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Abstract

In this paper, we propose a robust methodology for assessing estimation error in empirical datasets.
In contrast to recent findings, we show that established portfolio strategies outperform the equally
weighted portfolio rule even in larger portfolios, despite increasing absolute estimation error. We find
that, when short-sale constraints are introduced and in consideration of portfolios that do not rely on
expected return estimates the relationship between portfolio size and measurement error, as previously
hypothesised in literature, does generally hold. Measurement error in these strategies, however, is
significantly reduced and their application to larger asset universes is yet beneficial. Finally, we discuss
the usefulness of statistics to assess estimation error and propose an intuitive measure of return-loss
due to “unfavourable estimation error” based on the downside deviation of the return distribution that
quantifies the share of measurement error investors should ultimately be concerned about.
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1 Introduction

Markowitz’s (1952) mean-variance optimal framework has become one of the, if not the most impor-

tant benchmark model in financial research. But since it requires the estimation of both, expected

return and the covariance matrix, portfolio strategies targeting mean-variance optimality are prone to

parameter estimation error. This error occurs when the sample moments are poor estimates of the true

parameters (’sampling error’) or the distribution of returns is non-stationary over time. Misspecifica-

tion in the historic (ex-post) estimates ultimately leads to poor out-of-sample performance as compared

to the performance under ex-ante parameter knowledge (Chopra and Ziemba (1993); Broadie (1993)).

It is generally noticeable that the conditions affecting the magnitude of parameter estimation error

have not been sufficiently exploited. Only recently, DeMiguel et al. (2009b), Kan and Zhou (2007) and

Duchin and Levy (2009) also attempted to better understand the conditions that affect the degree of

measurement error in Markowitz’s mean-variance optimal strategy and its extensions. Based on their

findings, we want to further examine the hypothesis that the degree of parameter estimation error in

mean-variance optimal investment strategies depends on the number of assets in the portfolio they are

applied to as well as on investors’ risk aversion. More specifically, Kan and Zhou (2007) provide an an-

alytical, closed-form solution for a utility-loss function of using the parameter estimates in finding the

mean-variance optimal weights, rather than knowing the true parameters. They conclude that estima-

tion error is higher and mean-variance optimal strategies perform relatively worse in larger portfolios

as a result of estimation error. This is empirically supported by findings of DeMiguel et al. (2009b),

who claim that no mean-variance optimal strategy will on average outperform the equally weighted

diversification that is free from estimation error. However, such solution is not available for short-sale

constrained portfolio problems as it involves solving a non-linear quadratic function. In fact, Duchin

and Levy (2009) earlier find the short-sale constrained mean-variance optimal strategy to perform

relatively better in larger portfolios. To arrive at these highly contradictory findings, researchers have
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so far relied on methods in which the portfolios of different size are of more or less entirely dissimilar

composition. It may seem quite obvious that no meaningful relationship between portfolio size and

strategy performance can and should be inferred from the comparison of entirely different portfolio

constituents. DeMiguel et al. (2009b), for example, compare the performance of investment strategies

applied to a universe that consist of 20 Fama French portfolios with a universe of 8 MSCI country

indices to assess the impact of increasing the size of the opportunity set (portfolio size).1 Duchin and

Levy (2009) fix their asset universe to the 30 Fama French industry portfolios and assess the impact of

increasing portfolio size within the universe of the N=30 assets. Their methodology trades one flaw for

another as “when n < 30, they consider the first n assets of the 30 Fama French industry portfolios”.

In other words, the choice of the “additional” asset is completely arbitrary and a robust estimation can

neither be achieved. To remove this sampling bias and to resolve the prevailing conflict in literature

we introduce an improved methodology to assess the impact of parameter estimation risk in empirical

datasets.

In the first part of this paper we review the most relevant literature and provide an introduction

to the methods used to model estimation error. We then present our more robust methodology and

apply it to the most commonly employed mean-variance investment strategies and their extensions. In

doing so, we confirm that with increasing portfolio size the measurement error in strategies that rely

on parameter estimates increases, but show that higher absolute estimation error does not necessarily

lead to worse ex-ante performance relative to other investment strategies and the equal weighting

investment rule. In this context, we point out that out-of-sample outpeformance is dependent on an

investor’s peformance evaluation method. Finally, we resolve the apparent conflict in results between

DeMiguel et al. (2009b) and Duchin and Levy (2009) and propose an intutive measure of return-loss

due to “unfavourable estimation error” based on the Sortino ratio.

1Where the portfolios are taken as assets.
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2 A review of relevant literature and methods

used to study estimation error

Harry Markowitz’s (1952) single-period theory on the optimal portfolio weights that provide the best

trade-off between the mean return and risk (as measured by variance) of a portfolio, is one of the most

fundamental ideas of portfolio management. To describe it in line with our improved methodology,

let RN be the space of N excess return vectors of length T, where N is number of assets in the asset

universe under consideration. Then Rn ⊂ RN is a space of n excess return vectors, where n is the size

of a portfolio that consists of assets drawn from a universe of size N. Denote by rt and rft the rates of

return on n risky assets and the risk-free asset at time t (t=1,2,...,T). Then the excess returns (from

here on “returns”) at time t are defined as Rt = rt − rft1n, where 1n is an nx1 vector of ones.

In a portfolio of n assets, let µ = (µ1, µ2, ...µn)′ be the vector of their respective mean returns and

w = (w1, w2, ..., wn)′ the vector of portfolio weights. It follows that any portfolio will have an expected

return w′µ and variance w′Σw, where Σ is the covariance matrix of asset returns. Given a target value

µ∗ for the mean return of a portfolio, Markowitz (1952) defines an efficient portfolio (w∗) as one that

allocates wealth to its constituents subject to the solution of the following optimization problem:

arg min
w

w′Σw s.t. w′µ = µ∗ and 1
′
nw = 1. (1)

The constraint 1′nw = 1 thereby ensures that the portfolio is fully invested. For the estimated

portfolio weights to actually be the true optimal investment proportions, one must assume the true

parameters µ and Σ to be known. In practice, however, µ and Σ are unobservable and need to be

estimated from historical data. Under the assumption that the distribution of returns is i.i.d. normal,

the sample mean return µ̂ and the covariance matrix Σ̂, estimated over T observations, are then the

best estimates of µ and Σ.2

2We assume T > n so that Σ is invertable.
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µ̂ =
1

T

T∑
t=1

Rt (2)

Σ̂ =
1

T − 1

T∑
t=1

(Rt − µ̂)′(Rt − µ̂) (3)

Lai et al. (2011) point out that these are also “method-of moments estimates without the assump-

tion of normality and when the i.i.d. assumption is replaced by weak stationarity.” In the classical

“plug-in” method, the obtained sample estimates are then treated as if they were the true parameters

and plugged into (1). A vast amount of research has, however, proven that replacing µ and Σ by

their sample estimates may lead to poor portfolio performance in the following “out-of-sample” periods

(T+1,T+2,...) as result of erroneous estimation (Jobson and Korkie (1981); Michaud (1989)). Chopra

and Ziemba (1993) discuss the impact of misspecification in normally distributed portfolio selection

problems and find that the largest misspecification is a result of errors in the mean returns that are

about ten times as important as errors in the covariance matrix estimates. Jagannathan and Ma

(2003) even claim that the “estimation error in the sample mean is so large that nothing much is lost

in ignoring the mean all together”.

Kan and Zhou (2007) analytically study the estimation error and derive an expression for the “out-

of-sample loss due to employment of estimated parameters rather than the true moments”. Following

their study, we consider an investor who chooses the set of portfolio weights that maximises his utility

defined as:

U(w) = w′µ− γ

2
w′Σw. (4)

Maximizing (4) may be understood as problem (1), with the addition of a constant γ (where γ > 0)

that is the slope parameter and can be used as an indicator of an investor’s risk aversion3. There are

good reasons to optimise the mean-variance utility function instead of the Markowitz mean-variance

problem (1). Bodnar et al. (2013) note that only investing into the utility maximizing portfolio in-

vestors will get the true mean-variance efficient portfolio. This is the case, since all solutions to this

problem will lie on the upper part of the parabola of mean-variance efficient portfolios, while this does

not always hold true under (1).
3Though it is generally not equal to the risk aversion coefficient as defined by Pratt (1964).

5



Further, it is known that the set of optimal weights that maximises (4) can be expressed as:

w∗ =
1

γ
µΣ−1. (5)

Based on the optimal weights, w∗, we can estimate the corresponding maximum utility an investor

could obtain by plugging (5) into (4):

U(w∗) =
1

2γ
µ′Σ−1µ. (6)

In pratice, w∗ is not known, since µ and Σ are unkown and, thus, needs to be estimated as a

function of the data (ŵ = f(R1, ..., RT )). For each set of portfolio weights, the realised out-of-sample

mean and variance are then given by µ̃ = ŵ′µ and σ̃2 = ŵ′Σŵ respectively. These are used to express

the expected utility, conditional on the weights being chosen as ŵ (and the strategy ŵ played infinitely

many times).

E[Ũ(ŵ)] = ŵ′µ− γ

2
ŵ′Σŵ (7)

The expected loss from using ŵ rather than w∗ can then be defined by the following expression:

E[L(w∗, ŵ)] = U(w∗)− E[Ũ(ŵ)]. (8)

Since our focus remains on the relationship between expected performance of the investment rules

as a function of the portfolio size n, we are particularly interested in Kan and Zhou’s derivation of

an expression that relates the expected loss in out-of-sample performance to n, T, and γ. Note that

when the parameters µ and Σ are estimated by µ̂ and Σ̂ through (2) and (3), the vector of estimated

optimal portfolio weights is given as:

ŵ =
1

γ
µ̂Σ̂−1. (9)

Assuming that the distributions of returns Rt are jointly normal, µ̂ and Σ̂ are independent and

distributed as µ̂ ∼ N(µ,Σ/T ) and T Σ̂ ∼ Wn(T − 1,Σ). Following Kan and Zhou (2007) it can then

be shown that, when T > n+4, the following closed-form relationship holds:

E[L(w∗, ŵ)] = (1− k)
(µ′Σ−1µ)

2γ
+

nT (T − 2)

2γ(T − n− 1)(T − n− 2)(T − n− 4)
(10)
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where k =

(
T

(T − n− 2)

)[
2− T (T − 2)

(T − n− 1)(T − n− 4)

]
.

We observe that as n increases, the loss increases, and as γ increases, the loss decreases. Note that

this relationship as such can only be said to hold for short-sale unconstrained mean-variance optimal

portfolios since there exists a linear, closed-form solution. Under the same assumptions and using

Monte Carlo methods, DeMiguel et al. (2009b) empirically show that in an unconstrained setting, the

naive equally weighted investment strategy (which does not rely on any parameter estimates) is “more

likely to outperform (out-of-sample) when the portfolio size is large, because this improves the poten-

tial for diversification while at the same time increases the number of parameters to be estimated in

mean-variance optimal strategies”. They find evidence that naively diversified portfolios consistently

have higher out-of-sample Sharpe ratios and certainty equivalent return than those constructed based

on estimated moments of the return series. From simulated data, they further find that the estima-

tion window needed for the sample-based mean-variance strategy to outperform the naive investment

rule is around 3000 months for a portfolio with 25 assets. Results of Tu and Zhou (2011) are in line

with these findings, as both studies show that increasing the estimation period favourably affects the

performance of mean-variance based strategies. Given a practitioners approach to estimating the mo-

ments of the returns series over significantly shorter horizons, this leads one to the assumption that

mean-variance optimal strategies should not outperform their heuristic counterparts on average. Our

research is aimed to show whether this also holds for the minimum-variance and short-sale constrained

derivations of the Markowitz mean-variance optimal problem that are obtained by solving a quadratic

optimisation problem. The hypotheses to be tested may, thus, be summarized as follows:

Hypothesis 1.1: Estimation error in shortsale constrained mean-variance optimal (minimum-

variance) portfolios increases with the size n of the asset universe they are applied to.

Hypothesis 1.2: Shortsale constrained mean-variance optimal (minium-variance) portfolio strate-

gies perform relatively worse when applied to larger asset universes and consistently underperform the

1/n rule due to estimation error.

Hypothesis 2.1: Estimation error in shortsale constrained mean-variance optimal portfolios de-

creases with higher investor risk aversion γ.

Hypothesis 2.2: Assuming 2.1 holds, then estimation error in mean-variance optimal portfolios

can be reduced by constraining the volatility of the ex-post optimal portfolio.
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3 Towards a more robust estimation method

Our novel methodology is an extension of the “rolling-sample” approach that has become the standard

model for assessing parameter estimation risk and considers a large number of samples over time. The

algorithm can be described as follows:

1. Given a datasets of length M trading days of asset prices for n assets, choose an estimation

window of length T where M > T and a rolling interval P.

2. Starting in T+1, estimate µ̂ and Σ̂ from the sample return series over the previous T days for n

assets. Based on the estimated parameters find the vector of estimated optimal portfolio weights (ŵ),

subject to the chosen portfolio strategy.

3. “Hold” the n assets in proportion ŵ over an observation (“out-of-sample”) period of length O-

trading days and estimate the daily returns over period T+1 to T+1+O.

4. Drop the earliest P days of returns and add the next P days of returns of the M-days period.

Repeat steps 2-4.

Following through with this algorithm when P=O, it becomes a portfolio strategy with rebalacing

frequency P and will ultimately yield a series of (M – T) daily out-of-sample returns that can be used

for performance assessment.

In our study, we choose an estimation window of length T=900 days (that is 30 months of daily

returns). While research has shown that longer estimation windows can significantly improve the per-

formance of investment strategies when relying on parameter estimates, estimation windows of more
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than 60 months are rarely used in practice.4 Following DeMiguel et al. (2009b) we employ a O=30 days

observation window and P=30 days rolling interval. Other studies like Duchin and Levy (2009) only

assess the performance over the following year. Whether extending the estimation and observation pe-

riod is ultimately favourable, depends largely on the statisitical properties of the data. Broadie (1993)

and Scherer (2007) point out that increasing the estimation period when the data is non-stationary

may have an unfavourable impact on out-of-sample performance.

Definition 1: We propose an extension of the rolling window estimation to all possible combinations

of a portfolio of n assets, drawn from a sample of N assets. Hence, for a given portfolio size n there

are cn|N ways to sample it from the universe of N assets, where cn|N is given by:

cn|N =

 N

n

 =
N !

(N − n)!n!
. (11)

This yields the cn|N × n matrix of possible return series combinations that defines the space RN .

To achieve a more robust estimate of the out-of-sample performance, we find the mean ex-ante return

and variance across all cn|N × n portfolio combinations. In the same way, we estimate all other per-

formance statistics. Employing this methodology allows for a very robust estimation of the effect of

increasing n on parameter estimation error as it fixes the sample universe and models all combinations

an investor could choose within for a chosen portfolio size. Achieving this desirable degree of robust-

ness, unfortunately, comes at the cost of high computational requirements. Our proposed methodology

can be considered suitable for testing datasets, where N is smaller than 25. When the ratio of N/n

becomes larger, cn|N grows exponentially and optimising portfolios across all combinations becomes

difficult. Previous research in this field, however, rarely considers any N larger than 30. This makes

our approach suitable for assessing the most commonly employed sample sizes.

In addition, we consider the case where the joint distribution of returns over M observations is

known and employ the investment strategies on the latter. There is then no estimation error and the

mean-variance optimal portfolio will outperform. Employing any other rule would be irrational. We,

thus, label the corresponding returns as the performance under “true parameter knowledge”.

4DeMiguel et al. (2009b)
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Table 4.1: List of tested asset-allocation strategies

This table presents the employed asset-allocation strategies and their abbreviations that will be used
in this paper. In our notation, a strategy can either be identified by its indicator variable z or its
abbreviation.

z Asset-allocation strategy Abbr.

1 (Naive) equal weighting of all portfolio constituents 1/n or ew

2 Shortsale unconstrained mean-variance optimal portfolio mvo

3 Shortsale constrained mean-variance optimal portfolio mvo-c

4 Shortsale unconstrained minimum-variance portfolio mv

5 Shortsale constrained minimum-variance portfolio mv-c

4 Description of investment rules employed

In our study, we test the most commonly employed mean-variance investment strategies in their respec-

tive short-sale unconstrained and constrained forms against the naive diversification that does not rely

on parameter estimates. A comprehensive summary of all tested strategies and their corresponding

abbreviations is given in Table 4.1. To find the optimal portfolio weights, all mean-variance strategies

rely on the estimated covariance matrix Σ̂ of portfolio asset returns and, subject to the chosen strat-

egy, directly on the estimated mean of the return series, µ̂, as well. These parameters are estimated

over a rolling estimation period (“ex-post”) of length T, from which the optimal weight of each asset

is derived. The optimised investment proportions are expected to also be optimal over the following

out-of-sample (“ex-ante”) period. For this assumption to hold, the joint distribution of returns must

be stable over time. Let µ̊ and Σ̊ be the “true”, unknown in-sample parameters estimated over the

entire series of M-days. Then the ex-post estimated optimal portfolio weights ŵ will only correspond

to the ex-ante optimal portfolio weights ẘ, when µ̂ and Σ̂ are perfect estimators of µ̊ and Σ̊.5

5To assess the effect of estimation error we assume that µ̊ and Σ̊ constitute the “population parameters”, i.e. µ̊ = µ
and Σ̊ = Σ. While these are estimated over a sufficiently long dataset, these are generally not perfect estimates of the
unkown population moments and in themselves subject to estimation error.
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4.1 Equally weighted (naively diversified) portfolios

When assigning an equal weight to each portfolio asset i (i=1, 2, ..., n), the vector wew is simply

constituted by:

wew = (
1

n
, ...,

1

n
)′ εRn. (12)

The mean return of the portfolio is then an equally weighted average of the returns of all n port-

folio constituents. In estimating the portfolio weights, the equally weighted portfolio does not take

the dependencies between portfolio assets into account and, therefore, does not rely on the estimated

moments of the return series. When investors have no knowledge about the future distribution of

returns or cannot rely on historic return distributions, the 1/n rule will be optimal. Despite its long

history, the 1/n rule is still one of the most commonly used investment rules, especially by private

investors who tend to hold a relatively smaller number of assets (Benartzi and Thaler (2001)).

4.2 (Unconstrained) sample based mean-variance optimal portfolios

The sample based mean-variance optimal portfolio that maximises expected investor utility can be

understood as problem (4) when the investor relies on moment estimates. The optimization problem

becomes to find the vector of optimal portfolio weights ŵmvo so that:

max
w

w′µ̂− γ

2
w′Σ̂w s.t. 1′nw = 1. (13)

By assuming an explicit degree of risk aversion (γ) we can find a single mean-variance optimal

portfolio that all investors with the same risk appetite should hold. Most of the models considered

throughout this paper can be expressed as a derivation of (13), subject to their own constraints. Hence,

it is important that the chosen utility function is valid and that results are not sensitive to misspecifi-

cation of the utility function. In this context, Kallberg and Ziemba (1984) find that “utility functions

with similar levels of Arrow-Pratt absolute risk aversion result in similar optimal portfolio weights,

irrespective of the functional form of the utility.” We, therefore, deem the results of our analysis suffi-

ciently robust against any misspecification.

As shown in (9) there is a linear solution to the optimisation problem available, yielding the

tangency portfolio:
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ŵmvo =
1

γ
µ̂Σ̂−1. (14)

4.3 (Unconstrained) sample based minimum-variance portfolio

Chopra and Ziemba (1993) suggest that because forecasting returns is so difficult and estimation error

so pronounced, portfolio outcomes (i.e. out-of-sample performance) could be improved by assuming

that all stocks possess the same expected returns. This idea forms the basis for optimisation towards

a minimum-variance portfolio objective. In the absence of short-sale constraints, solving the following

optimisation problem yields the vector of optimal weights for the minimum-variance portfolio ŵmv:

arg min
w

w′Σ̂w s.t. 1′nw = 1. (15)

It can be shown that there also exists a linear solution for the short-sale unconstrained minimum-

variance portfolio (e.g. Kempf and Memmel (2006)) that is given by:

ŵmv =
Σ̂−11n

1′nΣ̂−11n

. (16)

The underlying assumption of equal expected returns across all assets is stark but Jagannathan

and Ma (2003), among others, provide empirical evidence that the minimum-variance portfolio often

performs better out-of-sample than any other mean-variance optimal portfolio strategy. This suggests

that estimating an additional moment of the return series, in this case the mean, adds significant

parameter estimation risk. Kallberg and Ziemba (1984) discuss the impact of misspecification in nor-

mally distributed portfolio selection problems and find that the largest misspecification is a result of

the errors in sample means that are about ten times as important as errors in the sample covariance

matrix. This holds true for small ratios of n/T, where the estimation error in mean returns does

account for most of the loss of out-of sample performance, as pointed out by Kan and Zhou (2007).

For large n/T, however, the error in the covariance matrix becomes increasingly important.

4.4 Constrained sample based mean-variance optimal portfolio

When estimation error is not a concern, imposing constrains should hurt. Green and Hollifield (1992)

show that mean-variance portfolios contain both extreme positive and negative weights. Introducing a
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short-sale constraint should then reduce the in-sample performance of the investment strategy. On the

other hand, when estimation error is present, research has shown that by constraining the strategies we

may be able to mitigate possible extreme differences between the true and the observed out-of-sample

distribution of returns (Frost and Savarino (1988)).

The optimisation problem for finding the sample based mean-variance optimal portfolio corresponds

to (13) with the additional constraint wi ≥ 0 (i=1,2,...,n), i.e. that the weight of each asset i must

be larger (or equal to) zero. While the problem appears not much different from its short-sale uncon-

strained form, the solution of optimal weights can only be attained by solving a quadratic problem.

Imposing the short-sale constraint yields the following Lagrangian function:

L = w′µ̂− γ

2
w′Σ̂w + w′λ s.t. 1′nw = 1, (17)

where λ = (λ1, ..., λn)′εRn is the vector of Lagrange multipliers for the shortsale constraint and thus

λ ≥ 0.6 Hence, there is no linear, closed-form solution available. As a result, it is neither possible to

derive an expression for the expected loss in out-of-sample performance due to parameter estimation

error as in Kan and Zhou (2007) for this problem. The relationship of portfolio size, investor risk

aversion and the observed out-of-sample loss can, therefore, not be deduced to an analytical solution

but requires an empirical assessment.

4.5 Constrained sample based minimum-variance portfolio

Jagannathan and Ma (2003) provide an extensive assessment of the impact of imposing short-sale con-

straints on the performance of the minimum-variance portfolio. They show that short-sale constraining

a minimum-variance portfolio can be understood as shrinking the elements of the covariance matrix of

the unconstrained portfolio, where the sample covariance matrix is replaced by:

Σ̂mv−c = Σ̂mv − λ1′n − 1nλ
′, (18)

where λ, again, is the vector of Lagrange multipliers for the short-sale constraint. If the short-sale

constraint for the i-th asset is binding (that is wi = 0, (i=1,2,...,n)), then the covariance of the i-th
6λi = 0 if wi > 0, i = 1, 2, ...n
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asset with another asset is shrunk by λi, the magnitude of the Lagrange multiplier associated with

the short-sale constraint. If an estimated large covariance is due to estimation error, the shrinkage

implied by the short-sale constraint leads to a better estimate of the true (population) covariance.7

Jagannathan and Ma’s finding, that when the non-negativity constraints are in place, there is not much

further benefit from applying other shrinkage estimators, leads us to the decision to not incorporate

shrinking methods in our work (though it could certainly be done in future research).

7For a more detailed discussion we refer the reader to Jagannathan and Ma (2003).
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5 Methods for evaluating portfolio

performance and estimation error

5.1 Sharpe ratios8

Practitioners mostly prefer to use the Sharpe ratio as a measure of a portfolio’s performance. The

out-of-sample Sharpe ratio of a strategy z (where z encompasses the space of strategies defined in

Table 4.1) is defined as the ratio of sample mean and the standard deviation of the out-of-sample

excess returns (denoted by µ̃z and σ̃z respectively):

S̃Rz =
µ̃z
σ̃z
. (19)

Reporting the Sharpe ratio revokes practitioners’ interest. But when the objective function is given

by (13), that is maximising expected utility, then Sharpe ratio may not be the appropriate measure.

For once, the Sharpe ratio does not rely on an assumption of risk aversion and, therefore, largely

differs from the objective function. Though, it is a well-known fact that when the true parameters are

known, maximizing Sharpe ratio and the utility may be seen as equivalent, once the true parameters

are unknown, the two are different (Tu and Zhou (2011)).

For an optimisation-based investment strategy to be of any value, it must provide an investor with

a better return for the same level of risk than the naive diversification rule.

5.2 Certainty equivalent return

To compare the value of the investment strategies to an investor, we assume that investor preferences

can be fully described by the mean and variance of a portfolio. At all times, the investor aims to
8Note that all of the statistics presented in the following are reported as averages across cn|N simluations.
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maximise his expected utility for an investment strategy z. Maximising the utility therefore corresponds

to finding the ex-ante mean-variance optimal portfolio for an investor with risk aversion coefficient γ.

(20) can, thus, be understood as the certainty-equivalent return (’CER’) that an investor is willing to

accept instead of adopting the risky portfolio rule z. The out-of-sample CER is given by:

C̃ERz = µ̃z −
γ

2
σ̃2
z . (20)

This facilitates the comparison between strategies as the higher the CER, the higher investor utility.

5.3 (Mean) absolute deviation

To assess the estimation error of any strategy z, we measure the distance from in-sample strategy

optimal mean return and volatility to the out-of-sample observed parameters.

Definition 2: Let µ̇z and σ̇z denote the strategy specific mean return and standard deviation subject

to the vector of “true”, in-sample optimal weights ẘz, i.e. µ̇z = ẘ′zµ̊ and σ̇z =

√
ẘ′zΣ̊ẘz. Then the

distance from µ̃z to µ̇z and σ̃z to σ̇z is respectively given by:

ÃD
µ̊

z =| µ̇z − µ̃z | (21)

ÃD
σ̊

z =| σ̇z − σ̃z | . (22)

The average of absolute deviations across cn|N observations then yields the mean absolute deviation

(M̃AD
µ̊

z , M̃AD
σ̊

z ).

5.4 Return-loss due to estimation error

In addition to the absolute deviation, we also define a measure of “return-loss” caused by not knowing

the true parameters. We propose the following relationship.

Definition 3: When µ̇z and σ̇z are the mean return and standard deviation of strategy z subject

to the vector of “true”, in-sample optimal weights ẘz. Then the return-loss caused by not knowing µ̊

and Σ̊ can be defined as:
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R̃Lz =
µ̇z
σ̇z
σ̃z − µ̃z. (23)

It is, therefore, an expression of the additional return needed for an investment rule z to perform,

out-of-sample, as well as the same strategy under true parameter knowledge. The measure relies on

linear transformation of the Sharpe ratio of the in-sample strategy-optimal portfolio by the attained

out-of volatility under ex-post estimated weights. The average return-loss is then an expression of the

average loss against the Sharpe ratio of the in-sample, strategy optimal portfolio. Note the underlying

assumption that Sharpe ratio is the objective that investment strategies are evaluated by. The measure

is not necessarily proportional to the absoulte deviation (21, 22) since strategies that do not explicitly

optimise weightings towards having the maximum Sharpe ratio may in fact attain ex-ante Sharpe

ratios that are higher than those of the true strategy optimal portfolios. It is often not recognized that

estimation error can, thus, positively affect the performance in terms of some objective other than

the explicit strategy target. In other words, while no minimum-variance portfolio can have a lower

variance than its ex-ante optimal counterpart, it can have a higher Sharpe ratio (and/or certainty

equivalent return).9 This also explains why different strategies may achieve the best out-of-sample

performance when evaluated by the two different performance measures and why (10) may intuitively

not hold for minimum-variance portfolios. Nevertheless, we deem (23) the approriate measure since

it is the expected loss due to estimation error in the Sharpe ratio objective that fund managers (for

whom the Sharpe ratio is a natural benchmark) are ultimately concerned about.

5.5 Return-loss due to unfavourable estimation error

In the following we introduce a measure of “unfavourable” loss due to estimation error that also accounts

for non-normality of the out-of-sample return series in performance evaluation.10 Let the (M-T)x1

vector of out-of-sample daily returns of each strategy be denoted by R̃z. Then this return series can

be decomposed into a threshold return τ minus a downside measure, denoted by max[R̃z − τ, 0], plus

an upside measure, denoted by max[τ − R̃z, 0]. A measure of downside performance, labeled the lower

partial moment of the return distribution, can then be expressed through:
9Similarly, no mean-variance optimal portfolio will have a higher certainty equivalent return than the ex-ante optimal

counterpart but its Sharpe ratio could still be higher.
10A commonly addressed criticism is the non-normality of the returns data. A quick Bera-Jarque test (of which the

results are not reported here) reveals that none of the return series are normally distributed. Most financial data suffers
from this shortcoming but Tu and Zhou (2004) confirm that, although the assumption is heavily criticised, it can be
assumed to hold for a mean-variance investor.
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lpmz(τ, h) = Emax[(R̃z − τ)h, 0] =
1

(M − T )

(M−T )∑
t=1

(R̃z,t − τ)hdt, (24)

dt =


0 R̃z,t > τ

1 R̃z,t ≤ τ

where the h-th degree of the lower partial moment defines how the “penalty function” is shaped.

By assuming h = 2 and setting τ = 0 we obtain lpm(0, 2), the semi-variance of the return distribu-

tion. This measure of dispersion of negative returns corresponds to the measure of downside variance

introduced by Sortino and Price (1994) in their construction of the Sortino ratio.

Definition 4: Let µ̇z and ˙lpmz(0, 2) denote the strategy specific mean return and downside variance

subject to the vector of “true”, in-sample optimal weights ẘz. Assume that the mean of the out-of-sample

returns and the corresponding downside variance are given by µ̃z and ˜lpmz(0, 2) respectively. Then the

return-loss due to estimation error in the downside risk measure may be stated as follows:

ŨRLz =
µ̇z

˙lpmz(0, 2)
˜lpmz(0, 2)− µ̃z. (25)

By using this measure we account for the presence of larger upper partial moments and thus higher

variance in the positive part of the return distribution. Such variance is penalised in consideration of

the Sharpe ratio (19) and the corresponding measure of return-loss in (23). Thus, the value of our

measure increases the more the out-of-sample distribution of returns deviates from the assumption of

i.i.d normality.
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6 Empirical analysis

Our primary dataset consists of 4,351 trading days11 of daily excess return data on the 17 Fama-French

industry portfolios. The data is obtained from Kenneth French’s website12 and expressed as the excess

return over the prevailing risk-free rate. Returns on the 17 portfolios are taken as asset returns (i.e.

each of the portfolios is to be understood as an asset), which seems acceptable in the light of previous

research. One must always bear in mind, though, that the equally-weighted Fama French portfo-

lios will on average exhibit lower volatility than a single stock as a result of inherent diversification.

Nonetheless, they provide a great representation of the overall market. Working with these portfolios

is important, as we do not want to limit ourselves to one index that will be biased by the selection of

stocks based on some characteristic. On the other hand, we believe that choosing a number of random

stocks like Jagannathan and Ma (2003) or Jorion (1986) does not sufficiently serve the explanatory

power of our model, since selection of random stocks may also lead to a stock universe that is tilted

towards some industry or sector. Using daily returns in our analysis benefits optimisation strategies

while it does not affect the 1/n rule. Jagannathan and Ma (2003) show that when using daily returns

data, the true parameters and, thus, the optimal weights in mean-variance portfolios can be estimated

more precisely. To ensure robustness of our findings, we also ran the analysis for a dataset of the same

length that consists of the 12 Fama-French industry portfolios.13

The results section of our work is divided into two parts. In the first part, we examine the per-

formance of the aforementioned investment strategies and their sensitivity to portfolio size by means

of the performance indicators, introduced in section 5. In the second part we present our findings on

how the portfolio size and degree of risk aversion influence the magnitude of estimation error. Which

strategy performs best, out-of-sample, will depend on the stability of return distributions over time.

Unstable return distributions induce erroneous ex-post parameter estimates and, thus, parameter es-
11Between September 1997 and December 2015.
12http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
13The results of this analysis are in line with our findings for the 17 Fama-French industry portfolios and, therefore,

not reported here. Data on the 12 Fama-French portfolios is available upon request.
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timation error. For large degrees of parameter estimation error, we would expect the equally weighted

rule to perform relatively better. If distributions are stable and parameter estimates close to the “true”

moments of the return distribution, mean-variance optimisation strategies should be able to achieve

their respective targets and outperform the equal weighting rule from an out-of-sample perspective.

6.1 Out-of-sample performance of mean-variance investment strate-

gies in dependency of n and γ

The various strategies tested are given in the rows of Table 6.1, while the Sharpe ratio for a range

of portfolio sizes can be found in the respective columns. Panel A considers an investor with γ=3,

whereas in Panel B we report the results for γ=1. In the first line of each panel we present the Sharpe

ratio of the in-sample optimal short-sale unconstrained mean-variance optimal portfolio. When the

true parameters are known (and the return series is stationary over time), it would be irrational for

an investor with risk aversion γ to hold any other portfolio.

It is evident that the Sharpe ratio of the (in-sample) optimal mvo* strategy increases with the

portfolio size. Out-of-sample, however, the mvo strategy exhibits a negative relationship with port-

folio size when γ=3, the Sharpe ratio decreases and the mvo strategy constantly underperforms the

naive diversification rule. While this finding is in line with DeMiguel et al. (2009b), the opposite holds

when γ=1. Here we observe an increase in Sharpe ratio up to n=15, when the set of portfolio assets is

extended, but total underperformance against the 1/n is even higher. It is generally noteworthy that

lower risk aversion leads to worse out-of-sample performance in terms of Sharpe ratio. The magni-

tude of this finding may be sample specific, but note that the implied risk-aversion of the maximum

Sharpe ratio portfolios (that make no explicit assumption of γ) will be closer to 3 than 1. Hence, the

Sharpe ratio as the performance measure for Markowitz mean-variance optimal strategies as specified

in (1) is somewhat biased and alternative measures of performance should also be taken into consid-

eration. Looking at certainty equivalent return (’CER’) as reported in Table 6.2 we find that for all

mean-variance optimal strategies, the CER decreases out-of-sample with increasing n (while at the

same time, it becomes larger for the naive diversification). One observes that mvo strategies not only

underperform the 1/n rule but yield significant negative CER across both levels of risk aversion. A
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Table 6.1: Average out-of-sample Sharpe ratios (p.a.) of selected mean-variance portfolio strategies

This table presents the average, annualised out-of-sample Sharpe ratios of investment strategies.
The values are obtained through a rolling-window analysis over M=4,351 days, with the parameters
estimated over T=900 days and the portfolios rebalanced every 30 days (expressed as averages of cn|17

observations). The average significance of the out-of-sample returns at the 1%, 5% and 10% levels,
is estimated by a student t-test with H0 : µ̃ = 0 and H0 : µ̃ 6= 0, is indicated by ***,** and * respectively.

n

Strategy (N=17) 3 6 9 12 15 17

Panel A (γ = 3)

mvo* 1.2907*** 1.4940*** 1.6270*** 1.7387*** 1.8422*** 1.9098***
ew (1/n) 0.8512*** 0.8602*** 0.8636*** 0.8653*** 0.8664*** 0.8669***

mvo 0.7761*** 0.7630*** 0.7554*** 0.7436** 0.7299** 0.7209**

mvo-c 0.9615*** 0.9998*** 1.0161*** 1.0235*** 1.0273*** 1.0282***

mv 1.1083*** 1.3388*** 1.4911*** 1.5995*** 1.6813*** 1.7270***

mv-c 1.0197*** 1.0932*** 1.1148*** 1.1173*** 1.1140*** 1.1128***

Panel B (γ = 1)

mvo* 1.0051*** 1.1181*** 1.2638*** 1.4018*** 1.5306*** 1.6135***

mvo 0.5015* 0.5643* 0.5919* 0.6023* 0.6041* 0.6032*

mvo-c 0.9118*** 0.9265*** 0.9426*** 0.9669*** 0.9941*** 1.0158***

ew: equal weighting, mvo*: mean-variance optimal under true parameter knowledge, mvo: sample-based
mean-variance optimal, mvo-c: sample-based short-sale constrained mean-variance optimal, mv: sample-
based minimum-variance, mv-c: sample-based short-sale constrained minimum-variance
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Table 6.2: Average certainty equivalent return (p.a.) of selected mean-variance portfolio strategies

This table presents the average, annualised certainty equivalent return (CER) of investment strategies.
The values are obtained through a rolling-window analysis over M=4,351 days, with the parameters
estimated over T=900 days and the portfolios rebalanced every 30 days. CER is given in percentages
and expressed as an average of cn|17 observations.

n

Strategy (N=17) 3 6 9 12 15 17

Panel A (γ = 3)

ew (1/n) 11.4852 12.0106 12.1858 12.2734 12.3259 12.3506

mvo 1.1681 -27.6319 -61.7835 -99.1614 -139.1289 -167.0141

mvo-c 14.4877 15.9118 16.5940 16.9068 17.0539 17.0879

mv 16.3704 19.0627 20.1558 20.6573 20.9041 21.0124

mv-c 14.9184 15.9366 16.0081 15.8200 15.6125 15.5433

Panel B (γ = 1)

ew (1/n) 18.5515 18.7267 18.7851 18.8143 18.8318 18.8400

mvo -23.5751 -116.2702 -221.7786 -335.8810 -457.3370 -541.9481

mvo-c 21.7106 23.2412 24.2845 25.2390 26.1242 26.79260

mv 21.2207 22.4390 22.8446 22.9499 22.9413 22.9445

mv-c 20.1501 20.2066 19.8793 19.4736 19.1418 19.0258

ew: equal weighting, mvo: sample-based mean-variance optimal, mvo-c: sample-based short-sale constrained
mean-variance optimal, mv: sample-based minimum-variance, mv-c: sample-based short-sale constrained
minimum-variance

rational investor would, thus, never pursue an investment in these strategies. Further, note that in

contrast to results obtained in consideration of the Sharpe ratio, the CER for the mvo strategy when

γ=1 also decreases in larger portfolios.

When imposing short-sale constraints on the mean-variance optimal portfolios the relationship is

reversed. As it can be seen from Tables 6.1 and 6.2 the mvo-c portfolio strategy consistently outper-

forms the ew rule (e.g. when γ=1 and n=15, mvo-c on average attains a Sharpe ratio of 1.0273 vs.

the ew rule with only 0.8664). The performance as measured by Sharpe ratio and CER is now strictly

positively related to the portfolio size and so is the outperformance over the naive diversification.

This supports earlier findings by Duchin and Levy (2009) and stands in stark contrast to DeMiguel
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et al. (2009b). Furthermore, it becomes evident that short-sale constraints are absolutely necessary

when employing mean-variance optimal investment strategies. While mvo-c peform better than the

1/n strategy across both levels of risk aversion, they fall short of the peformance of minimum-variance

portfolios that outpace the 1/n diversification and all other investment rules in terms of Sharpe ratio.

These results confirm Jagannathan and Ma (2003) as ignoring the estimates of expected returns in

portfolio construction leads to better risk-adjusted performance. Bearing this in mind, from Table

6.2 we observe that when γ=1 the short-sale constrained mean-variance optimal strategy consistently

yields the highest CER. Hence, as opposed to Jagannathan and Ma (2003), we also show that a mean-

variance optimal portfolio strategy can on average outperform the minium-variance portfolio rule and

so there is value in exploiting estimates of expected returns.14

It becomes evident that which mean-variance strategy yields the best out-of-sample performance

is ultimately dependent on the measure used to assess it. Finally, note that when the assets used

to construct minimum-variance portfolios are themselves large portfolios, adding non-negativity con-

straints does not help much since Sharpe ratios and CER for mv-c compared to the mv strategies are

persistently lower. With increasing sample size, the probability that a shortsale constraint becomes

binding increases and the performance gap becomes larger. Thus, for minimum-variance portfolios

imposing constraints not only hurts when the true parameters are known, but also when they are

estimated from past returns.

6.2 Results from studying estimation error

Table 6.3 reports the average absolute deviation in terms of realised return and volatility of the

various investment strategies compared to the respective true strategy optimal portfolio.15 We find

that when there is estimation error in any of the asset return series, increasing the portfolio size

generally results in a higher probability that the optimal weights are based on at least one set of

highly erroneous parameter estimates and, thus, higher estimation error. This finding is in line with
14This observation does not hold for γ = 3. To explain this, note that problem (13) corresponds to (15) when the

vector µ̂ is a vector of zeros and the investor exhibits an infinite degree of risk aversion. The optimal minium-variance
portfolios will always contain the same stocks in their same proportions regardless of the actual degree of investor risk
aversion. Hence, when evaluating them in terms of certainty equivalent return they should be expected to perform
relatively better for higher levels of risk aversion. It follows that investors with very high degrees of risk aversion will
always be relatively better off, investing in the minimum-variance portfolio.

15Mean absolute deviations of the ew strategy are not reported since it is free from estimation error.
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the bulk of research and validates our methodology. Furthermore, measurement error in the mvo

strategy that directly relies on estimates of expected return is significantly larger than in the mv

strategy that does not rely on the latter. It follows that the error in mean return estimates must be

relatively larger than the error in covariance estimates. In fact, the mv is the only strategy for which

the mean absolute deviation in both mean returns and volatilities is reduced in larger sample sizes.

To our surprise, imposing short-sale constraints on the minimum-variance portfolio leads to higher

mean absolute deviations. While Jagannathan and Ma (2003) have shown that imposing long-only

constraints on the minimum-variance portfolio does generally not help much in terms of out-of-sample

performance, most literature suggests that imposing short-sale constraints on the mv portfolio reduces

measurement error. It appears that the shrinkage of covariance matrix unfavourably affects the out-

of-sample performance of minimum-variance investment strategies. Imposing short-sale constraints on

the mvo portfolio, however, sucessfully reduces estimation error.

The return-loss of the rebalanced ex-post optimal portfolios against their in-sample counterpart,

reported in Table 6.4, illustrates the difference in Sharpe ratios. It can be seen that with increas-

ing portfolio size, the loss in return from applying any strategy that relies on parameter estimates

also increases. While the annual return-loss against the in-sample mean-variance optimal portfolio is

25.46% for the mvo when n=3, it grows to 157.22% when n=17. The same relationship holds for less

risk-averse investors and across all investment rules. Furthermore, from Table 6.4 we conclude that

the impact of estimation error is up to 55 times larger in short-sale unconstrained strategies that rely

on mean return estimates than in those that are only based on the covariance estimates (e.g. com-

pare 109.14% (mvo) vs. 2.69% (mv) when n=12 in Panel A). This result is striking and appears as a

strong case against mean-variance optimal investment strategies in the light of parameter estimation

error. The magnitude of this difference can, however, easily be controlled for by imposing short-sale

constraints, where loss due to estimation error in mvo-c is ”only” up to 3 times larger than in mv-c.

Short-sale constraints, thus, become absolutely necessary in controlling estimation error and improv-

ing out-of-sample performance, when portfolio strategies directly rely on mean return estimates. It

should be noted that in line with mean absoulte deviation statistics, imposing short-sale constraints on

the minimum-variance portfolio also leads to higher return-loss due to estimation error. Finally, our

results also show that a relatively worse out-of-sample performance of the mv-c vs. the mv strategy

may directly be related to higher estimation error in the covariance estimates.
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Table 6.4: Average out-of-sample return-loss (p.a.) of mean-variance investment strategies

This table presents the average annualised out-of-sample return-loss (as derived in 5.4) of investment
strategies due to estimation error. The values are obtained through a rolling-window analysis over
M=4,351 days, with the parameters estimated over T=900 days and the portfolios rebalanced every 30
days. Figures are given in percentages and expressed as averages of cn|17 observations.

n

Strategy (N=17) 3 6 9 12 15 17

Panel A (γ = 3)

mvo 25.4580 54.6938 81.8342 109.1356 137.5019 157.2228

mvo-c 8.5538 11.2855 12.9994 14.2082 15.0253 15.3798

mv 3.9725 3.0494 2.7343 2.6891 2.7672 2.8411

mv-c 4.6235 4.2692 4.4665 4.9231 5.4536 5.7575

Panel B (γ = 1)

mvo 65.6470 119.4459 185.7562 260.3611 341.4889 399.0968

mvo-c 9.9285 13.2602 14.8750 15.8462 16.7820 17.2841

mvo: sample-based mean-variance optimal, mvo-c: sample-based short-sale constrained mean-variance opti-
mal, mv: sample-based minimum-variance, mv-c: sample-based short-sale constrained minimum-variance

In Table 6.5 we illustrate the return-loss due to estimation error in the semi-variance. Comparing

the results in Table 6.5 with those reported in Table 6.4, it becomes evident that the unfavourable

estimation error in short-sale unconstrained mean-variance optimal strategies must be relatively higher

than the estimation error in the upper part of the sample return distribution. We also show that an

investor is exposed to signifcantly more downside risk by pursuing a short-sale unconstrained mean-

variance optimal strategy. Again, by imposing short-sale constraints one is able to achieve an impressive

reduction in return-loss due to estimation error in the lower partial moments (particularly in larger

sample sizes). For the mvo-c strategy, unfavourable estimation error is lower than the overall esti-

mation error observed earlier. The same can be shown for minimum-variance strategies, in which we

find relatively lower unfavourable estimation error and so conlcude that the out-of-sample return dis-

tribution must include more extreme positive than negative returns. Given an expected unfavourable

return-loss of a mere 0.76% p.a. for investors in the long-short minimum-variance strategy, one must

not be too concerned with estimation error when pursuing the mv rule.
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Table 6.5: Average “unfavourable” out-of-sample return-loss (p.a.) of mean-variance investment
strategies

This table presents the average annualised “unfavourable” out-of-sample return-loss (as derived in 5.5)
of investment strategies due to estimation error. The values are obtained through a rolling-window
analysis over M=4,351 days, with the parameters estimated over T=900 days and the portfolios
rebalanced every 30 days. Figures are given in percentages and expressed as averages of cn|17

observations.

n

Strategy (N=17) 3 6 9 12 15 17

Panel A (γ = 3)

mvo 33.6733 72.7890 105.9240 137.3261 168.5599 189.7230

mvo-c 5.0775 7.5584 8.8291 9.2913 9.1120 8.6846

mv 0.6557 0.5467 0.6557 0.7480 0.7767 0.7601

mv-c 1.2249 1.4757 1.6797 1.7984 1.8657 1.9097

Panel B (γ = 1)

mvo 93.6646 169.2103 248.6587 332.0202 418.7219 478.4411

mvo-c 6.2570 9.5836 11.0681 11.8393 12.4742 12.8510

mvo: sample-based mean-variance optimal, mvo-c: sample-based short-sale constrained mean-variance opti-
mal, mv: sample-based minimum-variance, mv-c: sample-based short-sale constrained minimum-variance
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When looking at Panels A and B of the return-loss statistics, one finds the loss to be relatively

higher in mvo-c strategies that assume a lower risk aversion (γ). This is in line with Kan and Zhou’s

proposed closed-form solution for the short-sale unconstrained mean-variance optimal portfolio prob-

lem and confirms Hypothesis 2.1. Levy and Duchin (2003), in this context, point out that optimal

portfolios that maximise expected utility with higher degrees of risk aversion tend to be more diver-

sified and include less extreme weights relative to optimal portfolios that maximise expected utility

with lower degrees of risk aversion.

Note that (13) can be generalized when γ is unknown by:16

ŵmvo =
Σ̂−11

1′Σ̂−11
+ γ

(
Σ̂−1 − Σ̂−111′Σ̂−1

1′Σ̂−11

)
µ̂. (26)

It can be seen that by assuming values of γ from 0 to +∞, this problem describes the solution to

the mean-variance efficient frontier. From the formula it can be inferred that more risk-averse investors

will choose mean-variance optimal combinations with lower levels of total risk (since 1
1′Σ̂−11

is the vari-

ance of the minimum-variance portfolio). Hypothesis 2.1 may thus be translated into the sensitivity

of estimation error to the volatility of the ex-post optimal portfolio. From our results in part 6 and

related literature we deduce that the out-of-sample volatility is on average larger than the estimated

volatility due to parameter estimation error. Bearing in mind that in long-only portfolios the volatility

cannot be reduced through short-selling of another asset but only through diversification, constraining

the volatiliy in mean-variance efficient portfolios could be understood as an additional constraint to

extreme weights in the portfolio constituents. More diversification and less extreme weights should

lead to less overall estimation error and likely to better relative performance.

To assess the impact of constraining the total risk level of a mean-variance optimal portfolio on

estimation error, we turn back to the optimisation problem underlying the efficient frontier (1). We

employ a methodology that allows us to estimate the impact of estimation error in terms of ex-ante

loss in return for a given risk level. For portfolios of size n, we estimate the ex-post optimal short-sale

constrained mean-variance optimal portfolios for a set of k=5 risk levels σk (σ1 < σ2 < σ3 < σ4 < σ5)

over an estimation period of length T. For each n, this yields k=5 efficient portfolios (ŵk) in which the

stocks are held proportionally to the respective mean-variance optimal weights. We then simulate the
16For a comprehensive discussion and derivation, we refer the reader to Bodnar et al. (2013).
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performance of these portfolios over the following (ex-ante) observation period of length O and record

their out-of-sample return and standard deviation:

arg max
w

w′µ̂ s.t.
√
w′Σ̂w = σk and 1

′
nw = 1 and w ≥ 0 (27)

µ̃k = ŵkµ̊ (28)

σ̃k =

√
ŵ′kΣ̊ŵk. (29)

In the next step, we find the ex-ante mean-variance optimal portfolios (w∗k) with the additional

constraint that they must have the same volatility as the observed out-of-sample variance of the ex-

post optimal portfolios. The difference in return of the two portfolios at the same risk level is then

an expression of the inherent return-loss due to estimation error. For each risk level σk, this may be

illustrated as follows:

arg max
w

w′µ̊ s.t.
√
w′Σ̊w = σ̃k and 1

′
nw = 1 and w ≥ 0 (30)

µ∗k = w∗kµ̊ (31)

RLk(w∗k, ŵk) = µ∗k − µ̃k. (32)

We run this analysis with simulated data from a one-factor model since it allows us to bind the

variance within a specific range (making the created portfolios comparable). Following Mackinlay

and Pastor (2000), DeMiguel et al. (2009b) and Tu and Zhou (2011), we assume that the market is

composed of a risk free asset and n risky assets that include F factors. A factor model of the form

Ry = α + βRx + ε can then be used to generate the excess returns of the remaining n-F risky assets.

Ry here is the vector of generated excess asset returns, Rx is the vector of excess returns on the factor

portfolios, β the vector of factor loadings, α the vector of mispricing coefficients and ε the vector of

noise.
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When simulating the data we follow Tu and Zhou (2011) and assume the excess return of the

factor to be normally distributed with an annual mean and volatility of 8% and 16% respectively

(Rx ∼ N(0.08, 0.16)). The mispricing is set to 0 as in DeMiguel et al. (2009b) and the factor loadings

(β) are evenly distributed between 0.5 and 1.5. Volatility is a function of the residual variance-

covariance matrix (ε ∼ N(0,Σε)), where the variance-covariance matrix is assumed to be diagonal

with its elements drawn from an uniform distribution with a support of [0.10,0.30]. The cross-sectional

average annual idiosyncratic volatility is set to 20% and the generated return series will be i.i.d. nor-

mal. We generate 10,000 datasets and 50,000 portfolios to ensure robustness of our results.

Table 6.6 presents the results of our analysis. We find evidence that the degree of (loss due to) esti-

mation error increases with the standard deviation of the ex-post mean-variance optimal portfolio. The

return-loss for the high-risk portfolios is about 5 times higher than the return-loss of the low-risk asset

combinations. When we allow for higher levels of risk for the estimated mean-variance optimal port-

folio, it appears to take more extreme positions in stocks with potentially highly erroneous parameter

estimates. This ultimately leads to higher losses due to misspecification of the estimates. To illustrate

this, compare the average annual return-loss of the low risk portfolio for n=25 (30.41%) to the high

risk portfolio (109.96%). We conclude that constraining the maximum level of acceptable volatility in

mean-variance optimal portfolios could help to control estimation error and confirm Hypothesis 2.2.

Table 6.5 also reveals how sensitive this finding is to the portfolio size n. Again, we confirm that the

overall level of estimation error increases with the portfolio size. The increase is not proportional across

risk levels but marginally higher for portfolios found further on the right of the ex-post efficient frontier.

These findings illustrate why minimum-variance portfolios are generally more robust against estima-

tion error and frequently outperform mean-variance optimal portfolios (or those designed to maximise

Sharpe ratio) in the out-of-sample period. But first and foremost, this implies that one can control

for estimation error by constraining the total risk of the portfolio. When doing so, investors should

be able to achieve better out-of-sample performance in terms of Sharpe ratios. Or in other words,

choosing the riskier portfolio will then lead to relatively worse ex-ante performance. This may be

confirmed by results reported in Table 6.7 that provide strong evidence of the out-of-sample Sharpe

ratios for high-risk portfolios being remarkably lower than Sharpe ratios for low-risk portfolios. This

finding holds across all n.
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Table 6.6: Average out-of-sample return-loss (p.a.) of the volatility constrained ex-post mean-
variance optimal investment strategy vs. the ex-ante optimal strategy

This table presents the average annualised return-loss of the short-sale constrained ex-post mean-
variance optimal investment strategy (as derived in 5.4) under varying ex-post volatility levels. The
values are obtained through Monte-Carlo methods, with the parameters estimated over T=900 days
and the portfolio constituents held in their optimal proportion over the following O=90 days. The
underlying return series is generated from a one-factor model, following MacKinlay and Pastor
(2000). Averages are based on 10,000 datasets and 50,000 portfolios. Figures are given in percentages.

n

Risk level (σk) 10 15 20 25

Low (σ1) 17.3725 22.1677 27.0596 30.4131

σ2 38.1947 55.4474 68.5012 75.7535

σ3 66.1569 78.7477 89.7152 96.2691

σ4 78.4324 90.2979 99.9294 105.7627

High (σ5) 84.1478 95.3503 104.3091 109.9552

Table 6.7: Average out-of-sample Sharpe-ratios (p.a.) of the volatility constrained ex-post mean-
variance optimal investment strategy

This table presents the average annualised out-of-sample Sharpe ratios of the shortsale constrained
ex-post mean-variance optimal investment strategy under varying ex-post volatility levels. The values
are obtained through Monte-Carlo methods, with the parameters estimated over T=900 days and the
portfolio constituents held in their optimal proportion over the following O=90 days out-of-sample
period. The underlying return series is generated from a one-factor model, following MacKinlay and
Pastor (2000). Averages are based on 10,000 datasets and 50,000 portfolios.

n

Risk level (σk) 10 15 20 25

Low (σ1) 0.9126 1.0567 1.3792 1.5282

σ2 0.7771 0.7597 0.6607 0.6691

σ3 0.5155 0.4918 0.4021 0.3895

σ4 0.3823 0.3426 0.2930 0.3045

High (σ5) 0.2978 0.2747 0.2419 0.2587
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However, this shall not imply that choosing the riskier portfolio naturally leads to worse ex-ante

performance in terms of utility. As pointed out previously, decreasing γ can positively affect the per-

formance of short-sale constrained mean-variance optimal strategies in terms of certainty equivalent

return. Hence, a relatively larger inherent degree of estimation error does not necessarily constitute a

relatively worse ex-ante performance. Which strategy performs best, out-of-sample, largely depends

on the chosen method of performance evaluation. Therefore, when investment strategies are long only

and maximising utility is the objective, choosing the riskier portfolio can yet be beneficial.
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7 Conclusion

Research on parameter estimation error is concerned with the question of “how much worse off an

investor is, if the distribution of returns is estimated with an error”. Our analysis provides two very

different answers to this question. On the one hand, we find that with increasing size of the opportunity

set (portfolio sizes) the measurement error in strategies that rely on parameter estimates increases,

confirming Hypothesis 1.1. On the other hand, we show that there exists no causal relationship be-

tween the total amount of estimation error and the out-of-sample performance of a mean-variance

investment strategy. When estimation error is within reasonable bounds, increasing the portfolio size

leads to improved ex-ante performance. Furthermore, we observe that short-sale constrained mean-

variance strategies, which directly rely on an estimate of expected returns, do on average outperform

the naive 1/n diversification rule in terms of Sharpe ratio, just as minimum-variance portfolios do.

We, thus, reject Hypothesis 1.2 that was derived based on results of DeMiguel et al. (2009b).

Most notably, our work also highlights the importance of imposing short-sale constraints in mean-

variance optimal investment rules in order to control estimation error and to improve the out-of-sample

performance. In further analysis we explicitly show that when maximizing Sharpe ratio is the objective,

constraining risk levels in ex-post optimal portfolios helps to control estimation error and leads to supe-

rior ex-ante performance. This finding also serves as a valid explanation, as to why minimum-variance

portfolios are generally more robust against estimation error and frequently outperform mean-variance

optimal portfolios.
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