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1 Introduction

The risk of sudden large declines in consumption, so-called rare disasters, can contribute

to the explanation of otherwise puzzling stylized facts of asset returns like the high uncon-

ditional equity premium or the low unconditional real risk-free rate in equilibrium models,

as has been documented in the seminal papers by Rietz (1988) and Barro (2006, 2009).

Moreover, there is mounting evidence that time variation in the risk of rare disasters can

account for some other properties of asset returns, for instance excessive volatility, return

predictability, or exchange rate volatility.1 Yet, by definition rare disasters are hardly

observed in samples of macroeconomic data, which makes it hard to come up with a pro-

per estimate for the probability of their occurrence. While it is plausible to estimate the

unconditional probability of a rare disaster by simply counting the number of respective

events in historical samples (and this is the route taken, e.g., by Barro (2006)), it re-

mains a challenge to come up with an empirical proxy for the time-varying conditional

probability of consumption disasters that is solely based on fundamental data and not,

in some way, extracted from financial data, i.e. from the quantities that the dynamics of

the fundamentals are supposed to explain in the very end.2

We make three major contributions. First, we show that inflation observations serve

as a useful signal, which allows to better infer the time-varying probability of very low or

even negative consumption growth. Empirically, such low growth tends to occur together

with either very high or very low inflation (actually, even deflation). So observing extreme

values for inflation increases the estimated probability of the economy being in a very bad

state.3 Our estimation has the advantage that it does not require disasters to actually

materialize in the sample, which circumvents the difficulties outlined above.

Second, the fact that inflation can be either extremely high or extremely low in

periods of adverse real growth has important implications for the joint dynamics of stocks

and treasury bonds, in particular for the second moments of their returns. A positive

inflation shock can be a good or a bad signal for expected real growth, depending on the

1See, e.g, the recent papers by Gabaix (2012), Wachter (2013), or Branger, Kraft, and Meinerding

(2016). Tsai and Wachter (2015) provide an overview of the recent advances of this literature.
2In a recent paper, Marfe and Penasse (2017) apply consumption data from a panel of 42 countries

to come up with an estimate for time-varying disaster risk in the US. Similar to the idea of Barro (2006)

this approach is based on the underlying assumption that the latent disaster probability in the US can

be deduced from realizations of disasters in foreign countries.
3We do not take a stand on structural explanations for this link or on potential transmission mecha-

nisms. For further reading, we refer to survey articles such as Blanchard (2009), providing an overview

of the different strands of macroeconomic research that have emerged over the past decades.
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overall state of the economy. We propose a simple general equilibrium asset pricing model

with recursive preferences and learning that features this time-varying signaling role of

inflation. The model replicates empirical patterns of both stock return volatilities and

stock-bond return correlations very closely. Stated differently, the time-varying disaster

risk paradigm which explains stock return volatilities as outlined by Wachter (2013) and

Gabaix (2012) can be extended towards the time-varying nature of the stock-bond return

correlation if one takes the signaling role of inflation into account.

Third, we generate these findings with a very clean and parsimonious research design.

Our estimation is based solely on two fundamental time series (consumption growth and

inflation) and is not distorted by the use of asset price information, i.e., the asset pricing

tests can be viewed as true out-of-sample tests for the macroeconomic estimation. None

of the parameters of our model is calibrated to match asset price moments, the preference

parameters are adopted from state-of-the-art asset pricing literature. Moreover, we do not

impose any constraints in the estimation and just rely on the Bayes Information Criterion

(BIC) to identify the number of states that best fits the data. Finally, we use the longest

possible sample of quarterly US consumption data starting in 1947, but additional analy-

ses with subsamples, with GDP growth instead of consumption growth, or with monthly

consumption data largely confirm our findings. If anything, the results from our bench-

mark specification can be considered conservative in terms of the fit to macroeconomic

and asset price data.

The first contribution is presented graphically in Figure 1. It shows two time series,

the implied disaster intensity, which Wachter (2013) obtains from reverse engineering of

her asset pricing model (blue line)4, and the (5-year rolling window) probability of being

in a bad consumption state as estimated (i.e., filtered) from a Markov switching model for

consumption growth and inflation (red line). A high value of the disaster intensity in the

Wachter (2013) model of course indicates a bad state for the economy. The correlation

between the two series is 0.88. One can further see that the blue and the red line share

basically all key features concerning the evolution over time, like the pronounced downturn

in disaster risk during the 1950s, the low values in the 1960s, the sharp increase during

the 1970s up to around 1982, and then, basically following the same kind of cycle, the

sharp decline and low level during the Great Moderation, followed by the recent spike

at the beginning of the Great Recession. We conclude from this that the probability

for a bad state can be inferred from a simple bivariate Markov model based exclusively

on fundamental data just as well as by reverse engineering a sophisticated asset pricing

model.

4We thank Jessica Wachter for sharing her data with us.
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To see how inflation indeed has an impact on the pricing of real assets, one has to

look at the estimation results for the Markov model in more detail. We estimate the

Markov model using quarterly data from the U.S. since 1947, and for this sample a

specification with four states is favored by the Bayes Information Criterion. Table 1 shows

the parameter estimates for this 4-state model. One can immediately see that states 3

and 4 have a low unconditional probability and are characterized by low (state 3) or

negative (state 4) expected consumption growth, so that they represent rare, bad states

for the economy. At the same time, the estimates for expected inflation in these states

are rather extreme, with states 3 and 4 characterizing a high-inflation and a deflationary

regime, respectively. Intuitively, this means that observing inflation helps to identify the

bad consumption states, since they tend to occur together with very high or very low

inflation.

A comparison of Figures 1 and 2 shows that, although the quantity of interest is a

purely real variable, a Markov model based on consumption only does not do the job. The

blue lines in Figures 1 and 2 are the same, but the red line in Figure 2 is computed based

on a 2-state Markov model estimated from consumption data only, i.e., without inflation.

The correlation is still around 0.33, but now there are substantial differences between the

two series. Most strikingly, the model using consumption only does a poor job from about

the early 1970s onwards. It misses the increase up to the globally highest level in the late

1970s and early 1980s. During the 1990s the consumption-implied probability of being in

a bad state is also not really close to the value implied by asset prices.

The recent literature on disaster risk and asset pricing (see, e.g., Wachter (2013),

Gabaix (2012)) has put an emphasis on linking time variation in disaster risk with time

variation in second moments of returns. Motivated by the time series result outlined above,

we thus embed the signaling mechanism into a state-of-the-art equilibrium asset pricing

model, where the representative investor is equipped with recursive preferences, and where

consumption growth and inflation are the fundamental sources of risk. Their drifts follow

a continuous-time Markov chain. As indicated above, we assume that the representative

investor cannot observe the state of the Markov chain and thus has to filter the respective

probabilities from the data.

This brings about the second major contribution of our paper. Having inflation in the

model allows us to take a close look at the correlation of stock and bond returns, which

has been the object of the investigation in a number of recent papers, e.g., Burkhardt and

Hasseltoft (2012) and David and Veronesi (2013). Now the two inflation states coupled

with low consumption growth and their filtered probabilities become relevant individually.

Intuitively, when the high-inflation state becomes more likely, nominal bonds will exhibit
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negative returns, and the same will be true for stocks, since the representative investor

will perceive the economy to enter a bad state. The returns on both assets will thus tend

to be negative, implying a positive correlation. When the deflation state becomes more

likely, the opposite is true. Bonds are likely to exhibit positive returns, while stocks will

again not perform well due to the indication of low growth. Taken together, this will

rather lead to a negative stock-bond correlation. While the response of bond prices to the

perceived inflation state is straightforward since expected inflation is a key component of

bond yields, the response of stock prices to inflation is one of the central asset pricing

effects generated by our model.

To test the ability of our model to match stylized facts in the data we feed it with the

empirical time series of observed consumption growth and inflation and then price stocks

and bonds using our model-implied pricing kernel. Based on these model-generated prices

we run regressions of stock return volatilities and stock-bond correlations on the filtered

probabilities.

It turns out that the model does a pretty good job. In both the model-generated and

the real data the coefficient of a regression of the stock-bond return correlation on the

probability of being in the high-inflation state is positive and significant, while for the

deflationary state the coefficient is negative and significant. In addition to reproducing

the patterns of the stock-bond correlation, the model also qualitatively matches two key

results in Wachter (2013). First, stock market volatility is increasing in the (filtered)

probability of being in a bad consumption growth state. Second, the relation between

stock market volatility and this probability is nonlinear both in the model and in the

data.

All of these features of the model are a direct consequence of the recursive utility

specification coupled with unobservable drifts for consumption and inflation. We assume

that the representative agent has a preference for early resolution of uncertainty. In par-

ticular, as is well known from the asset pricing literature with recursive preferences, in

such a setup the intertemporal substitution effect dominates the income effect, which

eventually leads to the desirable result that asset prices are monotonically increasing in

expected consumption growth. In fact, in a robustness check with time-additive CRRA

preferences, the regression coefficients for the stock-bond return correlation do not match

the empirical ones and sometimes even carry the wrong sign.

Other than specifying the drifts as unobservable and assuming recursive preferences

for the representative investor, our model is standard and does not feature any special

ingredients. Furthermore, the estimation of fundamental dynamics is performed without

the use of any asset price information. All asset pricing results are actually generated
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endogenously via the equilibrium mechanism inside the model and not via the parame-

trization of exogenous variables. Our research design thus differs substantially from other

frequently used estimation methods for dynamic asset pricing models like the Generali-

zed Method of Moments, where typically both asset pricing moments and macroeconomic

moments are used to identify the macroeconomic parameters of the model. Instead we

rather set up the asset pricing exercise as an “out-of-sample” test for the Markov chain

estimation based on consumption and inflation data.

Some other papers are related to our work in that they also deal with inflation in

an asset pricing context. David and Veronesi (2013) propose a model similar to ours, but

use time-additive CRRA preferences with money illusion in the spirit of Basak and Yan

(2010) in the pricing kernel. They furthermore employ an estimation approach which relies

on asset pricing data and thus delivers quite different dynamics for the fundamentals of

the model compared to our parametrization. A similar framework is used in David and

Veronesi (2014), where a central bank sets the interest rate according to a Taylor rule.

Burkhardt and Hasseltoft (2012) also propose a model with recursive utility, inflation

and long-run risk. The model is able to produce time-varying stock-bond correlations

as well, but, given the way in which the authors introduce inflation risk premia, the

asset pricing results seem to a certain degree hardwired into the model. We consider our

approach less restrictive in terms of the specification of inflation and consumption growth.

So in a sense our model may be viewed as a combination of David and Veronesi

(2013), Burkhardt and Hasseltoft (2012), and Wachter (2013). We employ recursive utility

so that state variables are priced, and we assume that the unobservable state variables

(real expected consumption growth and expected inflation) follow a Markov chain with

a finite number of states. The fact that the representative investor has to filter the state

from consumption and inflation observations ensures that inflation shocks have an effect

on the estimated state of the economy and thus also on the prices of real assets.

Piazzesi and Schneider (2006) discuss the role of inflation as a signal about future

consumption growth, but they exclusively focus on the term structure of (nominal and

real) interest rates. Their model and estimation misses out the very important role of

deflation. Their data sample ranges from 1952 to 2005 and covers a period in which

consumption growth and inflation were mostly negatively correlated. In particular, they

cannot (and do not) make any statements about the time-varying stock-bond correlation.

Moreover, similar to the approach of Collin-Dufresne, Johannes, and Lochstoer (2016),

their model includes learning about an unknown constant parameter, and the learning

algorithm accounts for the possibility of structural breaks by not taking the whole history

of observations into account. Bansal and Shaliastovich (2013) propose a long-run risk
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model with expected inflation and expected growth as risk factors and use it to explain the

empirically observed predictability patters in bond and foreign exchange returns. Ehling,

Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2016) consider heterogeneous agents who

disagree about inflation, and the authors show that this disagreement increases yields

and yield volatilities at all maturities. Eraker, Shaliastovich, and Wang (2016) discuss a

long-run risk model with inflation as a risk factor, but their focus is on differences between

durable and non-durable consumption and their implications for equity and bond prices

in these sectors. Fleckenstein, Longstaff, and Lustig (2013) study the pricing of deflation

risk using market prices of inflation-linked derivatives.

It can be considered a stylized fact that the correlation between inflation and other

variables can change the sign of the stock-bond correlation, and we provide a model-

theoretic explanation for this result. Other papers in this area include Schmeling and

Schrimpf (2011), Balduzzi and Lan (2014), Campbell, Sunderam, and Viceira (2013),

Hasseltoft (2012), Ang and Ulrich (2012), and Marfe (2015), to name just a few. Koijen,

Lustig, and van Nieuwerburgh (2015) and Boons, de Roon, Duarte, and Szymanowska

(2017) provide evidence for inflation risk being priced in the cross-section of stock returns.

The latter paper can be viewed as complementary to our paper, since the market price

of inflation risk estimated from the cross-section of stock returns switches sign and is

linked to the stock-bond correlation in the data. Campbell, Pflueger, and Viceira (2015)

analyze the stock-bond correlation in a New Keynesian production economy with habit

formation preferences and monetary policy regimes, and Song (2014) studies a production

economy model with recursive preferences, a regime-switching Taylor rule, and a time-

varying inflation target. In both papers, however, asset price data is used to calibrate

or estimate the model. Baele, Bekaert, and Inghelbrecht (2010) empirically analyze the

determinants of the stock-bond return comovement.

2 Fundamental Dynamics

2.1 Consumption and inflation dynamics

The two fundamental sources of risk in our model are aggregate consumption and inflation.

We assume that log aggregate consumption, lnC, follows the process

d lnCt = µCt dt+ σC
(√

1− ρ2dWC
t + ρdW π

t

)
, (1)

while the dynamics of the rate of inflation π are given as

dπt = µπt dt+ σπdW π
t . (2)
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WC and W π are the (independent) components of a standard bivariate Wiener process.

The dynamics in (1) and (2) imply that the increments to lnC and to π are correlated

with correlation parameter ρ. The volatilities σC and σπ are assumed constant.

The conditional drift rates µCt and µπt are stochastic and follow a bivariate continuous-

time Markov chain. In particular, there are n states (index by i = 1, . . . , n), with state-

dependent drifts µCi and µπi . The Markov chain is represented by the n × n matrix Λ =

(λij)i,j=1,...,n of transition intensities. By definition, λii = −
∑

j 6=i λij. In our benchmark

empirical case, we will have n = 4.

We will often use the vector representation of the above dynamics, which can be

written as (
d lnCt

dπt

)
= µt dt+ Σ dWt

with µt =

(
µCt
µπt

)
, Σ =

(
σC
√

1− ρ2 σCρ

0 σπ

)
, and dWt =

(
dWC

t

dW π
t

)
.

2.2 Filtering

We assume that the representative agent cannot observe µCt and µπt and has to filter her

estimates from the data. Mathematically, there are two filtrations, F and G, where F is

generated by the processes (Ct)t, (µCt )t, (πt)t and (µπt )t, whereas G ⊂ F is generated by the

processes (Ct)t and (πt)t only. The agent’s decisions (and thus all equilibrium quantities)

are based on the conditional expectations of the drifts given the investor’s information,

i.e., on µ̂Ct and µ̂πt given as

µ̂Ct = E
[
µCt |Gt

]
=

n∑
i=1

p̂i,tµ
C
i

and

µ̂πt = E [µπt |Gt] =
n∑
i=1

p̂i,tµ
π
i .

Here p̂i,t ≡ E [pi|Gt] denotes the subjective conditional probability of being in state i at

time t, and these conditional probabilities will serve as state variables in our economy.

Since probabilities always sum up to 1, we will have n− 1 state variables p̂1,t, . . . , p̂n−1,t,

whose support is the standard simplex in Rn−1.

Consumption growth and inflation realizations are observable and serve as a signal

for the aggregate state. The dynamics of p̂i,t follow from the so-called Wonham filter and
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are given by

dp̂it =

(
p̂itλii +

∑
j 6=i

p̂jtλji

)
dt+ p̂it

[(
µci
µπi

)
−

n∑
j=1

p̂jt

(
µcj
µπj

)]′
(Σ′)−1

(
dŴ c

t

dŴ π
t

)
. (3)

A proof of the filtering equation based on Theorem 9.1 of Liptser and Shiryaev (2001) is

provided in Appendix A.

The drift in (3) is a linear function of the transition intensities λ and the current

estimates of the probabilities p̂. Since the states (and consequently also switches between

states) are unobservable, the subjective probability of being in state i changes determi-

nistically over time, depending on the conditional probabilities to enter or exit state i.

The drift therefore comprises two terms. The first term, p̂itλii = −p̂it
∑

j 6=i λij, involves

the intensities for a switch from state i to some other state j 6= i. Suppose p̂it is currently

large, i.e. the investor is relatively certain to be in state i. Then, loosely speaking, the

more time passes, the more likely it becomes that an unobserved switch from state i to

some other state j has occurred in the meantime. This effect induces a negative drift of

p̂it. The second term,
∑

j 6=i p̂jtλji, captures the probabilities of entering state i, given that

the economy is currently in a different state j. Suppose one of the p̂jt (j 6= i) is currently

large. Then, as time passes and if no other conflicting signals arrive, it becomes more

and more likely that an unobserved switch to state i has occurred in the meantime. This

effect induces a positive drift in p̂it. The overall sign of the drift of p̂it thus depends on

the current estimate of all p̂. In particular, the drift terms ensure that the probabilities p̂

never fall below 0 and never exceed 1.

The diffusive volatility of p̂i is a quadratic function of all probabilities p̂j (j = 1, . . . , n).

The probability update is the largest if the investor is rather uncertain about the current

state of the economy, i.e., for intermediate values of p̂i. If the investor is almost sure in

which state the economy currently is (i.e., if one of the p̂j is close to one and the others

are close to zero), there is almost no noise in the estimates. When the respective estimate

p̂i is close to zero, the diffusion term in (3) is obviously also close to zero, since p̂i is one

factor of the product in front of the Wiener innovations. When p̂i is in turn close to one,

the term in square brackets in (3) will be very close to zero, since in the sum only the

term involving p̂i will remain, whereas all the others will vanish.

The volatility of the innovation in the filtered probability also depends on the preci-

sion of the signals. When the signals are very imprecise, i.e., when the volatilities σC and

σπ are large, an observed innovation in lnC or π delivers less information about the true

state, and the investor will put less weight on them when computing the new estimate for

pi.
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The sign of the diffusion term depends on the sign of the ‘observed’ Brownian shocks

dŴ . These are defined via the restriction that the observations for lnC and π have to be

adapted to both F and G, which implies µtdt+ ΣdWt = µ̂tdt+ ΣdŴt.

Finally, in the context of our analysis it is very important to note that the update in

the estimated probability p̂i depends on both signals, i.e., on both realized consumption

growth and realized inflation. Inflation observations have an impact on the perceived

probability of being in state i and thus on the conditional expected consumption growth

rate. This channel will be the major driving force behind our asset pricing results described

below.

2.3 Markov chain estimation

To estimate the dynamics of the fundamentals we use quarterly real consumption growth

rates from NIPA and quarterly inflation rates constructed according to the Piazzesi and

Schneider (2006) mechanism.5 Our sample period ranges from 1947Q1 to 2014Q1 and

represents the longest period for which quarterly data are available.6 The upper graph in

Figure 3 shows time series plots of the data.

Based on these data for consumption and inflation we estimate a joint Markov chain

for expected consumption growth and expected inflation using maximum likelihood (see,

e.g., Hamilton (1990)). We assume a constant variance-covariance matrix and only allow

for time-varying drifts. Standard errors for the parameter estimates are computed via a

standard block bootstrap with a block length of ten quarters7 with potentially overlapping

blocks and 5,000 repetitions.

The results are presented in Table 1. The first important finding is that, based on the

Bayes Information Criterion, the algorithm clearly identifies four regimes: high growth–

medium inflation (state 1), medium growth–low inflation (state 2), low growth–high infla-

tion (state 3), and negative growth–negative inflation (state 4). The estimated transition

probabilities imply that state 1 lasts for around 11 quarters on average, while the average

time spent in state 2 is 38 quarters. The other two states are not very persistent with an

average occupation time of around 6 and 3 quarters, respectively. So most of the time, the

5We do not take a stance on which of the various inflation time series measures realized inflation more

precisely. For a detailed discussion of this issue, we refer the reader to Piazzesi and Schneider (2006). As

will become clear below, the main feature we need is the existence of extremely high and low observations

in the sample, which is robust to the inflation measure.
6We have done the estimation with other data samples as well, in order to compare our findings to

those obtained by others. These results are discussed in Section 2.5.
7Varying the block length does not affect the results.
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economy is in state 1 or 2, but it is the rare states 3 and 4 which are very important in the

context of asset pricing, since they feature low (or even negative) expected consumption

growth. State 3 is a high-inflation state with low growth (sometimes labeled ’stagflation’),

whereas in state 4 the expected change in the price level is negative, i.e., there is deflation

on average.

The lower graphs in Figure 3 show the filtered estimates for the probabilities of the

four states, i.e., the estimates the investor would have computed based on information up

to and including time t. These estimates are the key quantities analyzed in the following

subsection. They will also serve as the explanatory variables in our regression analyses in

Section 3.

2.4 Extreme inflation as a signal about disaster risk

The filtered probabilities contain important information relevant for asset pricing. To see

this take a look at Figure 1. The blue line is the implied disaster intensity shown in Figure

8 in the paper of Wachter (2013). This time series is reverse engineered from asset prices

based on Wachter’s model, where the intensity of rare consumption disasters follows a

mean-reverting process and serves as a state variable. Given the parameters of her model,

she recovers monthly implied values for this state variable from the time series of historical

S&P 500 price-earnings ratios. For the sake of comparison we take averages of this time

series over each quarter. The red line is the sum of the filtered probabilities p̂3 + p̂4 from

our model. To obtain these estimates we plug realized consumption growth and inflation

data into our filtering equations and compute the probabilities, which a Bayesian learner

knowing the parameters of the chain would have assumed at each point in time. The plot

shows 5-year moving averages of these probabilities.8

The two series have a correlation of 0.88 over our sample period. This is particularly

remarkable, given that they are computed from very different data and with very different

methodologies. Furthermore, they share all important trends, peaks, and troughs over

our almost 70 year sample period. In particular, both the high inflation regime and the

deflation regime contribute a significant amount to the sum. For instance, the peak in

the time series in the early 1980s can be traced back to the high probability of the high

8In Wachter’s model, as in any asset pricing model, the price-earnings ratio today depends on the

distribution of all future values of the state variables. Inverting the empirical time series of price-earnings

ratios therefore implies that the resulting implied disaster intensity depends on the history of all prior

price-earnings ratios. Therefore we consider a moving average of our filtered probabilities to be the proper

analogue to the time series of implied disaster intensities.
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inflation regime in that period, and the deflation regime prevails towards the beginning

and the end of the sample period. This result strongly supports the notion that inflation

can serve as a signal for expected real consumption growth in that it allows to quantify

the probability of large negative consumption shocks.

To check whether it is indeed inflation that is important here, and not just certain

special characteristics of the consumption time series, we redo the analysis based on only

consumption data. The Markov chain estimation with consumption only gives rise to a

Markov chain with two states only with values for expected consumption growth of 2.34

and -1.80 percentage points, respectively.

Figure 2 presents the (moving average) time series of the estimated probability for

the state with low expected growth. Already from a first rough inspection it becomes clear

that the disaster intensity is by far not matched as well as before. The correlation between

Wachter’s and the consumption-only series goes down to roughly 0.33, but more impor-

tantly, the times series of estimated probabilities for low consumption is off substantially

during most of the 1970’s and 1980’s and also towards the end of the sample period.

2.5 Different samples and constrained model specifications

The finding that extreme inflation provides information about low expected real consump-

tion growth is based on a single Markov chain estimation. It may thus generally hinge on

the data sample or on assumptions made for the estimation. In order to alleviate these

concerns, we check our results for robustness along two dimensions. First, we repeat the

estimation with alternative data samples. Second, we analyze a constrained version of our

model in which the number of parameters is reduced.

We consider four alternative data samples. The first two samples are subsamples

of our quarterly consumption and inflation data starting in 1962 and 1965, respectively,

which have been used by David and Veronesi (2013) and Burkhardt and Hasseltoft (2012).

Moreover, we analyze monthly US consumption and inflation data, which is available

from 1959 onwards. Finally, we estimate our model with GDP growth rates instead of

consumption growth rates, which are available on a quarterly basis starting in 1947.

Figure 4 depicts the proxies for the time-varying disaster intensity that we get if

we apply exactly the same methodology as before to these alternative samples. More

precisely, we proceed as follows. For every sample, we estimate the time series model as

defined in Equations (1) and (2). The number of states identified by the Bayes Information

Criterion is 4 for all samples. As in the benchmark estimation, we label the states in which
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the conditional expected consumption growth rate µic is below the unconditional average

consumption growth rate as “bad states”. This refers to 2 of the 4 states in every case. We

then compute the filtered probabilities p̂i for these two bad states and add them up. In the

upper pictures in Figure 4, the red dashed line shows the sum of these two probabilities

p̂i. The blue solid line is the same as in Figure 1. Finally, we also repeat the estimation

without inflation data, i.e. with consumption or GDP data only. In these cases we have

only two states, and we treat the state with the lower expected consumption growth rate

µic as the bad state. The filtered probability of this bad state is depicted in the lower

pictures.

We can draw two conclusions from this exercise. First, recovering the time series of

implied disaster probabilities from Wachter (2013) is independent of the specific sample

that we use. In each case the red dashed line tracks the blue line very closely, the correla-

tions between the two time series are in fact even higher than for the benchmark sample

(0.88, 0.90, 0.89, and 0.89, respectively). Second, the result that the replication fails with

consumption (or GDP) data only is also confirmed. The best fit is obtained in the case

with GDP instead of consumption data, but the correlation between the two time series

is 0.51 only. The monthly consumption data is too noisy to replicate the time-varying

disaster probability.

Besides analyzing alternative samples, one might also consider imposing more struc-

ture on the model. Our benchmark model has 27 free parameters to estimate. But there

may be constrained versions of the model in which the number of parameters can be

reduced without losing too much explanatory power. One may even allow for more states,

but equate expected consumption growth rates or expected inflation across some of these

states. Generally, the number of possible constrained models is infinitely large, and we

think that an unconstrained estimation provides the cleanest research setup. Nevertheless,

given our interpretation of states 3 and 4 as the two bad states which we couple together

to obtain the disaster risk time series, an obvious candidate constrained model is one in

which expected consumption growth is equal across the two good states and across the

two bad states, i.e. µ1
c = µ2

c and µ3
c = µ4

c . This constraint is also justified by the fact that

our estimates of the expected consumption growth rates in the two good states and in the

two bad states are relatively close together. For instance, using the bootstrapped sample

paths, an F-test yields that the joint hypothesis µ1
c = µ2

c and µ3
c = µ4

c cannot be rejected

at the 10% level. Moreover, among various other constrained models that we have tried

(results not reported here for brevity), this particular constrained model has the lowest

BIC (797) and should thus be preferred.

Figure 5 depicts the proxy for time-varying disaster risk that we obtain in the con-
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strained model. This time series is very similar to those that were generated using the

benchmark unconstrained model. Moreover, in additional tests not reported here for bre-

vity, we also solved the asset pricing model, which will be explained in the next subsection,

with the parameters from this constrained model. None of our asset pricing findings chan-

ges if we use this specification. Therefore we stick to the unconstrained model in the

following.

To sum up, the finding that extreme inflation helps to recover the time-varying pro-

bability of consumption disasters is robust across samples and robust to the constraint

of equal growth rates in the two bad states. If anything, the benchmark specification on

which we rely in the rest of the paper yields the most conservative estimates among all the

samples studied here. Nevertheless we stick to this specification because it uses the lon-

gest quarterly sample available, and it does not impose any constraints on the identified

consumption and inflation states.

3 Asset Pricing Implications

Disaster risk models like the one by Wachter (2013) are supposed to explain the time series

behavior of asset prices and returns. In the following we will therefore embed the dynamics

estimated in the previous section in a state-of-the-art asset pricing model. Having inflation

in the model allows us to analyze the returns of stocks and nominal bonds jointly. The

numerical results in this section are based on the parameter estimates from the benchmark

specification, i.e. the unconstrained model estimated on the quarterly sample from 1947

until 2014.

3.1 Preferences

The economy is populated by an infinitely-lived representative investor with stochastic

differential utility as introduced by Duffie and Epstein (1992b). The investor has the

indirect utility function

Jt = Et

[∫ ∞
t

f(Cs, Js)ds

]
,

where the aggregator f is given by

f(C, J) =
βC1− 1

ψ(
1− 1

ψ

) [
(1− γ)J

] 1
θ
−1
− βθJ.
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γ, ψ, and β denote the degree of relative risk aversion, the elasticity of intertemporal

substitution (EIS), and the subjective time preference rate. We define θ = 1−γ
1− 1

ψ

. The

special case of time-separable CRRA preferences is represented by θ = 1, i.e., by γ = ψ−1.

Throughout the paper, we assume γ = 10, ψ = 1.7, and β = 0.02. In particular, the agent

has a preference for early resolution of uncertainty, i.e., that γ > ψ−1.

3.2 Real Pricing Kernel and Wealth-Consumption Ratio

As in Duffie and Epstein (1992a), the real pricing kernel is given by

ξt = βθC−γt e
−βθt+(θ−1)

(
t∫
0

e−vudu+vt

)
.

The log wealth-consumption ratio v depends on the estimated expected consumption

growth µ̂C , and therefore in particular on the estimated probabilities p̂i. The wealth-

consumption ratio I ≡ ev solves a nonlinear partial differential equation given in Appen-

dix B. A proof and details about the numerical solution using a Chebyshev polynomial

approximation are also reported in Appendix B.

Given a solution for I, the pricing kernel has dynamics

dξt
ξt

= −δθdt− (1− θ)I−1 dt− γdCt +
1

2
γ2σ2

cdt

− (1− θ)
n−1∑
i=1

Ip̂i
I
dp̂i,t +

1

2

n−1∑
i=1

n−1∑
j=1

(θ − 1)

[
Ip̂ip̂j
I

+ (θ − 2)

(
Ip̂iIp̂j
I2

)]
σp̂iσ

′
p̂j
dt

− γ(θ − 1)
n−1∑
i=1

Ip̂i
I
σc,p̂i dt.

Importantly, shocks to the state variables p̂i affect the pricing kernel. Since these shocks

are themselves driven by both consumption and inflation observations, realized inflation

indirectly enters the pricing kernel through the learning mechanism.9

3.3 Pricing the Assets in the Economy

We are mainly interested in two types of assets, equity and nominal bonds. Equity is

defined as a claim to real dividends. When defining dividends, one has to be careful

9To generate an impact of inflation on the pricing kernel, David and Veronesi (2013) rely on the

behavioral concept of money illusion. They assume that the agent (in their setup irrationally) bases

real decisions partly on nominal variables. Basak and Yan (2010) show that, with CRRA utility, this

assumption results in a pricing kernel which comprises the original real pricing kernel and an adjustment

for inflation.
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not to alter the informational setup of the model. Dividends are observable, and if they

provided a non-redundant signal about the state of the economy, this would affect the

initial filtering problem. We therefore assume

d lnDt = µ̄dt+ φ

(
n∑
i=1

(µci − µ̄)p̂i

)
dt+ φσc

(√
1− ρ2dŴ c

t + ρdŴ π
t

)
.

Similar to Bansal and Yaron (2004), the deviation of the drift from its long-term average

µ̄ is levered by a factor of φ, and like Bansal and Yaron (2004) we assume φ = 3.

Let ω denote the log price-dividend ratio. Starting from the Euler equation for the

price of the dividend claim, we can apply the Feynman-Kac formula to g(ξ,D, ω) = ξDeω.

This yields
Dg(ξ,D, ω)

g(ξ,D, ω)
+ e−ω = 0.

Using Ito’s Lemma, we can translate this equation into a PDE for ω(p̂). This PDE,

together with details about its derivation, is given in Appendix D. We solve this PDE

again numerically using a Chebyshev approximation.

A nominal bond pays off one unit of money at maturity T , which, in real terms, is

equal to
∫ T
t
e−πsds. The price of a nominal bond at time t is thus equal to

B$,T
t = Et

[
ξt,T

∫ T

t

e−πsds

]
.

One can define the nominal pricing kernel ξ$t,T as ξt,T
∫ T
t
e−πs ds and rewrite the pricing

formula as

B$,T
t = Et

[
ξ$t,T
]
.

The dynamics of the nominal pricing kernel then follow from Ito’s lemma:

dξ$

ξ$
=
dξ

ξ
− dπ +

1

2
d[π]− d[ξ, π]

ξ
.

Importantly, the nominal risk-free short rate, i.e., the negative of the drift of ξ$, is

not just the sum of the real short rate and expected inflation, but involves a third term

which arises from d[ξ,π]
ξ

. This third term is nonzero if inflation shocks affect the real pricing

kernel, as they do in our model. It can be interpreted as an inflation risk premium which

nominal bonds earn in equilibrium.

The Euler equation and the Feynman-Kac formula applied to H(ξ$t , b
$
t ) = ξ$t e

b$t yield

a partial differential equation for b$t ≡ lnBT,$
t . Details on this partial differential equation

and its solution are given in Appendix F.

15



3.4 Results

3.4.1 General approach

Based on our finding that certain state probabilities proxy disaster risk, and given that

Wachter (2013) documents the important role of time-varying disaster intensities for the

dynamics of second moments of returns we start the discussion of our asset pricing results

by analyzing second moments.

We proceed in the following way. We take the time series of filtered probabilities as

shown in Figure 3, plug them into our model solution and compute model-implied real

prices for equity and for nominal bonds with five years to maturity. From these time series

of real prices we compute model-implied quarterly real log returns for these two assets.

More precisely, with St and Bt(20) denoting the price of the equity claim and the five-year

(20-quarter) nominal zero coupon bond in quarter t, the returns from quarter t to quarter

t + 1 are computed as ln(St+1 + Dt+1) − lnSt and lnBt+1(19) − lnBt(20). We then add

log realized inflation to the real returns to obtain nominal returns. The corresponding

quantities in the data are quarterly returns of the CRSP value-weighted index and log

bond returns computed from the US Treasury yield curve data provided by Gürkaynak,

Sack, and Wright (2007)10 from 1962 on. As the final input to our analyses we compute

20-quarter rolling window return volatilities and correlations and regress them on (the

logarithm of) 20-quarter moving averages of the relevant state probabilities p̂. Note that

these right-hand variables are the same for model and data in all the regressions reported

below.

For the regressions in the model and in the data we state Newey-West adjusted t-

statistics with 20 lags, but in addition we also provide confidence intervals derived from

a Monte Carlo simulation of the model (shown in square brackets below the respective

coefficient). Here we first simulate the model given the dynamics for the fundamentals and

the filtered probabilities in Equations (1) to (3) with monthly time increments over a time

span of 68 years, corresponding to the length of our sample period. These monthly data

are then aggregated to quarterly and used in the regressions in the same way as described

before. We repeat this exercise 5,000 times to obtain the 90% confidence intervals.11

10The data are available for download at http://www.federalreserve.gov/pubs/feds/2006/

200628/200628abs.html.
11Due to the discretization error in the simulation it sometimes happens that the sum of the filtered

probabilities exceeds 1 by a very small amount. In that case we rescale the filtered probabilities such that

they sum to 1.
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3.4.2 Conditional stock return volatilities

A look at Figure 6 shows that our model nicely reproduces the patterns of state-dependent

stock return volatilities in the data along two important dimensions. First, the estimated

probabilities for the states with low consumption growth, p̂3 + p̂4, exhibit a positive cova-

riation with stock return volatilities. Second, this relationship is nonlinear and concave,

both in the model and in the data. Given our result above that the sum p̂3 + p̂4 is highly

correlated with a measure for the conditional probability of a consumption disaster, one

might expect a result like that, but it is nevertheless worth noting that the second result

also confirms a prediction from the model of Wachter (2013), namely that stock market

volatility is a concave function of time-varying disaster risk.12 Figure 7 shows the time

series of volatilities in the data and in the model.

Motivated by these scatter plots, we regress stock return volatilities on the logarithm

of the moving averages of the relevant state probabilities p̂. Table 2 reports the results.

The regression coefficients are positive and significant in both model and data, the R2 is

high both in the model and in the data, and almost all of the regression coefficients from

the data are within the simulated confidence bounds for the model. The only exception

with respect to this last point is the low constant, which indicates that the model-implied

unconditional stock return volatility is somewhat on the low side.13 Overall, we conclude

that the relation between the conditional probability of a consumption disaster (proxied

by p̂3 + p̂4) and stock market volatility is indeed nonlinear, and our model reproduces this

stylized fact. Finally, given that our estimation is based on two macro time series only,

the goodness of fit in Figure 7 is also remarkable. The correlation between the data and

the model-implied time series is 0.41.

To see how our model generates these results, note that in our model higher levels of p̂3

and p̂4 induce larger fluctuations in p̂3 and p̂4. This follows from the filtering equation (3)

which reveals that p̂3 and p̂4 fluctuate a lot more when they are at intermediate levels as

compared to when they are close to 0 or 1. Given that a level of 1 for p̂3 and p̂4 is almost

never reached empirically, higher values for p̂3 and p̂4 practically thus go together with

high fluctuations of p̂3 and p̂4. States 3 and 4 are the least persistent in our estimation, so

that when the agent currently has a high estimated probability of being in one of these

two states, the probability is likely going to move down rather quickly. Overall, following

a negative consumption shock in the economy, there is more movement in state variables.

This in turn means that uncertainty about the likelihood of negative consumption shocks

12See, for instance, Figure 4 in her paper.
13We discuss this issue in detail in Section 3.4.4.
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generates additional volatility of the price-dividend ratio, which is a function of these

state variables. In sum, learning about consumption disasters induces higher equity return

volatility. Note that our model of course also reproduces the relevance of the probability

of being in a good state, i.e., of log(p̂1+ p̂2), for stock return volatilities. The coefficients in

the data and in the model (not reported here for brevity) are both significantly negative

since p̂1 + p̂2 = 1− p̂3 − p̂4.

Finally, Table 3 reports the results from additional regressions to investigate the

notion of a signaling role of inflation for second moments of stock returns. Here we regress

the same left-hand side variable as before on rolling averages of the extreme entropy of

the state distribution (defined as p̂3 ln p̂3 + p̂4 ln p̂34), which we propose as another proxy

for uncertainty about consumption disasters. We also show results for expected inflation

(defined as
∑4

i=1 µ
π
i p̂i) and realized inflation as explanatory variables.

The results for extreme entropy can be interpreted in the way that uncertainty about

extreme inflation and low consumption growth is a main driver of stock return volatilities,

and our model provides an economic equilibrium mechanism able to explain this stylized

fact. On the other hand, expected and realized inflation as the right-hand side variables do

not have explanatory power in the data and are only marginally significant in the model

as well. This provides additional support for our model. Inflation itself cannot explain

stock return volatilities unless it is decomposed into a component capturing the risk of

high inflation (like p̂3) and a component capturing the risk of a deflationary regime (like

p̂4). The reason is that, as outlined above, inflation is positively correlated with p̂3, but

negatively correlated with p̂4. Depending on the amount of observations from the deflation

regime along a given sample path, the signaling role of inflation for stock market volatility

may be ambiguous.

Note also that recursive preferences are a key ingredient of our model. With respect

to this feature, our paper is closely related to recent studies like Benzoni, Collin-Dufresne,

and Goldstein (2011) and Drechsler (2013), where it has been shown that models featuring

recursive preferences, coupled with learning about fundamentals, are very well able to

match stylized facts about stock return volatility, both in terms of its overall level (i.e.,

addressing the excess volatility puzzle) and in terms of its dynamics (i.e., capturing the

predictive power of implied volatilities, variance risk premia, and other related quantities).

Finally, it is important to note that our whole approach to the explanation of stock

return volatility does not rely on a Peso problem story, which is very popular in the

literature on disaster risk and its role in the explanation of the equity premium (see, e.g.,

Barro (2006) and Wachter (2013)). In particular, the bad states in our model are not

devastatingly bad, so that the mechanism in our model does not build on the notion that
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agents fear very bad realizations of consumption growth or inflation, which have never

been observed in US data. Our estimates for the state-dependent expected growth rates

and inflation are rather moderate.

3.4.3 Conditional stock-bond return correlations

The results concerning stock market volatility are related to the overall probability of

being in a bad state for expected consumption growth. When we now look at the stock-

bond return correlation, the distinction between the two bad consumption states with

respect to expected inflation will become relevant. Table 4 and Table 5 contain the results

of our regression analyses, Figure 8 depicts the corresponding scatter plots.14 Figure 9

shows the time series of correlation in the data and in the model.

The most important result here is that both in the model and in the data the esti-

mated coefficient for log(p̂3) is positive and significant, while the coefficient for log(p̂4) is

negative and significant. Given that we did not use any asset price information to estimate

the fundamental dynamics in our model, the similarity between model and data results

appears remarkable. Moreover, the scatter plots again reveal a pronounced nonlinearity

in the relation between correlation and the filtered probabilities, both in the model and

in the data. Finally, given that our estimation is based on two macro time series only,

the goodness of fit in Figure 9 is remarkable. The correlation between the data and the

model-implied time series is 0.54.

What is the mechanism inside the model that generates these patterns? First, an

increase in p̂3 makes it subjectively more likely for the investor that the economy is in the

high inflation state. In this case the bond return over the next quarter is composed of a

positive ’carry’ component (which is, if nothing changes, equal to the yield of the bond)

and a negative component due to an upward shift in the nominal yield curve. In general

the second effect dominates the first, so that bond prices tend to go down. Note that the

upward shift in the nominal yield curve itself is the composite of two effects: an increase

in expected inflation and a slight decrease in the level of the real yield curve. The second

of these two effects is typically negligible with recursive preferences, and therefore, overall

the nominal yield curve shifts upwards in response to an increase in p̂3. The stock return

upon a positive shock to p̂3 depends on real quantities only. A high p̂3 implies that the

economy is more likely to be in a low consumption growth regime, and stock prices tend

14Note that we regress ’raw’ correlation on the state variables. Correlation has a limited range, so that

transformations like ρ̃ = ln( 1+ρ
1−ρ ) might seem warranted to guarantee that the regressions are well specified.

We reran all our analyses using this transformation. All our results remain qualitatively unchanged.
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to be low in such an environment. Taken together, the reactions of bond and stock prices

to an increase in p̂3 go in the same direction.

State 4 is a low inflation state with low growth, so the response of bond prices to

a high p̂4 is different. Again, there is the positive carry return. But now there is also an

additional positive return because the nominal yield curve shifts downwards in response to

a higher probability for deflation. If deflation becomes more likely, the level of the nominal

yield curve must decrease. Altogether, the influence of p̂4 on bond returns is large and

positive. At the same time, a high p̂4 signals a high likelihood of low (even negative)

expected consumption growth, which depresses equity prices. In sum, the reactions of

bond and stock prices to an increase in p̂4 are larger than those to an increase in p̂3, and

they are of opposite signs.

The time-varying nature of the stock-bond correlation is again a result in our model,

for which recursive preferences are essential. In a robustness check with time-additive

CRRA preferences (results not shown), our model generates a small positive regression

coefficient for p̂3 and a large positive coefficient for p̂4. To get the intuition behind this

result, look again at the three components of the holding period bond return as described

above.

Both the carry component and the change in expected inflation are independent of

the representative agent’s preferences, but the change in the real yield curve is clearly

not, since real bond prices are determined in equilibrium. A slight increase in p̂3 or p̂4,

i.e., a slight decrease in expected consumption growth, can lead to a massive decline in

the overall level of the real yield curve in a CRRA economy. As is well known, a model

with CRRA preferences cannot explain the empirically observed smoothness of the real

risk-free rate. Altogether, bond returns are thus positively related to both p̂3 and p̂4 (and

the effect is stronger for p̂4, the probability of being in a deflationary regime). Concerning

stock returns, note that a high value for p̂3 or p̂4 signals a low expected consumption

growth rate, while consumption volatility is not affected. With the usual popular CRRA

parametrizations (most importantly γ > 1) a lower expected consumption growth rate

implies a higher stock price. Therefore, stock returns are also positively related to both

p̂3 and p̂4 in a CRRA economy (and the effect is stronger for p̂4 because state 4 has the

lowest expected consumption growth rate). Altogether, we can conclude that with CRRA

preferences the stock-bond return correlation reacts positively to an increase in both p̂3

and p̂4.

So to obtain results similar to ours, but in a CRRA model, one has to include a

feature like money illusion to make inflation and related states enter the pricing kernel,

and one has to keep the variation in the expected consumption growth rate small enough
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to mitigate the consequences of the typical counterintuitive CRRA result that prices are

lower in higher growth states. This is exactly the path taken by David and Veronesi (2013),

who actually restrict expected consumption growth to be the same in all states. When we

rely on recursive utility, we obtain model-implied results that are very well in line with

the data without having to restrict the fundamental dynamics in such a way, and we also

do not need to assume any sort of bounded rationality on the part of the representative

investor.

The above findings concerning the role of p̂3 and p̂4 are very well in line with the

literature. In a purely empirical paper, Baele, Bekaert, and Inghelbrecht (2010) try to fit

the correlations of daily stock and bond returns with a multi-factor model. They find that

macro variables (in particular the output gap and inflation) do not add much explanatory

power. Our findings may be related to theirs. As our results show, the risk of low expected

consumption growth, proxied by log(p̂3 + p̂4), does not predict correlation, both in the

model and in the data. The coefficients on realized and expected inflation are positive

and significant in the model and in the data, but the confidence bounds always include 0,

which indicates that the results are not robust to different data samples obtained through

the bootstrap approach. One reason why Baele, Bekaert, and Inghelbrecht (2010) find

that macroeconomic variables do not explain correlation may thus be that they do not

explicitly take time variation in the signaling role of inflation into account.

For both model and data, the regressions with extreme entropy do not work as

well. The reason is again that this measure captures general uncertainty about bad con-

sumption growth states. Uncertainty about being in the deflation state however decreases

correlation, whereas uncertainty about the high inflation state increases correlation. An

aggregate measure of uncertainty cannot capture these two opposing effects adequately.

Finally, we provide another robustness check with regard to the bond return data.

Our benchmark data is the sample of interpolated term structures of U.S. Treasury bonds

available from the Fed and analyzed by Gürkaynak, Sack, and Wright (2007). This sample

is shorter than our macroeconomic data sample. Given that our macro sample starts

in 1947, we can in principle compute model-implied asset returns for the whole time

period from 1947 to 2014. As a robustness check, we therefore determine the stock-bond

correlation in the data from an alternative sample, namely long-term Treasury bonds’

returns from the Ibbotson Stocks, Bonds, Bills and Inflation Yearbook. These bond returns

are available starting in 1926, but since our macro estimation uses quarterly data after

1947, we constrain ourselves to the sample from 1947 until 2014.

We repeat the whole asset pricing analysis from above using this bond index, and

Figure 10 depicts the resulting time series of rolling window correlations. As one can see
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from the figure and also from regressions identical to those presented above (results not

reported here for brevity), the model-implied correlation tracks the correlation in the data

closely. The two time series have a correlation of 0.54. Interestingly, in the data we now see

another period with negative correlation and our model captures this negative correlation

as well. We thus conclude that our approach is robust to longer time series of Treasury

bond returns.

3.4.4 Unconditional moments

The unconditional asset pricing moments generated by our model are computed via the

same Monte Carlo simulation as described above. The results are shown in Table 6. When

interpreting the numbers, one has to keep in mind that our model is estimated only on

the basis of fundamental data for consumption and inflation, i.e., it is not calibrated to

match unconditional return moments, and that there are no additional state variables

like long-run consumption risk or stochastic volatility. So it should not come as a surprise

when the model does not perfectly match the data with respect to unconditional risk

premia or volatilities.

Nevertheless with our baseline parametrization we already obtain an expected real

return on equity of 3.6 percentage points, slightly less than half of what we see in the data.

The main reason for the fact that the expected stock return is somewhat low in the model

is that, based on the point estimates for the entries of the transition matrix (see Table 1),

the bad states are not very persistent. In particular the average time spent in state 4 is

only 1/(1− 0.666) ≈ 3 quarters. However, the estimate of element (4,4) in the transition

matrix has a standard error of around 0.19. In fact, in robustness checks not reported

here, we find that the expected equity return already increases by around 1.5 percentage

points if we raise the transition probability (4,4) by one standard error. Moreover, note

that the results reported here are based on the most conservative macro estimation, which

uses quarterly consumption growth rates since 1947. With quarterly GDP growth rates,

for instance, the bad states are characterized by lower expected growth rates and therefore

the equity premium rises by another percentage point.

With respect to equity return volatility we find pretty much the same picture as for

expected equity returns. The volatility generated by our model is somewhat low, but again

a higher persistence for the bad states would lead to higher return volatility. The average

spread between bonds with a maturity of 5 years and those with 3 months is small on

average in the data and in the model (where it is basically equal to zero). Finally, the

unconditional stock-bond correlation is matched pretty well by the model.
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4 Conclusion

Low consumption growth tends to occur together with either very high or very low infla-

tion. Building on this key insight, our paper makes three contributions.

First, we document that the filtered probabilities from a simple four-state Markov

chain for expected consumption growth and expected inflation contain important infor-

mation about the real economy. In particular, our Markov chain model exhibits two bad

states in which expected consumption growth is low or even negative. The sum of the

probabilities for the two bad states states is impressively close to the implied disaster in-

tensity computed by Wachter (2013). Moreover, we document that inflation data indeed

provides additional information about the real economy since the replication of the time

series of disaster intensities fails with consumption data only.

With respect to inflation the two bad states are special, since they are the ones

with the highest and the lowest (even negative) expected change in the price level. This

brings about our second set of findings. We analyze the role of inflation in a standard

asset pricing model with learning about unobservable states. The model does not contain

any behavioral components like money illusion, but instead we equip the representative

investor with recursive preferences.

In line with the intuition behind asset pricing models like the ones of Wachter (2013)

or Gabaix (2012), we find in the data that stock return volatilities are high when the

investor perceives the sum of the probabilities of the two bad states to be high. Moreover,

feeding the model with the observed time series of consumption growth and inflation

produces patterns for stock return volatilities that are very similar to the data. An object

of particular interest in the macro-based asset pricing literature is the time-varying nature

of the return correlation between equity and nominal bonds. Our model is also able to

match this stylized fact. In contrast to the volatility of stock returns, where mainly the

overall probability of the two bad states for expected consumption growth matters, it is

the distinction between the two with respect to expected inflation which becomes relevant

here. In the high expected inflation state, stocks and bonds will both tend to have negative

returns, so that their correlation will be positive, while in the deflationary state, stocks

will still do poorly, but nominal bonds will exhibit positive returns, resulting in a negative

correlation between the two securities.

As our third contribution, we wish to emphasize that our estimation is solely based

on fundamentals, i.e., on the time series of consumption growth and inflation, so that

no asset price data are used to calibrate the model. Furthermore, we do not impose any

constraints in the estimation and just rely on the Bayes Information Criterion (BIC) to
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identify the number of states that best fits the data. Our research design thus differs sub-

stantially from other estimation methods for dynamic asset pricing models where both

asset pricing moments and macroeconomic moments are used to identify the macroeco-

nomic parameters of the model, which may confound the macroeconomic fit considerably.

Moreover, we use the longest possible sample of quarterly US consumption data, starting

in 1947, but our findings are robust to alternative data samples.

In summary, our paper shows that the time-varying disaster risk paradigm, which has

recently been documented to explain stock return volatilities, can be extended towards

the time-varying nature of the stock-bond return correlation if one takes the signaling

role of inflation into account.
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A Dynamics of the state variables

The consumption and inflation dynamics can be rewritten as

d lnCt =

(
n∑
i=1

µcipit

)
dt+ σc

(√
1− ρ2dW c

t + ρdW π
t

)
dπt =

n∑
i=1

µπi pit + σπdW
π
t ,

where pit = 1 if the economy is in state i at time t and pit = 0 otherwise (i = 1, . . . , n). In

matrix form, this becomes(
d lnCt

dπt

)
=

( ∑n
i=1 µ

c
ipit∑n

i=1 µ
π
i pit

)
dt+ Σ×

(
dW c

t

dW π
t

)
,

where Σ is given by

Σ =

(
σc
√

1− ρ2 σcρ

0 σπ

)
and d[Wc,Wπ] = 0.

The inverse of the of the volatility matrix is

Σ−1 =
1

σcσπ
√

1− ρ2

(
σπ −σcρ
0 σc

√
1− ρ2

)
.

We assume that the drift rates are unobservable and need to be filtered by the investor.

Mathematically, the processes pit (and thus also µCt and µπt ) are adapted to the filtration F .

But there is a subfiltration G ⊂ F to which they are not adapted. This subfiltration is the

filtration generated by the processes (Ct)t and (πt)t, whereas the large filtration F is the filtration

generated by the processes (Ct)t, (πt)t and (pit)t. The equilibrium in the economy is thus based

on the dynamics of (Ct)t and (πt)t under the investor filtration G, i.e. on the projections

µ̂Ct = E
[
µCt |Gt

]
=

n∑
i=1

p̂i,tµ
C
i , µ̂πt = E [µπt |Gt] =

n∑
i=1

p̂i,tµ
π
i

An application of Theorem 9.1 of Liptser and Shiryaev (2001) yields that the projected

(henceforth also called “subjective”) probabilities have the following dynamics:

dp̂it =

p̂itλii +
∑
j 6=i

p̂jtλji

 dt + p̂it

(µci
µπi

)
−

n∑
j=1

p̂jt

(
µcj
µπj

)′ × Σ′−1

(
dŴ c

t

dŴ π
t

)
,

where (
dŴ c

t

dŴ π
t

)
= Σ−1

(µci
µπi

)
−

n∑
j=1

p̂jt

(
µcj
µπj

) dt+

(
dW c

t

dW π
t

)
.
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In particular, d[Ŵc, Ŵπ] = 0. Under the investor filtration, log consumption has dynamics

d lnCt =
n∑
i=1

µip̂idt+ σc

(√
1− ρ2dŴc + ρdŴπ

)
For notational convenience, we abbreviate

p̂it

(µci
µπi

)
−

n∑
j=1

p̂jt

(
µcj
µπj

)′ × Σ′−1 ×

(
dŴ c

t

dŴ π
t

)
= σp̂idŴt.

Quadratic covariations are abbreviated by

d[Ct, p̂it]

dt
=

(
ρσc,

√
1− ρ2σc

)
× σ′p̂i ≡ σc,p̂i

d[πt, p̂it]

dt
= (0, σπ)× σ′p̂i ≡ σπ,p̂i .

B Wealth-consumption ratio

The indirect utility function of the investor is given by

J(t) = Et

[∫ ∞
t

f(Cs, J(s))ds

]
.

J
(
Ct +

∫ t
0 f(Cs, J(Xs, Cs)ds,Xt

)
is a martingale, therefore we have the Bellman equation

E[dJ(Ct, Xt) + f(Ct, J(Ct, Xt))dt] = 0,

or equivalently

AJ(Ct, Xt)

J(Ct, Xt)
+
f(Ct, J(Ct, Xt))

J(Ct, Xt)
= 0, (4)

where the operator A is the infinitesimal generator. We conjecture a functional form for J :

J(t) =
C1−γ
t

1− γ
(δevt)θ

where in the end vt will prove to be the log wealth-consumption ratio. This functional form

implies

f(C, J)

J
= θe−vt − θδ.
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With I ≡ ev the derivatives of J are:

Jc = C−γt (δevt)θ

Jcc = −γC−γ−1t (δevt)θ

Jp̂i =
C1−γ
t

1− γ
δθθ(I(p̂))θ−1Ip̂i

Jp̂ip̂j =
C1−γ
t

1− γ
δθθ
[
(θ − 1)Iθ−2I2p̂i + Ip̂ip̂jI

θ−1
]

Jcp̂i = C−γt δθθIθ−1Ip̂i .

These derivatives result in the following quadratic variation and covariation terms:

Jc
J
dC = (1− γ)

n∑
i=1

µci p̂idt+
1

2
σ2c (1− γ)dt+ (1− γ)σc

(√
1− ρ2dŴc + ρdŴπ

)
Jccd[C,C]

J
= σ2c (−γ)(1− γ)dt

Jcp̂id[C, p̂i]

J
= θ(1− γ)

Ip̂i
I
σc,p̂idt

Jp̂idp̂i

J
= θ

Ip̂i
I
dp̂i

Jp̂ip̂jd[p̂i, p̂j ]

J
=

1

2
θd[p̂i, p̂j ]

[
(θ − 1)

(
Ip̂i
I

)2

+
Ip̂ip̂j
I

]
.

Plugging everything into (4) results in the following partial differential equation for I:

0 =

[
(1− γ)

n∑
i=1

µci p̂i +
1

2
(1− γ)2σ2c − δθ

]
+ θI−1 (5)

+
n−1∑
i=1

θ
Ip̂i
I

p̂itλii +
n∑
j=1
j 6=i

p̂jtλji

 +
n−1∑
i=1

θ(1− γ)
Ip̂i
I
σc,p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

θ

[
(θ − 1)

(
Ip̂iIp̂j
I

)
+
Ip̂ip̂j
I

]
σp̂iσ

′
p̂j
,

Note that there are only n − 1 state variables due to the restriction
∑n

i=1 p̂i = 1. We solve

the PDE with a Chebyshev approximation similar to Benzoni, Collin-Dufresne, and Goldstein

(2011). We guess the following functional form for I as a function of the vector p̂:

I(p̂) = exp(B(p̂))

B(p̂) =
d∑
j=0

αjTj(p̂),

27



where the Tj(p̂) are multivariate Chebyshev polynomials. For the interval [−1, 1], the univariate

Chebyshev polynomials are defined recursively through

T0(x) = 1

T1(x) = x

Td+1(x) = 2xTd(x)− Td−1(x).

Univariate Chebyshev polynomials for the general interval [a, b] are given by transformations

Td

(
2x− b− a
b− a

)
.

Multivariate versions of the Chebyshev polynomials are defines as sums of products of the

univariate ones. The derivatives of this guess are

Ip̂i = eB(p̂)Bp̂i = eB(p̂)
d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

Ip̂ip̂j = eB(p̂)
[
(Bp̂i)

2 +Bp̂ip̂j
]

= eB(p̂)

 d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

2

+

 d∑
j=2

αj
∂2Tj
∂p̂i∂p̂j

(p̂)


Plugging the guess into (5) gives

0 =

[
(1− γ)

n∑
i=1

µci p̂i +
1

2
(1− γ)2σ2c − δθ

]
+ e−

∑d
j=0 αjTj(p̂)θ

+

n−1∑
i=1

θ

 d∑
j=1

αj
∂Tj
∂p̂i

(p̂)


p̂itλii +

n∑
j=1
j 6=i

p̂jtλji

 +

n−1∑
i=1

θ(1− γ)

 d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

σc,p̂i

+
1

2

n−1∑
i=1

n−1∑
k=1

θ

(θ − 1)

d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

d∑
j=1

αj
∂Tj
∂p̂k

(p̂) +

d∑
j=2

αj
∂2Tj
∂p̂i∂p̂k

(p̂)

σp̂iσ′p̂k .
This equation is defined on the simplex ∆n−1. We partition this simplex by choosing grid points

according to the Chebyshev methodology. Evaluating the equation on every grid point leaves us

with a number of algebraic equations whose solution gives the Chebyshev coefficients αj .

C Pricing kernel

The pricing kernel is given by:

ξ0,t = exp

(∫ t

0
−δθ − (1− θ)I−1(p̂s)ds

)
C−γt (I(p̂t))

θ−1
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and has dynamics

dξ0,t
ξ0,t

= −δθdt− (1− θ)I−1 dt− γdc+
1

2
γ2σ2cdt

− (1− θ)
n−1∑
i=1

Ip̂i
I
dp̂i +

1

2

n−1∑
i=1

n−1∑
j=1

(θ − 1)

[
Ip̂ip̂j
I

+ (θ − 2)

(
Ip̂iIp̂j
I2

)]
σp̂iσ

′
p̂j
dt

− γ(θ − 1)
n−1∑
i=1

Ip̂i
I
σc,p̂idt,

where p̂ = (p̂1, p̂2, ..., p̂n). For later use, we abbreviate the drift terms

µξ = −δθ − (1− θ)I−1(p̂) − γ
n∑
i=1

µci p̂i +
1

2
γ2σ2c −

n−1∑
i=1

(1− θ)
Ip̂i
I

p̂itλii +

n∑
j=1
j 6=i

p̂jtλji


+

1

2

n−1∑
i=1

n−1∑
j=1

(θ − 1)
[Ip̂ip̂j
I

+ (θ − 2)

(
Ip̂iIp̂j
I2

)]
σp̂iσ

′
p̂j

− γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂i .

D Price-dividend ratio

We want to price a claim on levered consumption. Under the investor filtration, the dividends

follow

d lnDt = µ̄dt+ φ

(
n∑
i=1

(µci − µ̄)p̂i

)
dt+ φσc

(√
1− ρ2dŴ c

t + ρdŴ π
t

)
.

Let ω denote the log price-dividend ratio. For g(ξ,D, ω) = ξDeω, the Feynman-Kac formula

yields
Dg(ξ,D, ω)

g(ξ,D, ω)
+ e−ω = 0. (6)

Itô’s Lemma gives

Dg

g
= µξ + µD + µω +

1

2

d[ω]

dt
+
d [ξ,D]

ξDdt
+
d [ω,D]

Ddt
+
d [ω, ξ]

ξdt
.

Another application of Itô’s Lemma leads to

dω =

n−1∑
i=1

ωp̂idp̂i +
1

2

n−1∑
i=1

n−1∑
j=1

ωp̂ip̂jσp̂iσ
′
p̂j
dt

where the subscripts p̂i and p̂ip̂j denote first and second derivatives with respect to the respective

state variables p̂i. We can formulate the drift µω as a function of the derivatives ωp̂i and ωp̂i,p̂j
and p̂i:

µω =

n−1∑
i=1

ωp̂i

p̂itλii +

n∑
j=1
j 6=i

p̂jtλji

 +
1

2

n−1∑
i=1

n−1∑
j=1

ωp̂ip̂jσp̂iσ
′
p̂j
.
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The quadratic variation terms are:

d[ω] =

n−1∑
i=1

n−1∑
j=1

ωp̂iωp̂jσp̂iσ
′
p̂j
dt

d[ξ, ω]

ξ
= −(1− θ)

n−1∑
i=1

Ip̂i
I
ωp̂iσp̂iσ

′
p̂i
dt+

n−1∑
i=1

n−1∑
j=1

Ip̂i
I
ωp̂jσp̂iσ

′
p̂j
dt− γ

n−1∑
i=1

ωp̂iσc,p̂idt

d[ξ,D]

ξD
= −γφσ2c − (1− θ)

n−1∑
i=1

Ip̂i
I
φσc,p̂idt

d[ω,D]

D
=

n−1∑
i=1

ωp̂iφσc,p̂idt.

Plugging everything into (6) gives the following PDE for ω:

− δθ − (1− θ)I−1 + e−ω − γ
n∑
i=1

µci p̂i + µ̄+ φ

(
n∑
i=1

(µci − µ̄)p̂i

)
+

1

2
(φ− γ)2σ2c

+
n−1∑
i=1

(
(θ − 1)

Ip̂i
I

+ ωp̂i

)p̂itλii +
n∑
j=1
j 6=i

p̂jtλji

 +
n−1∑
i=1

(
(φ− γ)(θ − 1)

Ip̂i
I

+ (φ− γ)ωp̂i

)
σc,p̂i

+
n−1∑
i=1

(
1

2
(θ − 1)(θ − 2)

(
Ip̂i
I

)2

+ (θ − 1)
Ip̂i
I
ωp̂i +

1

2
ω2
p̂i

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)(θ − 2)

Ip̂iIp̂j
I2

+ ωp̂iωp̂j

)
σp̂iσ

′
p̂j

+
n−1∑
i=1

1

2

(
(θ − 1)

(
Ip̂ip̂i
I

)
+ ωp̂ip̂i +

1

2
ω2
p̂i

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)

Ip̂ip̂j
I

+ ωp̂ip̂j

)
σp̂iσ

′
p̂j

= 0.

Similar to the wealth-consumption ratio, we approximate the price-dividend ratio U(p̂) = eω

with a multivariate Chebyshev polynomial expansion:

U(p̂) = exp


d∑
j=0

βjTj(p̂)


and solve the PDE numerically.
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E Pricing of real bonds

Let the price of a real bond expiring at time T be denoted by BT
t = Et[ξt,T ] with the real pricing

kernel

ξt,T = δθ
(
CT
Ct

)−γ
exp

{
−δθ(T − t) + (θ − 1)

(∫ T

t
exp(−v(p̂))ds+ v(p̂)

)}

Denote bt = lnBT
t . The Feynman-Kac formula applied to H(ξt, bt) = ξte

bt yields the partial

differential equation:

0 = AH = µξ + µb +
1

2

d[bt]

dt
+
d[ξ, bt]

ξdt
. (7)

The dynamics of bt are

dbt =
∂bt
∂t

+
n−1∑
i=1

bp̂idp̂i +
1

2

n−1∑
i=1

n−1∑
j=1

bp̂ip̂jσp̂iσ
′
p̂j
dt.

Plugging everything into (7) gives the following PDE for bt:

− δθ − (1− θ)I−1 − γ
n∑
i=1

µci p̂i +
1

2
γ2σ2c +

∂bt
∂t

+
n−1∑
i=1

(
(θ − 1)

Ip̂i
I

+ bp̂i

)p̂itλii +
n∑
j=1
j 6=i

p̂jtλji

 − γ(θ − 1)
n−1∑
i=1

Ip̂i
I
σc,p̂i − γ

n−1∑
i=1

ωp̂iσc,p̂i

+
n−1∑
i=1

(
1

2
(θ − 1)(θ − 2)

(
Ip̂i
I

)2

+ (θ − 1)
Ip̂i
I
bp̂i +

1

2
b2p̂i

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)(θ − 2)

Ip̂iIp̂j
I

+ bp̂ibp̂j

)
σp̂iσ

′
p̂j

+
n−1∑
i=1

1

2

(
(θ − 1)

(
Ip̂ip̂i
I

)
+ bp̂ip̂i +

1

2
b2p̂i

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)

Ip̂ip̂j
I

+ bp̂ip̂j

)
σp̂iσ

′
p̂j

= 0.

Note that the PDE for the bond price involves a time derivative. We approximate the bond price

BT
t at each time point t by multivariate Chebyshev polynomials:

BT
t = exp


n∑
j=0

αj,t,TTj(p̂)

 .

We use an explicit Euler discretization for the time derivative and solve the PDE recursively

backwards in time, starting from the boundary condition ebT = 1, i.e. αj,T,T = 0.
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F Pricing of nominal bonds

Let the price of the nominal bond expiring at time T be

BT,$
t = Et[ξ

$
t,T ] = Et

[
ξt,T × exp

(∫ T

t
−πτdτ

)]
and b$t = lnBT,$

t . Then the Feynman-Kac formula applied to H(ξ$t , b
$
t ) = ξ$t e

b$t yields the partial

differential equation

0 = AH = µξ$ + µb$ +
1

2

d[b$t ]

dt
+
d[ξ$, b$t ]

ξdt
(8)

Notice that

dξ$

ξ$
=
dξ

ξ
− dπ +

1

2
d[π]− d[ξ, π]

ξ

The dynamics of b$t are

db$t =
∂b$t
∂t

+

n−1∑
i=1

b$p̂idp̂i +
1

2

n−1∑
i=1

n−1∑
j=1

b$p̂ip̂jσp̂iσ
′
p̂j
dt.

Plugging everything into (8) gives the following PDE for b$t :

− δθ − (1− θ)I−1 − γ
n∑
i=1

µci p̂i +
1

2
γ2σ2c +

∂b$t
∂t
−

n∑
i=1

µπi p̂i +
1

2
σ2π + γρσcσπ

+

n−1∑
i=1

(
(θ − 1)

Ip̂i
I

+ bp̂$i

)p̂itλii +

n∑
j=1
j 6=i

p̂jtλji


− γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂i − γ

n−1∑
i=1

b$p̂iσc,p̂i − (θ − 1)

n−1∑
i=1

Ip̂i
I
σπ,p̂i −

n−1∑
i=1

b$p̂iσπ,p̂i

+

n−1∑
i=1

(
1

2
(θ − 1)(θ − 2)

(
Ip̂i
I

)2

+ (θ − 1)
Ip̂i
I
b$p̂i +

1

2
(b$p̂i)

2

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)(θ − 2)

Ip̂iIp̂j
I

+ b$p̂ib
$
p̂j

)
σp̂iσ

′
p̂j

+

n−1∑
i=1

1

2

(
(θ − 1)

(
Ip̂ip̂i
I

)
+ b$p̂ip̂i +

1

2
(b$p̂i)

2

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)

Ip̂ip̂j
I

+ b$p̂ip̂j

)
σp̂iσ

′
p̂j

= 0.

Again, this PDE involves a time derivative. As for the prices of real bonds, we approximate

BT,$
t at each time point t by multivariate Chebyshev polynomials, use an explicit Euler discre-

tization for the time derivative and solve the PDE recursively backwards in time, starting from

the boundary condition eb
$
T = 1.
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Figure 1: Time-varying disaster probabilities (estimated from consumption growth and
inflation)

The blue solid line depicts the time-varying disaster intensity which Wachter (2013) ex-
tracts from asset price data via reverse engineering. Our special thanks go to Jessica
Wachter for making this time series available to us. The red dashed line shows 5-year
moving averages of the estimated p̂3 + p̂4 from our model for the period from 1947 to
2014. The correlation between the two time series is 0.88.
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Figure 2: Time-varying disaster probabilities (estimated from consumption growth only)

This figure depicts essentially the same as Figure 1. But now the estimation is based on
consumption data only. In that case, the information criterion favors a two-state Markov
chain with expected consumption growth rates of 2.34 or -1.80 percentage points annually.
The correlation between the two time series is now 0.33.
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p̂1 p̂2

p̂3 p̂4

Figure 3: Fundamental data and filtered probabilities

The upper graph shows time series plots of the data for consumption growth and inflation
over our sample period from 1947 to 2014. The lower graphs present the real-time filtered
probabilities for each of the four states. Shaded areas indicate NBER recessions.
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Figure 5: Time-varying disaster probabilities (estimated from consumption growth and
inflation)

The blue solid line depicts the time-varying disaster intensity which Wachter (2013) ex-
tracts from asset price data via reverse engineering. The red dashed line shows 5-year
moving averages of the estimated p̂3 + p̂4 from the constrained model for the period from
1947 to 2014. The correlation between the two time series is 0.88.
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Figure 7: Conditional stock return volatilities

The figure depicts conditional 20-quarter rolling window stock return volatilities. The red
dashed line is based on the estimated time series of the p̂i depicted in Figure 3 as well
as the CRSP value-weighted index. The blue solid line is based on the same time series
of the p̂i, but uses the returns which our model would have implied given this path of
consumption, inflation, and state variables (this series is multiplied by 3). The model
parameters are estimated using macroeconomic data since 1947. The correlation between
the data and the model-implied time series is 0.41.

42



Data Model
correlation vs. p̂3 correlation vs. p̂3

Data Model
correlation vs. p̂4 correlation vs. p̂4

Figure 8: Scatter plots of stock-bond return correlations

The figure depicts scatter plots for the regressions presented in Table 4. The dependent
variables in each regression are correlations of quarterly holding-period returns of stocks
and 5-year nominal bonds computed over rolling windows of 20 quarters. The independent
variables are the logarithms of the averages of p̂3 and p̂4 over the same 20 quarters periods.
The left figures labeled “Data” are based on the estimated time series of the p̂i depicted in
Figure 3 as well as the CRSP value-weighted index and the interpolated yield curve data
from the Federal Reserve. The right figures labeled “Model” are based on the same time
series of the p̂i, but use the returns which our model would have implied given this path of
consumption, inflation, and state variables. The financial data for these regressions starts
in 1965. The model parameters are estimated using macroeconomic data since 1947.
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Figure 9: Conditional stock-bond return correlation

The figure depicts conditional 20-quarter rolling window correlations of stock returns and
returns of 5-year nominal bonds. The red dashed line is based on the estimated time
series of the p̂i depicted in Figure 3 as well as the CRSP value-weighted index and the
interpolated yield curve data from the Federal Reserve. The blue solid line is based on
the same time series of the p̂i, but uses the returns which our model would have implied
given this path of consumption, inflation, and state variables (this series is multiplied
by 3). The model parameters are estimated using macroeconomic data since 1947. The
correlation between the data and the model-implied time series is 0.54.
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Figure 10: Conditional stock-bond return correlation

The figure depicts conditional 20-quarter rolling window correlations of stock returns and
returns of long-term Treasury bonds. The red dashed line is based on the estimated time
series of the p̂i depicted in Figure 3 as well as the CRSP value-weighted index and data on
long-term Treasury bonds’ returns from the Ibbotson Stocks, Bonds, Bills and Inflation
Yearbook from 1947 till 2014. The blue solid line is based on the same time series of the p̂i,
but uses the returns which our model would have implied given this path of consumption,
inflation, and state variables (this series is multiplied by 3). The model parameters are
estimated using macroeconomic data since 1947. The correlation between the data and
the model-implied time series is 0.54.
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Panel A: Consumption and inflation parameters

µi1 µi2 µi3 µi4 (σi)2 ρσCσπ ρ
Consumption growth 2.365 1.898 0.444 -0.997 1.016 -0.136 -0.218

(0.487) (0.155) (0.315) (0.631) (0.099) (0.030) (0.103)
Inflation 4.704 2.161 9.514 -2.917 0.382

(0.975) (0.846) (1.668) (2.438) (0.035)

Panel B: Markov chain transition probabilities
to state 1 to state 2 to state 3 to state 4

from state 1 0.909 0.027 0.039 0.025
(0.202) (0.087) (0.160) (0.049)

from state 2 0.022 0.970 0.008 0
(0.029) (0.056) (0.027) (0.024)

from state 3 0.135 0.037 0.828 0
(0.064) (0.077) (0.088) (0.028)

from state 4 0 0.337 0 0.663
(0.065) (0.253) (0.152) (0.203)

Panel C: Optimal number of states

3 states 4 states 5 states 6 states
Bayes Information Criterion 835 805 854 896

Table 1: Markov chain estimation

This table reports the results from our baseline Markov chain estimation. Growth rates
are given in percentage points and annualized. Data are from 1947 to 2014 at quarterly
frequency. The numbers in parantheses give standard errors for all the estimated parame-
ters. They have been obtained from a standard block bootstrap with block length of 10
quarters.
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Panel A: Model
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

0.114 0.009 0.012 0.733
(12.627) (10.833) (4.724)

[0.085, 0.174] [0.004, 0.020] [0.000, 0.023] [0.220, 0.785]

0.079 0.015 0.615
(12.143) (5.997)

[0.071, 0.129] [0.007, 0.029] [0.104, 0.763]

Panel B: Data
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

0.278 0.012 0.023 0.304
(12.679) (1.416) (4.475)

0.214 0.022 0.214
(9.056) (1.976)

Table 2: Regressions of stock return volatilities on state variables

The table reports results from time series regressions. The dependent variables in each
regression are volatilities of quarterly stock returns computed over rolling windows of
20 quarters. The independent variables are logarithms of the averages of the p̂i over the
same 20 quarters periods. The regressions labeled “Data” are based on the estimated
time series of the p̂i depicted in Figure 3 as well as the CRSP value-weighted index
and the interpolated yield curve data from the Federal Reserve. The regressions labeled
“Model” are based on the same time series of the p̂i, but use the returns which our model
would have implied given this path of consumption, inflation, and state variables. The
financial data for these regressions starts in 1965. The model parameters are estimated
using macroeconomic data since 1947. The numbers in parentheses denote Newey-West-
adjusted t-statistics (20 lags). The numbers in brackets denote 90% confidence bounds
around the regression coefficients and have been obtained from a Monte Carlo simulation
of the model (5,000 paths of 68 years each).
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Panel A: Model
const. extreme entropy expected inflation realized inflation Adj. R2

0.001 0.269 0.538
(0.106) (5.859)

[−0.038, 0.053] [0.041, 0.618] [0.002, 0.609]
0.032 0.004 0.159

(2.504) (1.930)
[0.009, 0.064] [-0.001, 0.015] [-0.007, 0.584]

0.036 0.003 0.147
(3.130) (1.801)

[0.018, 0.063] [-0.001, 0.012] [-0.007, 0.578]
Panel B: Data

const. extreme entropy expected inflation realized inflation Adj. R2

0.097 0.399 0.187
(2.607) (2.320)
0.147 0.006 0.036

(4.814) (0.855)
0.153 0.004 0.040

(6.010) (0.781)

Table 3: Regressions of stock return volatilities on alternative explanatory variables

The table reports results from time series regressions. The dependent variables in each
regression are volatilities of quarterly stock returns computed over rolling windows of 20
quarters. The independent variables are the average of the extreme entropy (p̂3 ln p̂3 +
p̂4 ln p̂4), the average expected inflation and the average realized inflation, always taken
over the same 20 quarter periods. “Data” and “Model” have the same meaning as in
Table 2.
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Panel A: Model
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

-0.837 0.290 -0.449 0.788
(-4.825) (6.776) (-5.108)

[−1.833, 0.556] [0.065, 0.453] [-0.702, -0.089] [0.172, 0.751]

0.325 0.161 0.087
(0.881) (0.903)

[−0.867, 0.962] [-0.275, 0.473] [-0.009, 0.481]

Panel B: Data
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

-0.512 0.182 -0.294 0.363
(-1.61) (2.731) (-3.608)

0.239 0.091 0.041
(0.923) (0.774)

Table 4: Regressions of stock-bond return correlations on state variables

The table reports results from time series regressions. The dependent variables in each re-
gression are correlations of quarterly holding-period returns of stocks and 5-year nominal
bonds computed over rolling windows of 20 quarters. The independent variables are loga-
rithms of the averages of the p̂i over the same 20 quarters periods. “Data” and “Model”
have the same meaning as in Table 2. The numbers in parentheses denote Newey-West-
adjusted t-statistics (20 lags). The numbers in brackets denote 90% confidence bounds
around the regression coefficients and have been obtained from a Monte Carlo simulation
of the model (5,000 paths of 68 years each).
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Panel A: Model
const. extreme entropy expected inflation realized inflation Adj. R2

0.294 -1.613 0.020
(0.720) (-0.696)

[−1.301, 1.390] [-8.620, 7.868] [-0.010, 0.248]
-0.776 0.195 0.40

(-2.617) (3.523)
[−1.186, 0.167] [-0.066, 0.322] [-0.007, 0.533]

-0.645 0.160 0.410
(-2.630) (3.750)

[−1.015, 0.104] [-0.036, 0.276] [-0.007, 0.547]
Panel B: Data

const. extreme entropy expected inflation realized inflation Adj. R2

-0.047 0.560 0.012
(-0.096) (0.220)
-0.613 0.167 0.334

(-2.028) (3.172)
-0.488 0.135 0.328

(-1.904) (3.324)

Table 5: Regressions of stock-bond return correlations on alternative explanatory variables

The table reports results from time series regressions. The dependent variables in each
regression are correlations of quarterly holding-period returns of stocks and 5-year nominal
bonds computed over rolling windows of 20 quarters. The independent variables are the
average of the extreme entropy (p̂3 ln p̂3 + p̂4 ln p̂4), the average expected inflation and the
average realized inflation, always taken over the same 20 quarter periods. “Data” and
“Model” have the same meaning as in Table 2.
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Data Model
Average real equity return 0.082 0.037

(0.005)
Volatility of real equity returns 0.164 0.073

(0.005)
Average nominal 3m rate 0.043 0.060

(0.005)
Volatility of nominal rate 0.050 0.006

(0.001)
Average yield spread (5y - 3m) 0.010 -0.005

(0.003)
Stock-bond correlation 0.114 -0.027

(0.158)

Table 6: Unconditional asset pricing moments

The table shows unconditional asset pricing moments. “Data” refers to the CRSP value-
weighted index for stocks and to the data set provided by Gürkaynak, Sack, and Wright
(2007) for bonds. The model-implied values are computed via Monte Carlo simulation
where the model is parametrized according to Table 1. All numbers are computed based
on monthly observations and then annualized. In the data the average yield spread (5y -
3m) is available from 1952 onwards. The correlation between nominal stock and 5y-bond
returns is based on five-year rolling window estimates with data from 1962 onwards.
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