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Abstract

Public Private Partnerships have been gaining momentum during the last decades as an effective tool for public service
delivery. The inefficiency in accurately forecasting the demand and the high incidence of renegotiation are still a matter of
concern which undermines the model success. The Least present value auction mechanism can be a solution to neutralize
the incidence of the demand risk and renegotiation. The duration of the contract is left flexible and the contract ends once
the private operator gets an initially agreed upon value of discounted revenue. This scheme does not, however, provide
an efficient mitigation against the potential financial downsides that the project can encounter. This work investigates the
incorporation of a minimum revenue guarantee under a Least Present Value Auction mechanism which should improve its
hedging power. The guarantee is presented as a multiple exercise Bermudan real option with a variable finite bounded
maturity.

keywords: Public Private Partnerships, Concession, Minimum Revenue Guarantee, Real options, Risk sharing, Mul-
tiple exercise option, Least Present Value of revenue auction, compound stopping.

Introduction
There is an increasing need for public infrastructure deliv-
ery either in developed or developing country. According to
(McKinsey Global Institute , 2013), this need is roughly esti-
mated at 50$ trillion for the period between 2013 and 2030.
Public Private Partnerships (PPPs) can be an interesting tool
to help governmental agencies to cope with their sharp needs.
They can be seen as a hybrid form of privatization and tra-
ditional public procurement. They help mobilizing the pri-
vate expertize and skills in the delivery of public infrastruc-
ture which is reputed to increase efficiency and reduce costs.
They are generally conducted under a project finance frame-
work where a special purpose vehicle (SPV) is created and is
in charge of all the activities related to the project. The SPV
is financed by equity and non-recourse debt with a very high
leverage that ranges between 70% to 95% (Yescombe, 2011).
The SPV has to design, finance, construct and operate the in-
frastructure for a certain period. In return for the services
provided, the private operator has the right to charge fees for
the use of the infrastructure (This contractual form can be re-
ferred to in some countries such as France as concession con-
tracts). The whole transaction hinges in the future cash flow
that the SPV is entitled to collect. At the end of the contract,
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the infrastructure reverts back to the public entity. The most
appealing strength of PPPs is the principle of risk sharing that
governs the design of the transaction and which is reputed to
verify the optimal value for money. In principle, each party
should bear the risk that she is best able to manage its conse-
quence and mitigate the chance of its occurrence. The demand
risk is a striking exception for the previous principle since the
usage level incorporates many systematic and natural influ-
ences which are out of the control of the stakeholders. The
question on who should support it is still an open query.
Traditionally, the demand risk is supported by the private op-
erator but the high occurrence of renegotiation1 and the dif-
ficulty of accurately estimating the demand 2has led to the
emergence of a recent trend which promotes for the allocation
of the demand risk totally to the public entity. The contract-
ing authority commits to provide a payment contingent on the
availability of the infrastructure and the private entity is in
charge of collecting fees on its behalf. This scheme reduces,
however, the private incentive to increase the commercial ap-
peal of the project (Ellman, 2006; Athias and Soubeyran, 2013;
Iossa, 2015) . The demand can, consequently, decrease which
may increase the public exposure to risk. The recent devel-

1 see, for instance, (Guasch, 2004; Guasch et al., 2007, 2006; Guasch and
Straub, 2006)

2see, for instance, (Flyvbjerg et al., 2005; Bain, 2009; Nicolaisen et al.,
2012)
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opments on the study of optimal allocation of demand risk in
public private partnerships suggest that PPP contracts should
be flexible in order to allow potential future adjustments of
the economic balance of the contract once more accurate in-
formation about the demand is revealed over time. Flexible
contracts permit to share the demand risk between the two
parties which should boost collaboration (Engel et al., 2009;
Athias and Saussier, 2007; Dong and Chiara, 2010; Iossa,
2015). Flexibility allows, in fact, to incorporate a structure
of compensations in the initial contractual terms which are
offered to all bidders at the tendering process. This allows to
increase the transparency of the contractual framework and to
take into account the future chance of potential renegotiation.
In other words, the implicit guarantee of potential renegotia-
tion that the public entity commits to, due to the high political
sensitivity of infrastructure projects and the high pressure that
public deciders can face, if the service is interrupted, is made
implicit.
One of the most known forms of flexible design in Public Pri-
vate Partnerships is the Least Present value mechanism pro-
posed by (Engel et al., 1997, 1998, 2002, 2003) . Instead of
being based on the tariff charged to end users or on the con-
tract duration, bids consist in proposing a value for the project
which is expressed in present value of revenue based on a pre-
established discounting rate and tariff. The contract duration
is left flexible until the required cumulative discounted sum
of revenue is collected. Afterwards, the project reverts to the
public entity. The contract’s term changes, therefore, under
different scenarios of demand which permits to keep a con-
stant present value of revenue among all the different states of
nature. The contract specifies additionally a maximal period
Tmax for which the concession can last, even if the targeted
LPVR is not reached. The LPVR mechanism can be seen as a
contract in which renegotiation occurs continuously in the fa-
vor of one party or another depending on the level of demand.
The scheme does not, nevertheless, totally guarantee the fi-
nancial viability of the project since the revenue level may be
insufficient for the SPV to meet all its legal obligations. The
discounted sum of revenue may be not, moreover, recouped
at Tmax especially for projects with a high volatility which in-
creases the contractors risk.
One solution to the previous two pitfalls is to combine the
contract with a minimum revenue guarantee (MRG) which is
a common approach to mitigate the demand risk under tradi-
tional concessions. The government guarantees to the SPV
the revenue shortfall for a certain number of years on the ba-
sis of a pre-defined minimum revenue guaranteed. MRGs can
be structured either under a European structure or an Ameri-
can structure 3. Under the former contract, the potential dates
are chosen before the beginning of the contract. The latter
contract leaves to the SPV the freedom to choose her poten-

3European guarantees can be seen as a portfolio of standard European
options (Irwin, 2007; Brandao and Saraiva, 2008). American guarantees can
be seen as a swing option (Jaillet et al., 2004; Chiara et al., 2007)

tial exercise dates which permits to take advantage from in-
formation revealed over time. The American contract offers
more flexibility and is easier to manage since it is impossible
to determine beforehand the best exercise dates at which the
guarantee should be redeemed.
This work proposes to combine the standard LPVR scheme
with an American minimum revenue guarantee. This should
increase the bankability of the project and reduce the chance
of not collecting the agreed-upon discounted sum of revenue.
This contingent liability can be seen as an inter-temporal trans-
fer of wealth between the public entity and the SPV since the
potential payments will be recouped once the project is trans-
ferred back to the public entity. Valuing the guarantee is es-
sential for both sponsors and public deciders in order to know
the extent to which risk is being transferred and for the op-
timal design of the contract. It is also crucial for budgetary
purposes in order to provide adequate provision and to mea-
sure the fiscal risk that the public entity faces.
The guarantee, which is denoted MRG-LPV, can be treated as
a Bermudan option with a changing unknown maturity since
claiming a compensation at a certain date may lead to a reduc-
tion of the contract duration. For a multiple exercise contract,
there is a dependence of the reward on previous actions. The
decision maker has to remember, at a given date, her previous
actions and the reward is, consequently, non-Markovian. The
contract valuation can be tackled as a discrete time compound
stopping problem and embedded dynamic programming can
be used to derive an approximate exercise policy. This ap-
proach turns out to be computationally extensive and suffers
from the curse of dimensionality for long-maturities and con-
tracts with a considerable number of exercise dates. We pro-
pose, therefore, an approach to simplify the valuation proce-
dure which permits to have a faster derivation of an approxi-
mate value of the MRG-LPV.
This work presents, additionally, a framework which allows
efficient risk management. For this aim, the valuation is un-
dertaken under the real world measure in order to have under-
standable and real distributions of the project’s financial indi-
cators. The determination of the project’s valuation is made
by Monte Carlo simulation and by following the Marketed
Asset Disclaimer of (Copeland and Antikarov, 2003).
The remaining of this development unfolds as follows: Sec-
tion 1 presents how the valuation of the real option can be
made under the real-world measure. Section 2 presents the
valuation procedure for the contract with a single right. Sec-
tion 3 extends the valuation problem to a multiple exercise
setting. A faster approximate valuation procedure is presented
in Section 4. A numerical illustration via a hypothetical yet
realistic project is made in section 5. A conclusion is drawn
in section 6.
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1 Real-world valuation of real options
The most challenging problem in real option valuation from
both a theoretical and practical levels is the determination of
a market consistent value. For this purpose, one should know
the appropriate discounting factor at which the cash flows that
the option leads to should be deflated. The most straightfor-
ward approach is to use the risk neutral probability as for fi-
nancial options. The key input is the underlying asset volatil-
ity. In the context of real assets, volatility may be vague,
difficult to observe, measure and apprehend. This is partic-
ularly true given the scarcity of historical data 4. What is,
for instance, the volatility of an R&D project or what is the
volatility of a toll road? Monte Carlo simulation can be used
to overcome this conceptual limitation. This approach has be-
come accepted in the general context of real option and in
the particular context of public private partnerships 5. It was,
initially, conceptualized in (Copeland and Antikarov, 2003).
The basic idea behind this method is to simulate the rate of
return of the project and derive its volatility. This mecha-
nism is mainly founded on two major assumptions. The first
one is that properly anticipated returns fluctuate randomly as
demonstrated by (Samuelson, 1973). This implies that inde-
pendently of the nature of the cash flows, the evolution of the
project’s present value follows a random walk. This allows
reducing any combination of complex uncertainties to a sole
stochastic process which is the project’s value variability over
time. This value is denoted PVt. The second assumption is
referred to as the Marketed Asset Disclaimer which considers
the project without flexibility as the best estimate for the twin
security for the contingent claim on the project and treats it as
if it was a traded asset. Such value is determined in associa-
tion with the discounted cash flow analysis.
In the remaining of this work, we follow (Copeland and An-
tikarov, 2003) and consider a complete market with two as-
sets: a risk free Bank account Bt solution of dBt = rBtdt
and the project without flexibility as a risky asset which has a
value PVt at year t. We assume here that the project’s present
value follows a standard geometric Brownian motion with a
changing volatility to account for the potential changes in op-
erational leverage (Brandão et al., 2012):

dPVt = rePVtdt+ σtPVtdWt, (1)

where re is the expected cost of equity. σt is the volatility of
the project at period t and which can be determined by simu-
lating the different sources of uncertainties in a Monte Carlo
simulation and computing the variability of the logarithmic

4The World Bank PPI database reports, for instance, that in developing
countries more then 60% of the PPP projects in were greenfield projects with
no historical record at all

5see for instance (Herath and Park, 2002; Mun, 2002; Nembhard et al.,
2003; Brandão et al., 2005a,b; Smith, 2005) in the general context and (Bran-
dao and Saraiva, 2008; Ashuri et al., 2011) for public private partnerships

return yt = log
(
PVt

E[V0]

)
of the project’s present value:

σt =

√
yt
t
. (2)

PVt is determined simultaneously with the stochastic discounted
cash flow analysis of the project. It is given by the expected
Adjusted Net Present Value at t conditional on the already
known information at that time (Brealey, 2012). The deriva-
tion of the conditional expectation within the Monte Carlo
simulation can be made by the means of the Least Squares
Monte Carlo (LSM) technique of (Longstaff and Schwartz,
2001) as in (Godinho, 2006).
At this point, one can switch to the risk neutral measure and
derive the value of a given real option written on the project’s
value. The main limitation of the risk neutral measure is that
only the expectation can be understood by a decision maker
in the real world. Performing a reliable risk analysis and op-
timization becomes impossible due to the deformation of all
the probabilities. The whole effect of the real option on the
project’s risk profile cannot be identified since the determined
probabilities have no meaning under the real world measure.
For instance, one can derive the expected net present value
of the project in the presence of a certain guarantee but can-
not known exactly the chance of having a negative net present
value. This can be problematic to the design of flexibilities
which aim to appropriately share the risk between the differ-
ent stakeholders of the project. Under the risk neutral mea-
sure, decision makers are not able to know how much risk they
are taking in their purses. Moreover, the models under the risk
neutral measure, cannot be appropriately used for budgeting
by public entities due to the deformation of probabilities. A
public decider cannot, for example, say what is the chance for
the guarantee to go unused and the extent of his fiscal expo-
sure. One requires, therefore, an approach to derive a market
consistent value while working under the natural probability
measure. A "bridge" which allows to make the connection be-
tween the two worlds is, then, needed. The existence of the
so-called bridge is guaranteed by the law of one price. In com-
plete markets, there is a unique and positive process ξt known
as the stochastic discounting factor (SDF) which allows to
value a sequence of stochastic cash flows x = (x1, · · · , xn):

pt =
1

ξt

n∑
i=t

Et[xiξi]. (3)

where pt is the fair price of x at a given time t (Cochrane,
2009). This process represents the link between the two worlds
since to the left side of equation (3), we have the "real" value
of the contract and on the right side we have the real world
measure. To determine the adequate stochastic discounting
factor for the project, we follow (Duffie, 2010).

For any probability measure Q equivalent to P , one can
define the density process π for Q which is the martingale
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defined by:

πt = Et

[
dQ

dP

]
, (4)

where
dQ

dP
is the Radon-Nikodym derivative ofQwith respect

to P. For any random variable X such that EQ[X] <∞:

E
Q
t [X] =

EPt [X]

πt
. (5)

The martingale representation theorem gives that the πt can
be written as follows:

dπt = −κtπtdWP
t . (6)

To construct the stochastic deflator, one can use the following
result from (Duffie, 2010) which states that: If in the exis-
tence of a short-rate process r and the definition of a bank ac-
countBt = exp

(∫ t
0
rsds

)
and after a deflation byB, there is

an equivalent martingale measure with a density process πt,
then a state price deflator ξ is defined by ξt = πtBt, provided
var(πt) <∞ for all t.
All what one has to do to derive the stochastic discounting
factor is to determine the sate density of the risk neutral mea-
sure. This is given by the Girsanov theorem which states that
in order for Q to be the risk neutral probability for the project
value, κt should be equal to the market price of risk λt:

λt =
re − r
σt

. (7)

The stochastic deflator ξt is then given by:

ξt = exp

(
−
(
r +

λ2
t

2

)
t− λtWt

)
, (8)

with the convention that ξ0 = 1.

2 The one-right contract
Let PV R0 denote the targeted cumulative sum of discounted
revenue and PV Rt denote the cumulative discounted value
of revenue for each year t = 1, · · · , Tmax:

PV Rt = min

(
PV R0,

T∑
i=1

Ri
(1 + rc)i

)
, (9)

where Rt is the revenue process of the project and rc is the
pre-established discounting factor by the public entity used
for the discounting for the present values of revenue . The
contract ends in all the states of nature at most at Tmax, even
if the private entity was not able to collect PV R0. Figure
1 presents the mechanism of the contract for different levels
of demand. The contract duration T ∗ can be determined as
follows:

T ∗ = min
{
Tmax , inf

{
k
∣∣PV Rt ≥ PVR0

}}
. (10)

The terminal present value of revenue is denoted PV R∗

and is given by:

PV R∗ = min (PRV0, PV RT∗) . (11)

High demand intermediate demand low demand very low demand

����� �������	 �
��


���

Figure 1: The contract structure under different scenarios of demand

Under a one right LPV-MRG contract, the public entity
grants the SPV the revenue shortfall Zt, if the revenue falls
below a threshold {Kt}Tmax

t=1 , and if she has not yet collected
PV R0. LetGt denote the traditional compensation for a Min-
imum Revenue Guarantee for each t = 1, · · · , Tmax.

Gt = max(0,Kt −Rt). (12)

This compensation matches the compensation of a standard
put on the underlying real asset Rt with an exercise strike of
Kt. We introduce, additionally, the discounted reward Gct by
the means of the established discounting rate rc defined by:

Gct =
Gt

(1 + rc)t
. (13)

The compensation of the Minimum Revenue Guarantee under
a Least Present Value of Revenue Zt is defined as follows for
each year t:

Zt =

{
Gt, if Gct + PV Rt ≤ PVR0,

(PV R0 − PV Rt) (1 + rc)
t
, otherwise.

(14)

We introduce the quantity Ht defined as follows:

Ht = min (Gct , PV R0 − PV Rt)). (15)

Equation (14) can be simplified to:

Zt = Ht (1 + rc)
t
. (16)
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We introduce an exercise cemetery ∂ := Tmax + 1 at
which the right is necessarily exercised and at which the re-
ward is null: Z∂ = G∂ := 0. We take the additional conven-
tion that PV R∂ := PV R0. The payoff is extended beyond
the contract terminal duration T ∗, even though the contract
cannot be exercised after T ∗, for the convenience of the pre-
sentation and the reasoning later on. For any t > T ∗, the
compensation is null by definition. Claiming Zt does, addi-
tionally, impact the contract duration which is shortened. To
capture this effect, we introduce a corrected real contract du-
ration T ∗(Ht) after a discounted payment Ht is made:

T ∗ (Ht) = inf
{
k
∣∣∣Ht + PV Rt ≥ PVR0

}
. (17)

The contract can be structured in a European style where
the SPV selects the exercise date prior to the beginning of the
contract. In that case the value of the contract V static0 is given
by:

V static0 = E0

[
Zdte
]
, (18)

where te is the chosen exercise date and Zdt = ξtZt is the
discounted compensation by the means of the stochastic dis-
counting factor ξt.The deflator is taken null after the termina-
tion of the contract (i.e ξt = 0, ∀ t > T ∗). When computing
the volatility of the project, any path for which the contract
has been already terminated is omitted from the Monte Carlo
simulation, we keep only the paths at which the contract is
still existing at a given time step t. In order to avoid any con-
fusion and simplify the presentation, we discount all the cash
flows to the original time.
This development focuses on the American style contract be-
cause it guarantees the maximal flexibility in the contract man-
agement 6. Under this contract, the decision maker chooses,
during the contract life, when she will claim her right. Her ex-
ercise strategy is adapted to the revenue level that she sees and
she can take, therefore, advantage from the information re-
vealed over time. In this context, the contract becomes similar
to a Bermudan option with an unknown finite bounded matu-
rity T ∗. The contract fair value is equal to the maximal com-
pensation that the private entity can obtain by the means of a
non anticipative exercise policy. The decision maker chooses
an exercise date ( stopping time with respect to the natural
filtration Ft) in order to maximize her return. The contract
fair value Vt at a time t is, therefore, solution of the following
optimization problem:

Vt = max
τ∈{t,··· ,T∗}∪{∂}

Et
[
Zdτ
]
. (19)

where Et denotes the conditional expectation at time t with
respect to the natural filtration Ft. Since the payoff is ex-
tended beyond T ∗ and is null by definition for any T ∗ < t ≤
Tmax, Vt is, also, solution of:

Vt = max
τ∈{t,··· ,Tmax}∪{∂}

Et
[
Zdτ
]
. (20)

6refer to (Chiara et al., 2007) for an argument.

The real option is equivalent to a Bermudan option with a
maturity Tmax and a compensation Zt. The extension of the
payoff beyond T ∗ allows to overcome any additional compu-
tation that may arise because of the variability of the contract
duration for different scenarios. Let t denote, in the remain-
ing of this development, a date at which the valuation is being
made. If the right was claimed prior to t, the decision maker
has no choice but continuing until the terminal date of the
contract T ∗. Otherwise, she chooses among two decisions:

• either exercise and claim the compensation Zt, the con-
tract final duration changes immediately to T ∗ (Ht),

• or continue and hold the same contract where she can
exercise starting from the next time step t + 1. The
contract duration does not change in that case.

We introduce the continuation value Qt = Et [Vt+1] which
measures the expected reward, if no exercise is made. The
contract value can be determined recursively by the means of
the following Bellman equation:{

VTmax = ZdTmax
,

Vt = max
{
Zdt , Qt

}
,

(21)

An exercise indicator It can be defined as follows:

It =

{
1, if Zdt ≥ Qt,

0, otherwise,
(22)

where 0 stands for continuation and 1 for exercising and we
set I∂ := 1 .The optimal exercise date τt is the first date at
which the strategy indicates to exercise and is obtained as fol-
lows:

τt = inf
{
k ≥ t |Ik = 1

}
. (23)

The contract fair value is then given by:

Vt = Et
[
Zdτt
]
. (24)

Computing the continuation value under a Monte Carlo sim-
ulation can be very time consuming. One can rely on an
approximation procedure to determine a lower bound on the
contract value. If Q̃t is an approximation of the real continua-
tion value (e.g by the means of the Least-Square Monte Carlo
(LSM) proposed by (Longstaff and Schwartz, 2001)), a near
optimal stopping time τ̃t can be derived and a lower bound on
the contract can be obtained by:

V t = Et
[
Zdτ̃t
]
. (25)

3 The multiple exercise contract as a
compound stopping problem

This section extends the MRG-LPVR contract to a multiple
exercise setting. Under a least present value of revenue scheme,
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claiming a compensation does immediately change the struc-
ture of the contract (the duration may be shortened). The
problem becomes non-Markovian, since the immediate re-
ward depends on previous actions and the decision maker has
therefore, to remember the dates at which she has claimed her
prior rights. She has also to anticipate the dates at which the
future reward will be claimed in order to make her decision
at the present time. This dependence on the reward structure
among all the stopping times adds a layer of complexity to the
valuation procedure of minimum revenue guarantees under a
least present value of revenue scheme in comparison with tra-
ditional multiple-exercise Bermudan options. One solution to
value the contract is to consider the valuation problem as a
compound stopping problem. Under this setting, the decision
maker can remember the dates at which the several rights are
claimed and adapts her decision accordingly.

3.1 The two-right contract
We assume, first, that the contract offers two exercise rights.
Let t denote a time at which a decision has to be made. As-
suming that there are no claimed compensations yet, the deci-
sion maker starts by choosing the date at which she will claim
her first right τ (1)

t ≥ t which is a stopping time according to
the natural filtration Ft. The compensation Z(1)

τ
(1)
t

that she gets

is given by:

Z
(1)

τ
(1)
t

= H
τ
(1)
t

(1 + rc)
τ
(1)
t . (26)

This compensation matches the compensation of the one right
contract presented in section 2. The choice of τ (1)

t does im-
pact the structure of the contract since the cumulative dis-
counted revenue is increased by the amount of H

τ
(1)
t

for all
the remaining time horizon and the contract duration may be
shortened consequently. To capture this effect, one needs to
introduce a new filtration F

τ
(1)
t ,s

which contains all the infor-

mation available at a time s ≥ τ (1)
t , knowing that the first right

was claimed at time τ (1)
t . One has F

τ
(1)
t
⊆ F

τ
(1)
t ,s

. The deci-

sion maker chooses, afterwards, a second date τ (2)

t|τ(1)
t

at which

she will claim her second right. To simplify the presentation
τ

(2)

t|τ(1)
t

will be denoted τ (2)
t and the dependence towards τ (1)

t is

implicitly assumed. τ (2)
t is, here, a stopping time with respect

to the new filtration F
τ
(1)
t ,s

. The compensation Z(2)

τ
(2)
t

that she

gets for her second exercise right knowing that the first right
was claimed at τ (1)

t is given by:

Z
(2)

τ
(2)
t

= max
(

0,min
(
Gc
τ
(2)
t

, PV R0 − PV Rτ(2)
t

−Gc
τ
(1)
t

−Gc
τ
(2)
t

))
(1 + rc)

τ
(2)
t .

(27)

We introduce two exercise cemeteries ∂(1) =: Tmax + 1
and ∂(2) =: Tmax + 2 at which respectively, the first and

second rights are necessarily exercised. The exercise ceme-
teries verify : Z(1)

∂(1) := 0 and Z(2)

∂(2) := 0. We set moreover
PV R∂(1) = PV R∂(2) := PV R0.

The contract total reward is denoted Z{
τ
(1)
t ,τ

(2)
t

} and is

defined by:

Z{
τ
(1)
t ,τ

(2)
t

} = Z
(1)

τ
(1)
t

+ Z
(2)

τ
(2)
t

. (28)

The set of admissible exercise policies Π
(2)
t at time t is

Π
(2)
t =

{
(t1, t2) ∈

{
1, · · · , ∂(1)

}×{
1, · · · , ∂(2)

}
t ≤ t1 ≤ ∂(1), t1 < t2 ≤ ∂(2)

}
.

(29)

Let Em, Em,n denote respectively the conditional expec-
tation with respect to Fm and Fm,n. The contract fair value
V

(2)
t is the maximal compensation that the decision maker can

get via a non-anticipative admissible exercise policy which
can be defined as follows:

V
(2)
t = max(

τ
(1)
t ,τ

(2)
t

)
∈Π

(2)
t

Et

[
Zd{

τ
(1)
t ,τ

(2)
t

}] , (30)

whereZd
{τ(1)

t ,τ
(2)
t }

is the discounted reward defined as follows:

Zd{
τ
(1)
t ,τ

(2)
t

} = ξ
τ
(1)
t
Z

(1)

τ
(1)
t

+ ξ
τ
(2)
t
Z

(2)

τ
(2)
t

(31)

The valuation problem is a compound stopping problem. In
general a compound stopping variable is a pair of random
variables (τ1, τ2) with values in Π

(2)
t and which satisfy the

following properties (Haggstrom, 1966):

1. τ1 < τ2 a.s,

2. {τ1 = m} ∈ Fm for all m ≥ 1,

3. {τ1 = m, τ2 = s} ∈ Fm,s for all n > m ≥ 1.

To determine the optimal exercise policy, the decision maker
can rely on dynamic programming. For each time t, when she
has not claimed any right yet, she chooses among two deci-
sions :

• Continue and hold the same contract where she can ex-
ercise her right starting from the next time t + 1. Her
reward in that case is measured by the expected value of
her contract at the next time step:Q(2)

t = Et+1

[
V

(2)
t+1

]
,

• Exercise and set the first stopping time to t (i.e τ (1)
t =

t). Her reward is measured by the following condi-
tional expectation Q(1)

t = Et[Lt,t+1], where: Lt,l =

maxl≤m≤Tmax
Et,l [Zt,m]. Q(1)

t measures the expected
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reward, if the first exercise right is claimed at t, and
if the second right is exercised optimally. Determin-
ing Ht,t+1 requires an embedded dynamic program-
ming procedure. At the terminal date Tmax, one has
Lt,Tmax

= Zd{t,Tmax}. Starting from this point the de-
cision maker chooses, for each decision time m, t <
m < Tmax:

– either to continue and hold the contract with one
remaining right knowing that she has exercised at
t and where she can exercise starting from the next
date m + 1. Her reward is, then, measured by
Q

(1,0)
m (t) = Et,m+1 [Lt,m+1],

– or to exercise and get the reward Zd{t,m}.

The previous reasoning can be formalized as follows:

L{t,Tmax} = Zd{t , Tmax}, t = 1, · · · , Tmax,

L{t ,m} = max
(
Zd{t ,m}, Et ,m

[
L{t ,m+1}

])
,

m = t+ 1, · · · , Tmax − 1,

V
(2)
Tmax

= Zd{Tmax , ∂(2)}

V
(2)
t = max

(
Et[L{t , t+1}] , Et

[
V

(2)
t+1

])
,

t = 1, · · · , Tmax − 1.

(32)

An exercise indicator I(1)
t for the first stopping time can

be determined as follows:

I
(1)
t =

 0, if Et

[
V

(2)
t+1

]
> Et[L{t , t+1}]

1, otherwise,
(33)

and we set I(1)

∂(1) := 1.

An exercise indicator I(2)
t|m for the second stopping time

knowing the first one to be m is given as follows for each
t > m by:

I
(2)
t|m =

{
0, if Z{m, t} < Em, t

[
L{m, t+1}

]
1, otherwise

(34)

and we set I(2)

∂(2)|τ)
:= 1, ∀ τ ∈

{
1, · · · , ∂(1)

}
.

The optimal exercise policy at given time t can be ob-
tained as follows:

τ
(1)
t = inf

{
k ≥ t, | I

(1)
k = 1

}
,

τ
(2)
t = inf

{
k > τ

(1)
t , | I

(2)

k|τ(1)
t

= 1

}
.

(35)

A lower bound on the contract value can be obtained by
approximating the different continuation values by the LSM

technique which yields an approximate compound stopping
strategy

(
τ̃

(1)
t , τ̃

(2)
t

)
. A lower bound on the contract value

V
(2)
t is given by:

V
(2)
t = Et

[
Z{

τ̃
(1)
t ,τ̃

(2)
t

}] . (36)

3.2 The multiple-exercise contract
We generalize the two-right contract to a multiple exercise
setting. The public entity offers to the SPV the possibility to
claim the compensation at n occasions. Let (τ)i = (τ1, · · · , τi)
denote an exercise policy for the first i rights. The compen-
sation that the SPV can get for her ith right at a given time t
knowing that the previous rights were exercised at (τ)i−1 is
given by:

Z
(1)
t|∅ = max

(
0,min

(
Gct , LPV0 − LPVt−

−Gct
))(

1 + rc
)t

Z
(i)
t|(τ)i−1

= max
(

0,min
(
Gct , LPV0 − LPVt−

i−1∑
j=1

Gcτj −G
c
t

))(
1 + rc

)t
, i = 2, · · · , n.

(37)

The overall compensation Z{(τ)n} for a family of exercise
dates (τ1, · · · , τn) is defined as follows:

Z{(τ)n} =

n∑
i=1

Z
(i)
t|(τ)i−1

. (38)

The discounted reward Zd{(τ)n} is given by:

Zd{(τ)n} =

n∑
i=1

Z
(i)
τi|(τ)i−1

ξτi (39)

The value of the static contract is straightforward and is given
by:

V static0 (n) = E0

[
Zd{(

t
(1)
e ,··· ,t(N)

e

)}] , (40)

where
(
t
(1)
e , · · · , t(n)

e

)
is the chosen family of exercise dates

prior to the beginning of the contract. Not all the rights can
be exercised since the contract may end before some of the
selected dates are reached.
For the American style contract, the problem becomes an n-
compound stopping problem. A family (τ1, ..., τn) is called
an n-multiple stopping rule if the following conditions hold
(Mandelbaum and Vanderbei, 1981; Sofronov et al., 2006):

• τ1 ≤ · · · ≤ τi a.s,

• {τ1 = m1, · · · , τi = mi} ∈ Fm1,...,mi

for all mi > mi−1 > ... > m1 ≥ 1, i = 1, 2, ...n
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Here Fm1,...,mi contains all the information up to the timemi

knowing that the first stops were made at (m)i−1 = (m1, ...,mi−1).
The guarantee fair value is given by :

V
(n)
t = sup

(τ)n,t∈Π
(n)
t

Et

[
Zd{τ)n,t}

]
, (41)

where (τ)n,t is a n− compound stopping variable and Π
(n)
t is

the set of admissible n− compound stopping variables at time
t defined as follows:

Π
(n)
t =

{
(t1, · · · , tn) ∈

{
t, · · ·Tmax, ∂

(1)
}× · · ·×{

t, · · · , Tmax, ∂
(n)
} ∣∣∣t < t1 ≤ ∂(1),

tj−1 < tj ≤ ∂(j−1), j = 2, · · · , n

}
,

(42)
where ∂(i), i = 1, · · · , n denotes the exercise cemetery for
the ith right. Let Π

(n−i+1)
t|(m)i

denote the set of feasible exercise
policies knowing the feasible sequence (m)i at time t (i.e t ≤
m1 < · · ·mi and mj ≤ ∂(j), j = 1, · · · , i), it is defined as
follows:

Π
(n−i)
t|(m)i

=

{
(ti+1, · · · , tn) ∈

{
1, · · · , ∂(i+1)

}× · · ·×{
1, · · · , ∂(n)

} ∣∣∣mi < t1 ≤ ∂(1),

tj−1 < tj < ∂(j−1), j = i+ 2, · · · , n

}
,

Π
(n−i)
t|∅ =Π

(n−i)
t .

(43)
We introduce the value V (n−i)

t|(m)i
of the contract at time t know-

ing that the first i stops were made at the sequence (m)i de-
fined as follows:

V
(n−i)
t|(m)i

= sup
(τ)n−i∈Π

(n−i)

t|(m)i

E(m)i

[
Zd{(m)i,(τ)n−i}

]
, (44)

with the convention that V (n)
t|∅ = V

(n)
t and V (0)

t|(m)n
= Zd{

(m1,··· ,mn)
}.

We define an exercise indicator I(i)
t|(m)i−1

knowing the se-
quence (m)i at time t for each i = 1 · · · , n as follows:

I
(i)
t|(m)i−1

=


1, if E(m)i−1

[
V

(n−i)
t|{(m)i−1,mi−1+1}

]
≥

E(m)i−1

[
V

(n−i+1)
t|{(m)i−1,mi−1+1}

]
,

0 otherwise,
(45)

and we set I(i)

∂(i)|(m)i−1
= 1, ∀ (m)i−1.

The contract value can be obtained by the following recursive

dynamic program:

V
(n−i)
t|(m)i

=V
(n−i)
t|((m)i−1,mi+1)

(
1− I(i)

t|(m)i

)
+

V
(n−i−1)
t|((m)i,mi+1)I

(i)
t|(m)i

.
(46)

The sequence of optimal stopping times is then given by:
τ

(1)
t = inf

{
k > t | I

(1)
t|∅ = 1

}
.

τ
(i)
t = inf

{
τ

(i−1)
t < k | I

t|
(
τ
(1)
t ,··· ,τ(i−1)

t

) = 1

}
,

i = 2, · · · , n.

(47)

Let (τ)t,n =
(
τ

(1)
t , · · · , τ (n)

t

)
. The real option fair value at

time t is then given by:

V
(n)
t = Et

[
Z{(τ)t,n}d

]
. (48)

Replacing the different expected rewards by their counter-
parts which are obtained via the LSM approach yields a (sub-
)optimal n-compound exercise policy (τ̃)t,n and a lower bound
V

(n)
t can be obtained by:

V
(n)
t = Et

[
Zd(τ̃)t,n

]
. (49)

4 The multiple exercise contract: back
to a Markovian setting

The compound stopping approach allows to overcome the cou-
pling between exercising and the change in the terminal dura-
tion and the contract maturity by consequence. This approach
can, however, be very time consuming because of the com-
plexity of the embedded dynamic programming problems and
the time that they require for computation especially for long
duration contracts and contracts with a high number of exer-
cise rights. This section presents another approach to tackle
the contract’s valuation. The proposed approach simplifies the
decision problem to a Markovian setting. The main limitation
in the valuation of the MRG-LPV is the immediate change
in the contract duration, after exercising. The decision maker
has then to remember the dates at which all the previous rights
were exercised in order to know the date at which the contract
will end and her compensation, by consequence. To overcome
this limitation, one can introduce an additional parameter in
the problem characterization. The decision maker can have
a perceived duration Tt of the terminal date of the contract at
each decision time t < Tmax which can be defined as follows:

Tt =


min

{
Tmax , inf

{
k
∣∣∣ Et [PV Rk] ≥ PVR0

}}
,

if t < T (∗),

T (∗) otherwise.
(50)
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The perceived duration changes immediately after a pay-
ment Ht is made. Let Tt(Ht) be the new perceived duration
after a certain payment Ht is received and it is defined as fol-
lows:

Tt(Ht) =


min

{
Tmax , inf

{
k
∣∣Ht+

Et [PV Rk] ≥ PVR0

}}
, if t < T ∗(Ht),

T ∗(Ht) otherwise.
(51)

Including the perceived duration as an additional parameter
in the definition of the state at a given decision time should
simplify the valuation problem as the following development
intends to show.

Let V (i)
t|Tt

, i = 1, · · · , n denote the perceived value of the
contract with i rights when the decision maker sees at t a per-
ceived duration Tt. Let T (i−1)

t , i = 1, · · · , n denote the per-
ceived duration when there are i − 1 rights which have been
already claimed. One have T (0)

t = Tt. The decision maker
problem, if there are n rights yet to be claimed, can be sum-
marized as follows:

• Exercise and claim a compensation of Zdt which does
not require any prior knowledge to determine. Her ac-
tion changes then the contract’s perceived duration from
Tt to T (1)

t . She holds, afterwards, a contract with n− 1

remaining rights and a new perceived maturity T
(1)
t .

The next exercise can be made starting from the next
time period t + 1. Her perceived reward is, therefore,
given by the following continuation value:

Q
(n−1)

t|T (1)
t

= Zdt + Et

[
V

(n−1)

t+1|T (1)
t

]
. (52)

• continue. In that case, the contract duration remains Tt
and the decision maker holds the same contract where
she can exercise starting from the next time t + 1. Her
perceived reward is given by:

Q
(n)
t|Tt

= Et

[
V

(n)
t+1|Tt

]
(53)

Q
(n)
t|Tt

can be naturally derived from the current dynamic
programming. The main difficulty for this approach is the de-

termination of Et

[
V

(n−1)

t+1|T (1)
t

]
which would naturally require

to start the valuation procedure for the (n − 1)-right contract
with the new perceived maturity. This may be very time con-
suming and should revert to the compound stopping approach.
Since the aim of this section is to present a faster approach to
estimate the contrat’s value, an additional simplification has
to be made to construct a computationally effective valuation
procedure. We have so far extended the definition of the state
at a time t from St = (Rt, ξt) to S

′

t = (Rt, ξt, Tt). The
new current state can be used, in the regression procedure,

to derive an approximation of Q(n−1)

t|T (1)
t

. In other words, an

approximation of Q(n−1)

t|T (1)
t

can be simply derived by adding a

set of basis functions which depend on the perceived duration
Tt. The difficulty that the immediate change leads to fades
since the continuation value is directly parametrized by the
perceived duration. The gain in time in comparison with the
compound stopping approach is sizable (see results in table
3). The perceived values of the contract are, therefore, given
by the means of the following Bellman equation:


V

(n)
Tmax

= ZdTmax
,

V
(n)
t+1 = max

(
Zt + Et

[
V

(n−1)

t+1|T (1)
t

]
,Et

[
V

(n)
t+1|Tt

])
.

(54)
An exercise indicator for the ith right can be determined

as follows:

I
(i)
t =

 1 if Q
(i−1)

t|T (n−i+1)
t

≥ Q(i)
t|Tt(n−i)

0 otherwise,
(55)

The stopping time for the nth right (which is exercised
first) can be then obtained as follows:

τ
(n)
t = inf

{
k|I(n)

k = 1
}

(56)

The near optimal stopping time for the ith, i = n − 1, · · · , 1
right can be afterwards obtained as follows:

τ
(i)
t = inf

{
τ

(i+1)
t < k|I(i)

k = 1
}

(57)

The procedure requires a constant update of the perceived
duration which is defined as follows:

T
(i)
k = Tk

i−1∑
j=1

H
τ
(j)
t

 , k = τ
(i−1
t , · · ·Tmax. (58)

The use of this recursive procedure allows then to derive an
approximation of the contract’s value by replacing the differ-
ent continuation values by their approximations (e.g by the
LSM approach).

5 Numerical illustration
This section aims to illustrate the impact of the MRG-LPVR
on the financial viability of a PPP transaction. For this pur-
pose, we consider a project for which the construction dura-
tion is estimated at 3 years with a total construction cost of
150 Million e expressed in present value. The construction
costs inflation is assumed at 1% for the upcoming three years.
The SPV is funded by equity (15%) and non-recourse debt
(85%). The requested level of equity is a constraint that the

9



public entity imposes on private operators to guarantee a min-
imal involvement in the project. The lenders grant the SPV
a grace period during the construction of the project where
she does not reimburse capital. Once the construction is over,
the interest on the borrowed capital is of 7.5%. The debt’s
maturity is of 25 years starting from the construction termina-
tion. The expected return on equity is 10%. The risk free rate
is 4%. After the termination of the construction, the project
requires an annual cost of 3.5 Million e for operation and
maintenance. The inflation of this cost is estimated at 3%.
The tax rate is 33%. The project’s revenue is assumed to fol-
low a Geometric Brownian motion:

dRt = µRtdt+ σRtdWt, (59)

where µ =2% is the annual expected revenue increment, σ =15%
is the revenue volatility and Wt is a Wiener process. The ini-
tial value of the revenue is estimated at 15 Million e.
The maximal duration for the contract is set at Tmax = 50
years and the discounting rate for the Present value of revenue
is equal to the weighted average cost of capital rc=7.45%. The
analysis focuses on the following financial indicators 7:

• E[NPV ]: the expected net present value of the project’s
sponsors. It is governed by the dividends that the SPV
generates after she meets all its legal obligations,

• E[NPV g]: the expected net present value of the public
entity. It is mainly governed by the cash flows caused
by the guarantee and the generated cash flows once the
project is transferred. The discounting is made via the
risk-free rate,

• E[E[DSCRt]: the expected value of the average Debt
Service Coverage Ratio over the debt’s life. The project’s
banakability is an increasing function ofE[E[DSCRt],

• E[T ∗] the average duration of the contract,

• p∗ = P [PV R∗ < PV R0]: the probability that the tar-
geted present value of revenue is not collected at the
termination of the contract.

The public decision maker starts by analyzing the finan-
cial viability of the project in the absence of the guarantee and
for different levels of target Present value of revenue PV R0

as shown in figures 2, 3, 4 which present respectively the
NPV , E[T ∗] and p∗ for different levels of targeted PV R0.
The number of simulations is 10 000 in the whole presenta-
tion.

The initial analysis shows that the contract is not finan-
cially viable because of the negative NPV that it leads to
and figure 4 shows that the chance of not collecting PV R0

is considerable. This is mainly due to the high variability of
the revenue and its low level. The public entity can provide

7For a detailed analysis on discounted cash flow analysis in Public Private
Partnerships, one can refer to (Zhang, 2005; M.M.Islam, 2008).
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Figure 2: Comparing the NPV for different levels of PV R0.
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Figure 3: Comparing contract expected duration for different levels
of PV R0.

an initial subsidy for the project in order to guarantee its fi-
nancial viability, but this would be a certain expense. It may
opt, however, for a flexible contract duration with some con-
tingent subsidies presented in the form of MRG-LPVR. It tar-
gets, moreover, an expected duration that ranges between 30
to 35 years. It focuses therefore the analysis on three levels
of PV R0 = 200, 225, 250. To value the financial viability
of the project, in the presence of the guarantee, the following
steps should be followed:

1. make a stochastic discounted cash flow analysis of the
project,

2. estimate the volatility of the logarithmic return of the
project and compute the stochastic discounting factor
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Figure 4: Comparing p∗ for different levels of PV R0.

as in equations (2) and (8). For the determination of
the conditional expectation, we use the first 4 Laguerre
polynomials ,

3. compute the value of the guarantee following the steps
in section 4. The set of basis function for the LSM ap-
proach is enlarged by the SDF ξt, the payoff Z(1)

t and
the perceived duration Tt,

4. Analyse the impact of the guarantee on the financial
indicator of the project by determining the near optimal
stopping policy and re-adjusting the cash flows.

Table 1 summarizes the value of the guarantee for some
exercise rights and the different PV R0. Figure 5 presents
the impact of the MRG-LPVR on the net present value of eq-
uity. It shows the enhancement of the project’s return as the
number of exercise rights n grows. In figure 6, one can see
the opposite effect on the public NPV. The MRG contract al-
lows also to boost the project’s bankabilty as presented in 7.
Moreover, the MRG-LPVR reduces p∗ as well as the expected
duration of the contract as presented respectively in figures 8
and 9. Figure 10 presents a comparison between the values of
the flexible and static contracts.

The previous analysis presents one of the major pitfalls of
the Least Present Value of revenue scheme. In fact, in envi-
ronments with high variability of revenue, there is a substan-
tial chance for the private operator not be able to recoup the
targeted PVR. Increasing PV R0 would improve the outcome
of the project in expectation, however the chance of not col-
lecting PV R0 increases. There is therefore a certain trade-off
between PV R0 ( and the expected return in consequence) and
the chance of not collecting the targeted value of revenue. In
other words, the outcome of the project increases by increas-
ing PV R0, and so does its variability. Figure 11 illustrates

n
PV R0 200 225 250

1 3.37 3.55 3.67
2 6.69 7.04 7.28
3 10.15 10.55 10.85
4 13.35 13.86 14.29
10 29.71 31.85 33.23
20 50.62 57.00 60.37
30 61.50 76.01 82.17
35 62.11 82.89 90.83

Table 1: Comparing the guarantee value with different exercise
numbers and targeted present value of revenue
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Figure 5: Impact of the guarantee on the Net present value of the
project.
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Figure 6: Impact of the guarantee on the public Net present value of
the project.
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Figure 7: Impact of the guarantee on the Average Debt Coverage
Ratio.
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Figure 8: Impact of the guarantee on the contract’s duration.

this effect and presents the expected percentage of the col-
lected PV R∗ with respect to the initial requested PV R0.
Introducing the guarantee can help mitigate this pitfall and
reduce the private risk. It allows, moreover, to reduce the tar-
geted PV R0. One can see in figure 5 that with n = 5, the
expected NPV is positive and this for the different PV R0,
however the risk is reduced since the chance of not collect-
ing the targeted PV R0 is respectively 34%,46% and 57%, as
shown in figure 9. The overall cost to the public entity is also
reduced as shown in figure 6 because of the lower PV R0 and
the reduction of the contract’s duration (figure 8). This ef-
fect is better shown in figure 12, where one can see that at a
constant expected cost for the public entity, p∗ can be con-
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Figure 9: Impact of the guarantee on the probability of not recoup-
ing the target present value of revenue.
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Figure 10: Comparing the American and the European guarantee.

siderably reduced for lower PV R0. Figure 13 indicates that
a reasonable private NPV can be reached with a lower cost
for the public entity for the lowest PV R0. These different
effects are due on one hand to the reduction of the volatility
of the project’s return as PV R0 decreases as presented in fig-
ure 14. On the other hand, the introduction of the guarantee
reduces the payback period of the project, since higher cash
flows come at earlier stages of the project.
All in all, one can argue that the introduction of the guarantee
increases the return of the project and reduces the project’s
risk for the private operator. It makes the structuring of the
project with lower PV R0 possible which may increase the
social present value of the project in the long-run.
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Figure 12: Polar representation of p∗ and the public NPV

Table 2 presents the relative difference δV between the
compound stopping approach and the simplified approach de-
fined as follows:

δV =
V c − V s

V c
, (60)

where V c and V s denote respectively the value obtained by
the compound stopping and simplified procedures. The re-
sults are not conclusive with a sligh advantage for the sim-
plified appraoch for higher exercise rights. The compound
stopping approach does not require the approximation of the
duration of the contract and has an advantage in this regard in
comparison with the simplified approach. However, there is a
higher number of conditional expectation to approximate and
the lower bias of the approximation may increase. This bias
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Figure 13: Polar representation of the pubic and private NPV
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Figure 14: Project’s volatility over time for different targeted
Present Values of Revenue

will naturally increase for higher number of exercise rights.
Table 3 presents the relative difference δθ in computational
times:

δθ =
θc − θs

θc
, (61)

where θc and θs denote respectively the computational time
for the compound stopping and simplified procedures. One
can clearly see the enormous gain in time that the simplifica-
tion of the problem induces. This is mainly due to the fact that
the compound stopping approach requires the exploration of
the set of all possible combinations of stopping times which is
not the case for the simplified approach. In addition, there is
a higher number of conditional expectations to approximate.
Another advantage of the simplified problem is the recursivety
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of the valuation algorithm. In other words, if one would value
the contract with n rights, he can automatically have access to
the values of the contracts with 1 to n− 1 rights which is not
the case for the compound stopping approach.

n
PV R0 200 225 250

σ = 10%
2 -0,01 0,81 0,36
3 -1,92 -0,62 -0,84

σ = 15%
2 0,50 0,33 0,55
3 -2,11 0,35 -0,47

σ = 20%
2 0,40 0,21 -0,08
3 -2,08 -1,45 -0,85

Table 2: Relative difference between values obtained by the com-
pound stopping and the simplified valuation procedures (values are
in percentage).

n
PV R0 200 225 250

σ = 10%
2 67 68 72
3 2090 1811 1628

σ = 15%
2 81 92 106
3 1946 2548 1761

σ = 20%
2 155 101 155
3 1614 2125 1614

Table 3: Relative difference between computational times of the
compound stopping and the simplified valuation procedures (values
are in percentage)

6 Conclusion
The design of flexible public private partnerships is essential
to increase their appeal for private bidders and to boost the
cooperation between the private and the public sector during
the whole life of the project. Following this spirit, this work
presents a novel guarantee which aims to boost the financial
viability of PPP projects with variable durations. The contin-
gent claim is presented as a multiple exercise American option
with floating maturity. The valuation is made under the real
world measure by introducing a stochastic discounting factor
which guarantees the market-consistency of the valuation pro-
cedure and guarantees a better management of risk. The valu-
ation is first considered as a compound stopping problem and
is later simplified to a Markovian setting. The latter approach
permits to considerably reduces the computational time that
the valuation procedure requires. Our numerical results show
the substantial effect of the guarantee in improving the finan-
cial viability of PPP project and in guaranteeing a better risk

sharing between the stakeholders. It shows also that the guar-
antee may reduce the overall cost to the public entity while
increasing the project’s return and reducing the private risk.
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