is the smaller of N and T with probability

one. The minimization of σ̂2
p gives us N equations which determine the solution as

long as N ≤ T . When N is larger than T , only T of these equations are independent,
so we have more unknowns than equations. For N ≥ T + 1 any weight vector selected
from the null-space of C will be a solution of the minimization problem, with σ̂2

p = 0
as the minimal value of the cost function.

An alternative way to describe the situation is that with N larger than T the
cost function will be flat along the directions lying in the null space of the covariance
matrix and the solution can run away along these flat directions to an arbitrary distance
from the origin. This means that arbitrarily large compensating positive and negative
weights can arise, without violating the budget constraint and still keeping the in-
sample estimated portfolio variance at zero.

Arbitrarily large leverage combined with a zero value of the risk measure is a pre-
scription for disaster. The first author to point out this dangerous feature of the
variance was Jorion [40]. A similar apparent arbitrage in Expected Shortfall and
other downside risk measures was analyzed and identified as the root of instability
in [21,24,41,42].

It must be clear from the foregoing that this instability has nothing to do with
the replica method, or the Gaussian distribution of returns, or the averaging over the
samples. The root of this instability is purely geometrical, it arises in every single
sample and for any underlying distribution of the returns, and it always takes place at
the same critical ratio r = N/T = 1. The universality of the critical value rc = 1 of
the unconstrained variance optimization was demonstrated in [28] and is a special case
of the universality discussed by [43] and [44].
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Figure 1: Estimation error as a function of r. The solid blue line represents the analytical solution obtained
with the replica method. The dashed black line indicates the position of the critical point rc = 1. Red dots
represent results of numerical simulations averaged over 1000 simulations for a system with N = 100.
Numerical simulations have been performed with Matlab using the function “fmincon” and the active-set
algorithm. The match between numerical and analytical result is very good in the allowed region r < 1. Due
to a built-in regularizer in the solver, numerical solutions can be found also in the forbidden region. This
could create the illusion that it is possible to find reliable solutions to the optimization problem also with
very few data points.

To conclude this subsection, let us point out the significance of this instability for
empirical work. Without additional constraints the instability must show up for any
empirical sample with N > T . To check this, we generated synthetic time series of
length T for various values of N . For simplicity, we considered a set of assets with the
same variance σi = 1 for all i, and determined the optimal cost and the estimation
error q0 for r values ranging from zero up to 2. The result of this numerical experiment
performed with the Matlab solver “fmincon” is shown in Fig. 1. The surprising feature
is that after a strong increase on approaching r = 1, q0 starts to decrease above r = 1
again, as if the estimator became restabilized. Thus the program produces a stable
result even in the region where we know that a continuum of equivalent solutions exist.
The resolution of this puzzle lies in the fact that some of the numerically optimized
solvers contain what effectively amounts to a regularizer that does not influence the
result as long as there is a meaningful one, but kicks in when a singular covariance
matrix is encountered, and distributes the solution evenly across the zero modes. Of
course, this is properly indicated in the description of the solver, but easily overlooked
by the user. This should be a warning to users against the blind application of ready-
make programs without understanding their details and without a grasp of the main
feature of the expected solution already before the numerical study.

The instability of the unconstrained variance has been pointed out several times
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earlier, and it is also easy to notice in empirical work from the ever-increasing sample
fluctuations. This is not the case for the instability of the no-short-constrained variance
optimization to which we turn now.

4 Optimization with no short positions

Portfolio optimization is often subject to constraints or an outright ban on short po-
sitions. Optimizing the variance under such conditions is a problem in quadratic pro-
gramming that is routinely solved numerically. In this section we give what we believe
to be the first analytic treatment of portfolio optimization with no short positions
allowed.

The starting point is (B.1) and (B.2). If we want to exclude negative weights, we
impose infinite penalty on them by letting η2 → ∞ in (B.2). Positive positions will
not be penalized, so we set η1 = 0. According to (B.9)–(B.16), this leads to the free
energy and stationarity conditions as follows:

f = λ−∆q̂0 − ∆̂q0 +
1

2r

q0

1 + ∆
+
q̂0

∆̂

1

N

∑
i

W

(
λ

σi
√−2q̂0

)
(4.1)

1√
q0r

=
1

N

∑
i

1

σi
Ψ

(
λ

σi
√−2q̂0

)
(4.2)

∆ =
1

2∆̂

1

N

∑
i

Φ

(
λ

σi
√−2q̂0

)
(4.3)

1

2r
=

1

N

∑
i

W

(
λ

σi
√−2q̂0

)
(4.4)

and (B.4) and (B.5) remain unchanged:

∆̂ =
1

2r(1 + ∆)
(4.5)

q̂0 = − q0

2r(1 + ∆)2
(4.6)

In (4.2) - (4.4) we used the fact that Φ, Ψ, and W all go to zero as their argument
tends to minus infinity.

Using the identity W (x) = 1
2xΨ(x) + 1

2Φ(x) and the stationarity conditions above
we can transform (4.4) into

λ =
q0

r(1 + ∆)2
, (4.7)

but by (4.6) this is also equal to

λ = −2q̂0. (4.8)
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Then the arguments of the functions Ψ, Φ and W in (4.2)–(4.4) simplify as
√
λ/σi.

(Note that here, as elsewhere in the paper, the choice of the sign of the square root is
dictated by the meaning of the quantity in question.). Eq. (4.4) becomes

1

2r
=

1

N

∑
i

W

(√
λ

σi

)
, (4.9)

and (4.3) and (4.5) combine to give

∆ =
r 1
N

∑
i Φ
(√

λ
σi

)
1− r 1

N

∑
i Φ
(√

λ
σi

) . (4.10)

Finally, for the relative estimation error, which apart form a normalizing factor is the
out-of-sample estimator for the optimal value of risk, we find

q0 = λr(1 + ∆)2. (4.11)

Eq. (4.9) is straightforward to solve on a machine to obtain λ as a function of the
parameters r, N , and σi. Once λ is known, ∆ and q0 can be determined from (4.10)
and (4.11). Furthermore, by the help of the stationarity conditions we can derive the
expression for the free energy

f =
λ

2
(4.12)

as in section 3, so the knowledge of λ will also provide the free energy as a function of
r, N , and σi.

As for the distribution of the optimal estimated weights, by (B.17) and (B.18) we
have

p(w) = n0δ(w) + θ(w)
1

N

∑
i

1

σ
(i)
w

√
2π

exp

−1

2

(
w − w(i)

0

σ
(i)
w

)2
 (4.13)

where θ is the Heaviside function that ensures only non-negative weights appear in the
distribution. The first term is the density of the weights set to zero by the no-short
constraint:

n0 =
1

N

∑
i

Φ

(
−w

(i)
0

σ
(i)
w

)
. (4.14)

The Gaussian density of the i-th weight is centered at w
(i)
0 , which by (B.11) and (4.7)

is equal to

w
(i)
0 =

q0

(1 + ∆)

1

σ2
i

, (4.15)

with standard deviation
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σ(i)
w =

√
q0r

σi
. (4.16)

With this we have determined the expected positions of the estimated optimal weights
and their distribution, as well as the in-sample estimated cost and the out-of-sample
estimator related to the relative estimation error – that is we have solved the optimiza-
tion of variance with a no-short-position constraint.

The limit r → 0 again corresponds to λ → ∞, and it can easily be worked out to
recover the results in Subsection 3.1, and Section 2.

4.1 The high-dimensional regime and the critical point at r = 2

When r is finite, we are in the high-dimensional regime where N and T are of the same
order of magnitude. As W is positive and monotonic increasing, it follows from (4.9)
that with r increasing

√
λ must decrease. However, it cannot decrease below zero, and

here W (0) = 1/4, so r has a maximal value rc = 2 beyond which it cannot grow. It
seems therefore that for a given size T of the samples there is an upper bound N = 2T
beyond which we cannot consistently continue this theory.

What is happening at rc = 2? First, we realize that because of the proportionality
between f and λ, Eq (4.12), f itself also has to vanish at r = 2. But f is proportional
to the in-sample estimate of the portfolio variance σ∗p

2, eq (2.7), so f is by definition
non-negative and we run into a natural bound at r = 2.

Let us now consider the behavior ∆. Expanding (4.9), (4.10) and (4.11) around
r = 2 we find

∆ =
4

2− r , r → 2−. (4.17)

This reveals the meaning of the special value r = 2: at this critical value a phase
transition is taking place and ∆ becomes infinitely large. This transition may seem
analogous to the one we found in the unconstrained case, but the critical value of r
has been shifted by the no-short constraint to rc = 2 from the unconstrained rc = 1.

There is a further difference: eq. (4.11) tells us that the behavior of q0 at the phase
transition is determined by the limit of λ∆2 as r → 2. It can be seen that

lim
r→2

q0 = lim
r→2

2λ∆2 =
π(

1
N

∑
i

1
σi

)2 (4.18)

which is finite. Therefore, in contrast to the unconstrained phase transition at r = 1,
the estimation error

q̃0 = q0
1

N

∑
i

1

σ2
i

=

π
N

∑
i

1
σ2
i(

1
N

∑
i

1
σi

)2 , r → 2− (4.19)

remains finite. (Note that q̃0 is larger or equal to one for any r, as it should, given its
meaning as the relative estimation error. In particular, in the limit r → 2 the expression
multiplying π in the above formula is larger than equal to one for any distribution of
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the true variances σi, due to the Cauchy inequality.) Thus the phase transition at
r = 2 displays finite estimation error.

If we picture the portfolio weights as the components of a vector then we can say
that the Euclidean norm

∑
i w

2
i of this vector remains finite, but the fluctuations of

its direction are infinite. In other words, the longitudinal fluctuations of the weight
vector have been reined in by the no-short-selling constraint, however this constraint
is unable to suppress the transverse fluctuations. This is rather natural if we consider
that the ban on short selling constrains the large compensating positions, but does not
forbid the reshuffling of the components of the weight vector from sample to sample.
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Figure 2: The three panels show the behavior of λ (top left panel), ∆ (top right panel) and q0 (bottom
panel) as a function of r for the cases with (solid lines) and without (dashed lines) short-selling. From
the figures it is clear that the no-short selling case displays an instability at rc = 2. This instability is
characterized by the divergence of the parameter ∆ and the vanishing of λ (proportional to the in-sample
estimate of risk), but a finite estimation error. Results of numerical simulations ( dots in the figures) are
in agreement with the analytical result.

Fig. 2 compares the results for λ, ∆ and q0 as functions of r for the unconstrained
and the no-short-constrained cases, respectively. For simplicity, we show these results
for a portfolio with all assets having the same variance σi = 1 for all i.

Let us now consider the distribution of weights when r → 2. Because of the

divergence of ∆ all the w
(i)
0 → 0, eq (4.15). This means that the Φ’s in the first term

all tend to 1/2, so the limiting density of the weights condensed at the origin becomes
half of the total weight. At the same time the centers of the Gaussians in the second
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term will also go to zero, but according to (4.16), their widths remain finite. For a
physicist, several features of the phase transition at r = 2 may be vaguely reminiscent
of Bose condensation.

4.2 Preferential elimination of large volatility assets

The constraint on short positions is a special case of `1 regularization. As such, it is
expected to result in a sparse optimal portfolio, that is to eliminate some of the assets.
The build-up of the weight at w = 0 is the consequence if this tendency of `1.

Our results do not refer to a single sample, but to averages over the samples. On
average, each asset contributes to the peak of the weight distribution at w = 0, i.e. each
asset gets eliminated with a certain probability. However, the probability of getting
eliminated depends on the variance of the given asset.

The argument of the function Φ in (4.14) is

−w
(i)
0

σ
(i)
w

= −
(q0

r

)1/2 1

1 + ∆

1

σi
(4.20)

and Φ is monotonic increasing. Accordingly, assets with a large standard deviation
(large volatility) become eliminated with larger probability than those with a small
volatility. This selection is particularly strong when the coefficient of 1/σi in (4.20)
is large, that is r is small, while the distinction between high and low volatility items
disappears as we approach r = 2, where ∆→∞. This is plausible: if we have a lot of
information (r small) the regularizer can clearly distinguish between the low and high
volatility items, but when fluctuations dominate any possibility of making a difference
vanishes.

Note that as Φ(0) = 1/2 and the argument of Φ in (4.14) is always negative, in the
limit r → 2 the “condensate density” n0 approaches its maximal value 1/2 from below:
the no-short constraint pushes at most half of the assets into the “condensate”. At the
same time, because of the divergence of ∆ the centers of the Gaussians also shift to
the origin, but their standard deviations remain finite.

4.3 The nature of the instability at r = 2

The nature of the phase transition taking place at r = 2 is somewhat different from the
one at r = 1. While the latter takes place with probability one even for finite N and T ,
the transition at r = 2 depends on the random samples and in this respect it is a close
relative of the transitions in the optimization of the Maximal Loss (or minimax) and
the Expected Shortfall risk measures discussed in [35] and [22], respectively. In order
to better understand how this instability develops in the large N limit, we performed
extended simulations for a large number (going up to 100 000) of finite N and T samples
with returns drawn from various symmetric distributions, and determined the number
of samples in which the optimal in-sample variance was zero, relative to the total
number of simulated samples. In short, we measured the probability of finding zero
variance samples. We found that this probability was universal, largely independent
of the underlying distribution of returns. Its main features are the following: Below
r = 1 the probability of finding zero variance samples is identically zero. Between
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r = 1 and r = 2 the probability is small, starting to increase as we approach r = 2 and
rapidly reaching one for r values exceeding 2. The transition is the faster the larger the
dimension and becomes sharp in the limit of high dimensions. In close analogy with
the minimax problem, the probability of such a zero variance solution arising is given
by the closed formula

p(N,T ) =
1

2N−1

N−1∑
k=T

(
N − 1

k

)
, (4.21)

valid for any continuous and symmetric return distribution. (The condition of con-
tinuity is necessary to make the probability of two returns coinciding zero.) As N
increases, the transition at r = 2 is becoming sharper and sharper, ultimately going
over into a step function. Except for the smallest N and T pairs the measured values
can be scaled onto the universal curve

p(N,T ) = Φ

(
r − rc
r

√
N

)
. (4.22)

which is displayed in Fig. 3.
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Figure 3: Left panel: probability of observing a zero variance solution as a function of the ratio r = N/T
for different values of N . The solid lines refer to the analytic formula (4.22), while dots refer to numerical
simulations. Right panel: collapse of the curves into the same scaling function.

The zero in-sample variance solutions above r = 2 are the natural continuations
of the analytic result for the vanishing in-sample estimator at r = 2. Thus, in fact,
in high dimensions and above the critical ratio r = 2, we again have a continuum of
solutions to the optimization problem, corresponding to a flat cost landscape for each
sample. These solutions are infinitely sensitive to any change in the input data, and
jump about the landscape from sample to sample.

17



Concerning numerical work, it perhaps requires even more care now than around
the r = 1 phase transition. At variance with that, the instability at r = 2 is not
accompanied by large fluctuations in the estimated cost, it is more subtle, it corresponds
to the fluctuations of the direction of the weight vector. Some of the standard solvers
do signal the problem when encountering a singular covariance matrix, others take care
of the difficulty by regularizing the problem on their own. It is the obligation of the
user to carefully acquaint herself with the details of the solver instead of accepting a
seemingly stable answer to a meaningless question.

5 Summary

Let us briefly summarize the main results of this paper. We have considered a portfolio
in the high-dimensional limit where the number of different assets N and the sample
size T are large, with their ratio r = N/T kept finite. We assumed that the returns on
the assets were independent normal variables with zero expected value and different
variances. We optimized the variance of the portfolio under the budget constraint with
or without a ban on short positions and averaged the results over the random samples
by the method of replicas borrowed from the statistical physics of disordered systems.

In the simple case where unlimited short positions were allowed we recovered known
results for the out-of-sample estimator and the in-sample average of the portfolio vari-
ance. As a new result, we also derived the distribution of optimal weights over the
random samples. We found that the originally sharply distinguishable spikes of this
distribution broaden with increasing r until in the limit r → 1 any distinction between
the different weights gets completely washed away due to the divergent sample fluctua-
tions. In the same limit the estimation error diverges and the in-sample variance of the
portfolio vanishes; at r = 1 a phase transition is taking place. This is the same point
where the first zero eigenvalue of the covariance matrix appears. Beyond this critical
value of r the variance cannot be meaningfully optimized: a continuum of solutions
appear, since any combination of the zero eigenvectors of the covariance matrix make
the variance zero. As argued above, the phenomenon does not depend on the use of
the replica method or the assumption about the Gaussian distribution of returns: it is
a purely geometric effect, depending solely on the fact that the rank of the covariance
matrix is the smaller of N,T in any sample, with probability one.

In order to support and illustrate the theoretical results, we also solved the quadratic
programming task of optimizing the variance numerically. While the agreement be-
tween the analytic theory and numerics is perfect below the critical point r = 1, for
r > 1 we found that some standard solvers continue to find a stable, unique solution
with all the optimal weights the same, the portfolio variance identically zero and the
estimation error and susceptibility decreasing with r increasing further. This appar-
ent restabilization is an artifact, due to a built-in stabilizing feature (essentially an `2
regularizer) in the solvers.

The main result of the paper is the solution of variance optimization under a ban
on short positions. This problem, which has a great importance in practice, has not
been solved analytically before. The method of replicas allowed us to derive results
for the same quantities as in the previous case: we have determined the out-of-sample
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estimator for the variance, the optimal in-sample variance, and the distribution of
optimal portfolio weights again. The constraint on short positions acts as a kind of
`1 regularizer and eliminates some (at most half) of the assets resulting in a sparser
portfolio. Accordingly, a sharp peak is built up in the distribution of weights at the
origin and the remaining weights are all positive. In agreement with one’s natural
expectation, assets with larger volatility get eliminated with higher probability than
the low volatility items.

It might have been expected that the constraint on short positions would tame the
large sample fluctuations. This expectation is borne out only partially: it is true that
the optimization can now be performed also above the previous critical value r = 1,
but at r = 2 we discover another phase transition. This time the estimation error
stays finite, but another quantity still diverges here. The in-sample estimator for the
portfolio variance vanishes, and the distribution of weights is smeared out again.

Numerical work on finite size samples shows that the probability of solutions with
zero in-sample variance is zero below r = 1, very small between r = 1 and r = 2, and
rapidly goes to one above r = 2. Accordingly, we find perfect agreement between the
analytic theory and simulations below the r = 2 transition already for moderate sized
samples, but in the region above r = 2, where the instability prevents the analytic
theory to penetrate, a continuum of unstable, zero-variance solutions arises, with a
flat cost-landscape. To analyze the nature of this transition, we performed numerical
work also on small to moderate size samples, and determined the probability law
of finding zero-variance solutions, with small probability between r = 1 and r = 2,
and probability one above r = 2. We also found a closed, universal formula for this
probability, independent of the distribution of returns, as long as it was continuous
and symmetric. This guarantees that the transition found by the help of the replica
method and Gaussian underlying returns is, in fact, universal, independent of these
technicalities.

Concerning the application of solvers from libraries such as R or Matlab, our experi-
ence is similar to that around the r = 1 transition. Some standard solvers keep finding
a stable, unique solution with all the weights the same also above r = 2 where we
know that a continuum of solutions exist, and the solvers should, in principle, obtain
an unstable solution, different in each sample. The explanation of the phenomenon is
the same as in the unconstrained case: these solvers are built in such a way as to find
the diagonal solution whenever the covariance matrix has zero modes.

The financial content of the instabilities described above is the following. When
unlimited short positions are allowed one can assume very large compensating positive
and negative positions without violating the budget constraint. As the dimension of
the portfolio increases, the (Euclidean) length of the weight vector, hence also the
leverage, diverge – a fundamentally risky situation around a point where the estimated
portfolio variance vanishes. When we switch on the constraint on short positions, it
becomes impossible to build up large compensating positions, and the length of the
weight vector, hence also the estimation error, remain finite, but the solution is still
unstable with respect to rearrangements, or simply to a reshuffling of the components
of the optimal weight vector from sample to sample. This corresponds to divergent
transverse fluctuations of the weight vector.

A final remark on the miraculous restabilization of the numerical solutions: in
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empirical work where one has real life data without the luxury of a large number of
samples to average over, one may easily overlook the instability in the no-short-selling
case, especially if the software package is a black box for the portfolio manager. We
think one should never use a ready-made program without the detailed knowledge of the
algorithm implemented in it. Furthermore, one should never trust a purely numerical
result without an understanding of the main structural features of the problem, such
as the instability described here. Although seldom able to follow it, we agree with
Lev Landau’s maxim: one should not attempt to solve a problem before knowing the
solution in advance.

Appendix A Derivation of the free energy with the
replica method

We consider the following problem: given a financial market where N risky assets are
traded we want to find the portfolio ~w that minimizes the risk function

R(~w) =
1

2

∑
i,j

wiCijwj , (A.1)

under the budget constraint
∑N
i=1 wi = N . In the above expression wi represents the

position held on asset i, while Cij is the assets covariance matrix. In practice, the true
covariance matrix is unknown and one has to rely on estimators based on historical
data. If xit represents the return of asset i at time t, the entries of the covariance
matrix can be estimated as

Cij =
1

T

T∑
t=1

xitxjt. (A.2)

Furthermore, we consider adding the following term (an asymmetric `1 regularizer) to
the cost function

g(~w) = η1

∑
i

wiθ(wi)− η2

∑
i

wiθ(−wi), (A.3)

so that the optimization problem becomes

min~w
{1

2

∑
ij

wixitxjtwj + g(~w)
}

(A.4)

s.t.
∑
i

wi = N, (A.5)

where for later convenience we have multiplied the empirical covariance matrix by a
factor T . In the following we assume that the xit are drawn from independent Gaussian
distributions of zero mean and variance σ2

i /N .
Taking advantage of the identity

〈(logZ)n〉 =
〈Zn − 1

n

〉
, (A.6)
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valid in the limit n → 0, the typical properties of the solution can be captured by
computing the replicated partition function

Zn(~w) =
〈∫ ∞
−∞

N∏
i=1

n∏
a=1

dwai e
−γ( 1

2

∑
i,j,t,a w

a
i xitxjtw

a
j +g(~w))

∏
a

δ(
∑
i

wai −N)
〉
~xt

(A.7)

and then taking the limits

lim
γ→∞

lim
n→0

1

γ
Zn(~w), (A.8)

where γ is a fictitious inverse temperature that we introduce to simplify the calculation
and 〈· · · 〉 represents an average over the probability distribution of returns. The above
partition function refers to a system of n replicas of the original system, and the index a
is introduced to label different replicas, so that wai represents the i-th weight of the a-th
replica. Introducing an integral representation for the delta function and performing a
Hubbard-Stratonovich transformation the replicated partition function can be written
as

Zn(~w) =
〈∫ ∞
−∞

N∏
i,a,t

dwai dφatdλ
aexp

−1

2

∑
a,t

φ2
at + i

√
γ
∑
i,t,a

φatw
a
i xit


× exp

[∑
a

λa(
∑
i

wai −N)− γg(~w)

]〉
~xt

.

Averaging over the probability distributions of returns gives

Zn(~w) =

∫ ∞
−∞

∏
i,a,b,t

dwai dQ̂abdφatdλ
a exp

−1

2

∑
a,t

φ2
at −

γ

2

∑
a,b,t

φatQabφb,t


× exp

∑
a,b

Q̂ab

(
NQab −

∑
i

σ2
iw

a
i w

b
i

)
+
∑
a

λa

(∑
i

wai −N
)
− γg(~w)


where we have introduced the overlap matrix Qab = 1

N

∑
i σ

2
iw

a
i w

b
i and the conjugate

variables Q̂ab to enforce this relation.
We can now integrate over the variables φat to obtain

Zn(~w) =

∫ ∞
−∞

∏
i,a,b,t

dwai dQ̂abdλ
a exp

[
−T

2
tr log (δab + γQab)

]

× exp

∑
a,b

Q̂ab

(
NQab −

∑
i

σ2
iw

a
i w

b
i

)
+
∑
a

λa

(∑
i

wai −N
)
− γg(~w)


The convexity of the cost function motivates the choice of the replica symmetric ansatz

Qab =

{
q0 + ∆, a = b
q0, a 6= b

(A.9)
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Q̂ab =

{
q̂0 + ∆̂, a = b
q̂0, a 6= b.

(A.10)

To leading order in n we have

−T
2

tr log(δab + γQab) = −T
2

[
log (1 + γ∆) +

γq0

1 + γ∆

]
(A.11)∑

a,b

Q̂abQab = Nn(q̂0∆ + q0∆̂ + ∆∆̂), (A.12)

while the ~w-dependent part of the partition function can be written as∫
dλad∆̂dq̂0 exp

[
Nn
〈

log

∫
dwe−∆̂σ2w2+wzσ

√−2q̂0+λw−g(~w)]
〉
zσ

]
, (A.13)

where 〈· · · 〉zσ denotes averages over the normal variable z and the distribution of asset
variances:

〈h(z, σ)〉zσ =

∫
dσ

1

N

∑
i

δ(σ − σi)
(∫ ∞
−∞

dz√
2π
h(z, σ)e−z

2/2

)
. (A.14)

If we now write the partition function as

Zn =

∫
dλdq0d∆dq̂0d∆̂e−γnNf(λ,q0,∆,q̂0,∆̂), (A.15)

we find

f(λ, q0,∆, q̂0, ∆̂) =
1

2γr

[
log(1 + γ∆) +

γq0

1 + γ∆

]
+
λ

γ
− 1

γ
(q̂0∆ + q0∆̂ + ∆∆̂)

− 1

γ

〈
log

∫
dwe−∆̂σ2w2+wzσ

√−2q̂0+λw−g(~w)
〉
zσ

Performing the change of variables ∆→ ∆/γ, q̂0 → γ2q̂0, ∆̂→ γ∆̂, λ→ γλ and taking
the limit γ →∞ we finally have

f(λ, q0,∆, q̂0, ∆̂) =
q0

2r(1 + ∆)
− q̂0∆− ∆̂q0 + λ+ min

~w

〈
V (~w)

〉
zσ
, (A.16)

where
V = ∆̂σ2w2 − wzσ

√
−2q̂0 − λw + η1θ(w)− η2θ(−w). (A.17)

Appendix B The saddle point conditions and the
distribution of weights

In Appendix A we derived the free energy functional

f(λ, q0,∆, q̂0, ∆̂) =
q0

2r(1 + ∆)
− q̂0∆− ∆̂q0 + λ+ min

~w

〈
V (~w)

〉
zσ
, (B.1)
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where the “potential” is

V = ∆̂σ2w2 − wzσ
√
−2q̂0 − λw + η1θ(w)− η2θ(−w). (B.2)

The double averaging 〈. . . 〉σ,z means∫ ∞
0

dσ
1

N

∑
i

δ(σ − σi)
∫ ∞
−∞

dz√
2π
e−z

2/2 . . . (B.3)

The potential does not contain q0 and ∆, therefore the saddle point (or stationarity)
conditions can be written up for these variables immediately

∂f

∂q0
= 0⇒ ∆̂ =

1

2r(1 + ∆)
, (B.4)

∂f

∂∆
= 0⇒ q̂0 = − q0

2r(1 + ∆)2
. (B.5)

From these the useful combination

σw =

√−2q̂0

2∆̂
=
√
q0r (B.6)

can be obtained.
Here and in the following we will frequently encounter the integrals of the standard

normal distribution:

Φ(x) =

∫ x

−∞

dt√
2π
e−t

2/2,

Ψ(x) =

∫ x

−∞
dtΦ(t),

W (x) =

∫ x

−∞
dtΨ(t).

The minimum of the potential is at

w∗ =
σz
√−2q̂0 + λ− η1θ(w

∗) + η2θ(−w∗)
2∆̂σ2

. (B.7)

Substituting this back into (B.2) and performing the double average according to
the recipe in (B.3) we find that the last term in (B.1) is

〈V ∗〉zσ =
q̂0

∆̂

1

N

∑
i

(
W

(
λ− η1

σi
√−2q̂0

)
+W

(
− λ+ η2

σi
√−2q̂0

))
. (B.8)

Then the free energy becomes

f = λ−∆q̂0 − ∆̂q0 +
q0

2r(1 + ∆)
+
q̂0

∆̂

1

N

∑
i

(
W

(
λ− η1

σi
√−2q̂0

)
+W

(
− λ+ η2

σi
√−2q̂0

))
(B.9)
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The remaining three saddle point equations are obtained by taking the derivatives of
the above expression with respect to λ, ∆̂ and q̂0 respectively.

∂f

∂λ
= 0⇒ 1 +

q̂0

∆̂

1

N

∑
i

1

σi
√−2q̂0

(
Ψ

(
λ− η1

σi
√−2q̂0

)
−Ψ

(
− λ+ η2

σi
√−2q̂0

))
= 0

or, with (B.6),

1√
q0r

=
1

N

∑
i

1

σi

(
Ψ

(
w

(i)
1

σ
(i)
w

)
−Ψ

(
−w

(i)
2

σ
(i)
w

))
. (B.10)

Here the notations

w
(i)
1 =

λ− η1

2σ2
i ∆̂

=
(λ− η1)r(1 + ∆)

σ2
i

, (B.11)

w
(i)
2 =

λ+ η2

2σ2
i ∆̂

=
(λ+ η2)r(1 + ∆)

σ2
i

(B.12)

and

σ(i)
w =

σw
σi

=

√
q0r

σi
(B.13)

have been introduced.

∂f

∂q̂0
= 0⇒ ∆ =

1

2∆̂N

∑
i

(
Φ

(
w

(i)
1

σ
(i)
w

)
+ Φ

(
−w

(i)
2

σ
(i)
w

))
. (B.14)

where the identity W (x) = 1
2xΨ(x) + 1

2Φ(x) has been used. With (B.4) we can cast
(B.14) into the form

∆ =

r
N

∑
i

(
Φ

(
w

(i)
1

σ
(i)
w

)
+ Φ

(
−w

(i)
2

σ
(i)
w

))
1− r

N

∑
i

(
Φ

(
w

(i)
1

σ
(i)
w

)
+ Φ

(
−w

(i)
2

σ
(i)
w

)) . (B.15)

Finally

∂f

∂∆̂
= 0⇒ q0 = − q̂0

∆̂2

1

N

∑
i

(
W

(
w

(i)
1

σ
(i)
w

)
+W

(
−w

(i)
2

σ
(i)
w

))
,

which can be written by help of (B.4), (B.5) as

1

2r
=

1

N

∑
i

(
W

(
w

(i)
1

σ
(i)
w

)
+W

(
−w

(i)
2

σ
(i)
w

))
. (B.16)

The distribution of weights can be obtained from

p(w) = 〈δ(w − w∗)〉zσ
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and works out to be

p(w) =
1

N

∑
i

(
Φ

(
−w(i)

1

σ
(i)
w

)
− Φ

(
−w

(i)
2

σ
(i)
w

))
δ(w)

+
1

N

∑
i

1

σ
(i)
w

√
2π

exp

−1

2

(
w − w(i)

1

σ
(i)
w

)2
 θ(w)

+
1

N

∑
i

1

σ
(i)
w

√
2π

exp

−1

2

(
w − w(i)

2

σ
(i)
w

)2
 θ(−w) (B.17)

Here, the first term is the density of the zero weights

n0 ≡
1

N

∑
i

(
Φ

(
w

(i)
2

σ
(i)
w

)
− Φ

(
w

(i)
1

σ
(i)
w

))
, (B.18)

and

n
(i)
0 =

1

N

(
Φ

(
w

(i)
2

σ
(i)
w

)
− Φ

(
w

(i)
1

σ
(i)
w

))
, (B.19)

is the contribution of the i-th asset to this “condensate”. The appearance of this term
is due to the `1 regularizer.

The distribution of the non-zero weights is given by the second and third terms of
(B.17). This formula reveals the meaning of the symbols introduced in (B.11), (B.12)

and (B.13): w
(i)
1 and w

(i)
2 are the centers of the two Gaussians in (B.17), while σ

(i)
w

their standard deviation.
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[16] O. Ledoit and S. Péché. Eigenvectors of some large sample covariance matrix
ensembles. Probability Theory and Related Fields, 151(1-2):233–264, 2011.

[17] O. Ledoit and M. Wolf. Nonlinear shrinkage estimation of large-dimensional co-
variance matrices. Institute for Empirical Research in Economics University of
Zurich Working Paper, (515), 2011.

[18] J. Bun, J-P. Bouchaud, and M. Potters. My beautiful laundrette:
Cleaning correlation matrices for portfolio optimization. available at
https://www.researchgate.net/publication/302339055, 2016.
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