
Idiosyncratic Volatility, its Expected Variation, and the
Cross-Section of Stock Returns
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Abstract

We offer a novel perspective on the negative relation between idiosyncratic
volatility (IVOL) and expected returns. We show that the IVOL puzzle is
largely driven by a mean-reversion behavior of the stocks’ volatilities. In doing
so, we make use of option implied information to extract the expected mean-
reversion speed of IVOL in an almost model-free fashion. Together with the
current level of IVOL this method allows us to identify stocks’ expected IVOL
innovations. Under the assumption of IVOL carrying a positive price of risk
(Merton (1987)) we resolve the puzzle. In a horse race we show that the mean-
reversion speed is superior to the most prominent competing explanations.
All our findings are robust to different measures of IVOL and various stock
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1 Introduction

The higher the exposure to systematic risk, the higher are an asset’s expected re-

turns. This fundamental relation between systematic risk and asset’s returns is one

of the cornerstones in asset pricing theory. In contrast to systematic risk, the rela-

tion between idiosyncratic risk and expected returns offers a less clear picture until

now. In classical asset pricing theory it has been common sense to assume that id-

iosyncratic risk is either positively priced (Merton (1987)) or has no pricing impact

at all (see the CAPM of Sharpe (1964), Lintner (1965)). However, in the seminal

work of Ang et al. (2006) both classical assumptions are challenged by the finding of

a negative relation between the realized idiosyncratic return volatility (IVOL) and

subsequent returns.1 According to their findings assets which are highly exposed to

idiosyncratic risk yield higher returns than assets with an low exposure. Since this

finding seems irreconcilable with classical approaches, the negative relation between

idiosyncratic risk and future returns has become known as the IVOL puzzle.

We exploit information from stock options to offer a resolution to the IVOL

puzzle under the assumption that idiosyncratic risk carries a positive priced of risk.

Central in finding a negative IVOL-return relation so far is the measurement of

IVOL, where the measure purposed by Ang et al. (2006) is purely historic (e.g.

Fu (2009)). Using option prices enables us to overcome this pitfall by linking the

pure historic measure of IVOL with forward looking expectations embedded in these

option prices. In doing so, we make use of the mean-reverting behaviour of IVOL

to identify expected IVOL innovations. In contrast to other studies, our method

allows us not only to analyze the IVOL-return relation itself, but also to analyze

why previous authors have found a negative relation between a historic measure of

IVOL and realized returns. Therefore, we use option prices to estimate the volatility

of idiosyncratic volatility (IVOLVOL) and show that this measure can be used as a

1In the following we use idiosyncratic risk and firm specific risk synonymously for IVOL.
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proxy for the expected mean-reversion speed of IVOL. Our analysis indicates that for

stocks with slow mean-reverting IVOL, the negative IVOL-return relation becomes

insignificant. In contrast, for stocks with fast mean-reverting idiosyncratic risk we

find a strong amplification of the negative IVOL-return relation. Both findings are

in line with a positive price of idiosyncratic risk. While for slow mean-reversion,

the historical measure of idiosyncratic risk is a rather good proxy, since its level

is expected to stay rather constant, low (high) historically realized IVOL will be

subject to a strong increase (decrease) if it is fast mean-reverting and will thus result

in higher (lower) realized returns. This explains the amplification of the negative

IVOL-return relation for stocks with fast mean-reversion.

For our analysis, we use 19 years of daily stock and stock options data and

focus on assets with the highest liquidity in stock and option trading only. Despite

having a subset of the whole stock universe the negative IVOL-return relation is

prevalent in this sample too. In particular, the median size and trading volume of

the firms lies in the 90%-percentile of the universe taken in comparable studies. Still,

a single sort on IVOL yields a monthly highly significant return and Fama-French

3-factor alpha (Fama and French (1993)) for a low-minus-high portfolio of 1.04%

and 1.51%, respectively. This negative relation is not puzzling though, but can be

explained by the expected future idiosyncratic risk level which we extract from stock

option prices. In doing so, we employ a largely model-free parametrization and link

it intuitively to the baseline method of measuring idiosyncratic risk relatively to the

Fama-French 3-factor model. Our method uses model-free techniques from Bakshi

et al. (2003) to calculate moments of the individual return distribution and a simple

linear model. This approach enables us to measure the expected individual variations

in idiosyncratic risk over the next month on a single stock level by our measure of

IVOLVOL.

Due to its nature, IVOLVOL is a good proxy for the expected mean-reversion

2



speed in IVOL. We show that expectations are in line with realizations. It holds, the

higher the current IVOLVOL the higher is the mean-reversion speed in idiosyncratic

risk. Therefore, we augment the purely historic measure of idiosyncratic risk with our

measure of IVOLVOL. This allows to analyze not only the expected mean-reversion

speed, but also to gain insights about the direction of expected IVOL innovations.

The combination of both measures reveals that the IVOL-return relation heavily

relies on the expected magnitude of mean-reversion in idiosyncratic risk, which we

show by a double sort analysis. That is, if IVOL is expected to change little over

the next month, the return of the low-minus-high IVOL portfolio is statistically

not distinguishable from zero. This observation is in line with a positive price for

idiosyncratic risk and thus also with rational investors’ behavior. If realized stock

IVOL is high (low) in the current period and it is expected to mean-revert only

slowly, investors expect idiosyncratic risk to stay rather high (low). Consequently, if

IVOL is positively priced, as implicated by Merton (1987), investors demand higher

(lower) returns. This leads to a low return of the low-minus-high idiosyncratic risk

portfolio, conditional on a low IVOLVOL. On the other hand, if IVOL is expected

to be exposed to a fast mean-reversion, e.g., in the case of high IVOLVOL, investors

adjust their expected returns. Thus, if idiosyncratic risk of a stock is high (low)

investors demand lower (higher) returns, because they expect idiosyncratic risk to

decrease (increase) by relatively large amount. This effect leads to highly significant

monthly returns of the low-minus-high IVOL portfolio of 2.04% and an alpha of

2.61%.

There exist a verity of different attempts to explain the negative IVOL-return

relation. In a comparative analysis we show that our measure for mean-reversion in

IVOL captures indeed an important facet of the IVOL puzzle which was omitted

by the literature up to now. In doing so, we use the techniques from Hou and Loh

(2016) and document that our measure surpasses and dominates the explanatory

power of competing explanations. A simple classification of stocks with respect to
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mean-reversion speed (proxied by IVOLVOL levels) helps to explain around 40%

of the IVOL anomaly. In contrast, controlling for the mean-reversion speed, other

explanatory variables make up roughly 20% in total only. Consequently, our mea-

sure combined with others helps to explain around 60% of the total IVOL-return

relation.2 For the test set of alternative explanations we follow closely Hou and

Loh (2016). We include (co-)skew measures as well as the retail trading proportion

(RTP) as proxies for lottery preferences. Further, we test for market frictions by

including lagged returns, the liquidity measure of Pastor and Stambaugh (2003),

the proportion of zero returns and the relative bid-ask spread.

Finally, a robustness analysis confirms that our results are robust to various

measures of IVOL as well as portfolio weighting schemes and cannot be explained

by stock liquidity, short-sale constraints or size. All findings in the data support

our line of reasoning. Especially, using options trading data enables us to confirm

our results from a different perspective. The robustness analysis reveals that in-

vestors incorporate the expectations about the stickiness of idiosyncratic risk into

their risk-return trade-off. We show that investors trade options in the direction of

expected innovations of idiosyncratic risk, by assuming corresponding innovations

in the stocks price as a compensation for idiosyncratic risk.

Our paper is related to different strands of the literature, focusing on the rela-

tion between idiosyncratic risk and expected returns as well as possible resolutions

for the IVOL puzzle. Ang et al. (2006) are the first to document the negative IVOL-

return relation. Stocks with low realized idiosyncratic risk exhibit higher subsequent

returns than stocks with high realized idiosyncratic risk. They show in a sequential

paper (Ang et al. (2009)) that the IVOL anomaly is prevalent in different markets

and thus robust. However, the robustness of the negative relation is questioned by

Bali and Cakici (2008) who argue that the effect is mainly driven by small stocks

2Hou and Loh (2016) find values between 29 – 54% for the combined explanatory power of the

most established measures.
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and the portfolio weighting scheme. In contrast, including the biggest stocks in our

sample only, we provide strong support for the existence of a robust and generally

negative IVOL-return relation.

Another strand of the literature argues that the incorporation of expected fu-

ture idiosyncratic risk is crucial to understand the IVOL-return relation. Fu (2009)

and Peterson and Smedema (2011) use EGARCH models to proxy expectations

about idiosyncratic risk innovations and show that the puzzle vanishes after ac-

counting for those. They find the expected IVOL-return relation to be positive.

However, Fink et al. (2012) question these methods by showing that the former

studies are prone to a significant look-ahead bias. After controlling for the set of

information they find the IVOL anomaly to be prevalent. In contrast to the former

authors Rachwalski and Wen (2016) argue that investors only price perceived IVOL

and thus incorporate idiosyncratic information only with a lag. Following them, the

puzzle merely stems from mis-measurement of current IVOL, which can be proxied

by perceived idiosyncratic risk, measured in terms of realization far in the past, and

current IVOL. However, none of the former studies make use of implicit information

from the options market to extract expectations about IVOL but only use stock

prices. Historic stock prices lag the forward-looking features options provide and

thus the former authors omitted a large part of valuable information. Consequently,

we add to the literature and, in contrast to Fu (2009) and Peterson and Smedema

(2011), extract a measure for expected IVOL innovations in an almost model-free

manner, using stock option prices.

We are not the first to use stock options in a joint analysis with idiosyncratic

risk.3 Aliouchkin (2015) looks at the cross-section of S&P100 options and calibrates a

3 Cao and Han (2013) show that delta-hedged option returns are decreasing in IVOL. Elkamhi

et al. (2011) use a measure for informed option trading and show that the more uniformed option

traders the lower stock returns. Bégin et al. (2016) calibrate parametric models on single stock

level for 260 stocks using options. They show that only idiosyncratic jump risk matters for the
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flexibel model for the dynamics of stock prices. Subsequently, he extracts moments of

the expected return distributions. He finds that the absolute idiosyncratic skewness

and co-skewness is negatively related to future returns. Different from his paper, we

jointly use a considerably bigger cross-section of stocks and options together with

almost model-free methods as well as an explicit focus on expected innovations of

firm specific volatility.

Other authors extract information about expected idiosyncratic risk using only

low parametrized models. Dennis et al. (2006), Diavatopoulos et al. (2008), Moll

and Huffman (2016), amongst others, employ regression models to calculate implied

idiosyncratic volatilities from option prices and aggregate implied volatility. They

find that implied idiosyncratic risk is negatively priced and that investors care about

its innovations. However, different from our approach, their measure for IVOL levels

can get negative and the defined IVOL innovations are only loosely connected to

IVOL estimated by factor models in the style of Ang et al. (2006). Further, these

authors do not focus explicitly on big stocks with the most liquid options.

Offering a possible resolution to the IVOL puzzle, some authors connect the

anomaly to short-sale constraints. Shleifer and Vishny (1997) find that idiosyncratic

risk dampens the willingness to short-sale. Stambaugh et al. (2015) and Boehme

et al. (2009) argue that the underperformance of high IVOL stocks stems merely from

short-sale constrained stocks, since they are too expensive. However, the authors still

find the puzzle even when excluding the 60% smallest traded stocks. Our paper adds

to this discussion, since we exclude stocks with illiquid option trading. Our study

thus only focuses on assets with the weakest short-sale constraints and we find the

IVOL anomaly still to be prevalent for these stocks.

Another strand of the literature finds that higher order risks on individual firm

level such as skewness, co-skewness and volatility-of-volatility are closely related to

equity risk premium. Diffusive idiosyncratic risk is not priced.
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the IVOL-return relation as well. Boyer et al. (2010) show that expected idiosyncratic

skewness is negatively correlated with returns. In an extensive study Conrad et al.

(2013) document a strong negative impact of individual risk neutral skewness on

future returns. Harvey and Siddique (2000) find a significant risk-premium for mar-

ket skewness. These findings are supported by Dittmar (2002) and Schneider et al.

(2016) who provide further empirical evidence as well as theoretical explanations.

Baltussen et al. (2014) document that realized volatility-of-volatility is negatively

related to future returns.4 Our paper adds to this literature and shows that higher

order idiosyncratic specific risk helps to explain the IVOL anomaly. Further, we

show that the information contained in IVOLVOL with respect to the IVOL-return

relation is different from the established (co-)skewness measures.

The remainder of the paper is structured as follows. Section 2 elaborates on the

concept of measuring mean-reversion in idiosyncratic risk and its link to expected

returns. In Section 3 we describe our data and methods to calculate IVOL and

IVOLVOL. Section 4 contains our main results. There we show the existence of the

IVOL-return anomaly in our dataset and afterwards reason it with expected IVOL

innovations. The robustness analysis is conducted in Section 5 and, last, Section 6

concludes.

2 Idiosyncratic Risk and its Expectation

It is well recognized that volatility is mean-reverting and that the incorporation of

this feature is essential for pricing risk.5 Idiosyncratic volatility is the risk of a stock

in excess of systematic risk and is naturally bounded from below as well as from

above. In the extreme, a stock’s volatility can either fully depend on the market or is

4Chen et al. (2014) find the same using high-frequency data. Bali et al. (2009) relate large

changes in IVOL to firm-level news.
5See for example Merville and Pieptea (1989) and Heston (1993).
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subject to idiosyncratic volatility risk only. Consequently, IVOL should mean-revert

too and the mean-reversion effect should affect prices.6 This is the cornerstone of

our method to explain the negative IVOL-return relation and therefore to explain

why studies relying on a historic measure of IVOL find a negative relation.

If idiosyncratic risk is mean-reverting, it is quite reasonable for a portfolio of

very high (low) IVOL stocks that these realized IVOL levels lie not only above (be-

low) the long run mean, but distort from it by a large amount. Clearly, the expected

mean-reversion speed is directly related to how fast this distortion is expected to

vanish. A measure for the expected mean-reversion speed of IVOL is thus central for

our analysis. In theory as well as empirically the volatility of idiosyncratic volatil-

ity serves as a natural proxy for the mean-reversion speed.7 To demonstrate the

theoretical relationship we assume, that IVOL follows a simple Ornstein-Uhlenbeck

process for the sake of illustration:

dIVOLit = κi
(

IVOL
i − IVOLit

)
dt+ σiIVOLdW

i
t . (1)

Et
[
IVOLit+τ

]
= IVOLite

−κiτ + IVOL
i
(

1− e−κiτ
)
. (2)

where κi denotes the mean-reversion speed, IVOL
i

the long-run mean of IVOL, dW i
t

describes a Wiener process, scaled by σiIVOL and τ is some time-scale, for example one

month.8 Then the conditional expectation of IVOL is quite standard and described

by equation (2). The larger κi, the larger the expected innovations in IVOL towards

its long-run mean. Given a time series of expected IVOLs, we define our measure of

6We validate the existence of mean-reversion in IVOL levels in the empirical section.
7We proof the empirical existence of this relation ship in the empirical section of our paper.
8For simplicity we assume the parameters to be the same under P and Q. This assumption will

have no qualitative impact on our results, as long as the parameters for the different measures are

positively related. Further we assume the mean-reversion speed and the long run mean to be time

invariant. This is no harsh restriction, since our later analysis concentrates on rather short holding

periods of one month.
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IVOLVOL as:

IVOLVOLit = std
[
Et−τ :t

[
IVOLis+τ

]]
. (3)

Therefore, IVOLVOL estimates the realized variation in the expectation on IVOL

over a certain period. This variation will be larger, the larger κi. The intuition is

that for a high κi, innovations in the expected IVOL will move by a larger amount

from time to time to its long-run mean and that these drive the IVOLVOL up.

Figure 1 demonstrates that the intuition is correct. It shows IVOLVOL in relation

to κi for different levels of distortion from the long run mean.9 The higher the mean-

reversion coefficient κi the larger IVOLVOL. Further, the increase of IVOLVOL in

κi is stronger the higher the distortion from the long run mean. Thus, the volatility

of expected idiosyncratic volatility is a proxy for the mean reversion speed.

The underlying this mechanism can be understood more clearly, when consid-

ering the following simple example. Assume a stock shows a high realized IVOL at

time t0 +τ which is well above its long-run mean. In such a case the drift component

in equation (1) gets highly negative and thus has a major impact on future IVOL

innovations. A higher κi even strengthens this impact and therefore the realized

IVOL in t0 + (τ + 1) will decrease towards its long-run mean by lager amounts, the

larger κi. This in turn will give rise to a higher difference in the expected IVOLs

for time t1 + τ and t1 + (τ + 1). Since the calculation of volatility involves a sum

of squared differences, volatility of expectations on IVOL rise in κi conditional on a

distortion from its long-run mean.10

Next to being a proxy for the mean-reversion speed, IVOLVOL has the striking

feature to be very closely connected to the estimation method of IVOL. For the sake

9We simulate 200,000 paths of IVOL, using equation (1) over one month. In every point in time

we compute the expected IVOLi next month, conditional on the current realization. IVOLVOL is

measured as the mean of the standard deviations of the expectations on IVOL.
10In the later analysis we control explicitly for the level of IVOL. It follows that any differences

in IVOLVOL should be mainly driven by κi.
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of simplicity, assume that IVOL is measured relatively to the market model, for now.

In particular, assume temporary that IVOLt at day t is estimated as follows:

Ri,s − rf,s = αi + βi,M (RM,s − rf,s) + εi,s, (4)

and IVOLit = std [εi,t−τ :t], with τ = 1 month.11 If we calculate the risk-neutral

expectation of the quadratic variation on both hand sides and assume the interest

rate to be deterministic, we get:12

(
σQ
i,s

)2
= γi +

(
βQ
i,M

)2 (
σQ
M,s

)2
+ EQ

s

[∫ s+τ

s

(dεi,s)
2 ds

]
(5)

= γi + βi,σM
(
σQ
M,s

)2
+ ηQi,s, (6)

where
(
σQ
i,s

)2
describes the expected variation in the individual stock returns and(

σQ
M,s

)2
the expected variation in returns of the market portfolio over the future

period. The process ηQi,s describes the risk-neutral expectation of the variation in

residuals εi,s. Thus, ηQi,s = Es [IVOLs+τ ]
2 defines the expected idiosyncratic variance

over the next month.13 Consequently, it proxies for the expected next month IVOL

on day s, too. Therefore, IVOLVOL states the realized variation in the risk-neutral

expectation of IVOL:

IVOLVOLit = std
[
ηQi,t−τ :t

]
. (7)

As shown above, IVOLVOL is closely related to IVOL and can be interpreted

as a measure to proxy for the expected mean-reversion speed of idiosyncratic volatil-

ity. Our method isolates this expectation with the use of fundamental time-series

analysis techniques, using forward looking information from option prices. As we ex-

plain more thorough in the next section, we employ model-free methods to calculate

11In the empirical part of our paper we define IVOL relative to the 3-factor Fama-French model.
12The assumption of deterministic interest rate is quite common when calculating expected

variations. See for example Bakshi et al. (2003) or Jiang and Tian (2005).
13Note, that the εi,s are assumed to be normal distributed and consequently the quadratic

variation indeed equals the variance over the sample path.
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expected variations. Consequently, unlike other studies on expected idiosyncratic

risk, we do not use a strong parametrization, but we provide a consistent as well

as almost model-free framework which can handle expected IVOL innovations and

IVOL levels at once.

In general, if a stock is currently in a regime of low (high) IVOL, its idiosyn-

cratic risk is likely to increase (decrease) over the next period due to the mean-

reversion effect in IVOL. The expected mean-reversion may be quite distinct for

different stocks. These different expectations can be reconciled from the expected

variation in idiosyncratic volatility. For example, a stock’s idiosyncratic risk be-

ing in a regime of low IVOL and high IVOLVOL (low/high) is strongly expected

to increase. It is currently quite low and is subject to a large mean-reversion ef-

fect. In comparison, for a stock exposed to the same low level of IVOL, but low

IVOLVOL (low/low) the mean-reversion effect in idiosyncratic volatility is expected

to be weaker. The reason is that a lower IVOLVOL level signals a smaller κi. Overall,

the low/high stocks are more risky than the low/low stocks and investors demand

higher returns for the former compared to the latter. The same reasoning applies to

stocks with currently high IVOL. If a stock is in a regime of high IVOL and high

IVOLVOL (high/high), investors strongly expect IVOL to change over the next

period. In contrast, stocks with low IVOLVOL have an IVOL of higher expected

persistence. For these stocks the magnitude of changes in idiosyncratic risk is ex-

pected to be less pronounced than for high IVOLVOL stocks. Consequently, if the

IVOL of a stock is currently high and IVOLVOL is low (high/low), IVOL is expected

to be more sticky and therefore less likely to decrease by a great amount. As a result,

investors demand higher returns for high/low than for high/high stocks.

The above described relation between IVOL and IVOLVOL leads to two hy-

potheses regarding the risk-return relation of stocks with respect to idiosyncratic

risk. These hypotheses should hold, as long as expected idiosyncratic risk is posi-
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tively priced (Merton (1987)) and given that expected variation in idiosyncratic risk

is really a proxy for the mean-reversion effect.

Hypothesis 1: The negative IVOL-return relation should vanish for low IVOLVOL

stocks, because these stocks are exposed to idiosyncratic risk with low mean-reversion

speed. In this case the realized IVOL level is a rather good proxy for the expected

future IVOL level. Hence, realized IVOL signals low (high) future expected idiosyn-

cratic risk when it is currently low (high). Therefore, conditional on low IVOLVOL,

lower returns should be realized for low IVOL stocks and higher returns for high

IVOL stocks.

Hypothesis 2: For high IVOLVOL stocks, the difference in returns between low

and high IVOL stock should increase, because high IVOLVOL stocks have idiosyn-

cratic risk with a high mean-reversion speed. In this case the realized IVOL is a poor

proxy for expected future IVOL levels, because currently high (low) IVOL signals

lower (higher) expected future IVOL.

3 Data and Methodology

This section describes the data used in the empirical part later on and explains the

construction of key measures of our analysis, IVOL and IVOLVOL.

3.1 Data

We merge three different databases for 1996/01–2014/12 sample period, and thereby

analyse 19 years of data. We use daily bid/ask prices, implied volatilities, trade

volumes, and open interests of American stock-options as well of SPX options and

the zero yield curve from Ivy DB US provided by OptionMetrics. From CRSP we

obtain daily and monthly stock data, such as split-adjusted returns, prices, dividend
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amounts, dividend frequency and trade volume. Further, to calculate the book-to-

market ratio we include the book-value on annual basis from Compustat in our

analysis. Last, we obtain daily Fama-French factors from Kenneth French’s data

library.

Overall, our raw sample consists of 8290 firms for which options are traded

at some point in time and 170 million daily data points of options with non-zero

prices, where we calculate the option price as the mid-point of bid/ask prices. To

provide a reliable data basis for our analysis we employ several filters, which are

quite similar to Goyal and Saretto (2009). First, we exclude all options with zero

open interest, zero volume, no implied volatilities and which violate standard no-

arbitrage bounds or where the bid price is lower than the ask price. Second, we follow

OptionMetrics’ pricing approach for American options to calculate synthetic prices

of corresponding European stock options. Given an implied volatility, we re-price

all quoted American options using a Cox et al. (1979) (CRR) tree with 1000 steps

and incorporate discrete dividends. For dividend amounts and frequencies we use

CRSP quotes. For precision, we discard all options with a relative pricing error of

the calculated CRR American option price to the quoted mid bid/ask price, being

larger than 1%. Next, we use the same CRR trees to calculate European Option

prices and thereby account explicitly for the early exercise premium of American

options. This is essential for the later construction of the (VIX)2 on single stock

level (VIXi)2. This approach is quite accurate as shown for example in Tian (2011)

and Ju and Zhong (1999) and comparable to Broadie et al. (2007), since the CRR

pricing model converges to the Black-Scholes model if the step size goes to zero.

After these filtering methods and after controlling for the number of data points

in our later regressions, our whole sample spans 3087 firms and over 11 million

options. Each month, our cross-section consists of 383 firms on average and of more

than 46000 options in total.
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3.2 Measurement of IVOL and IVOLVOL

To estimate the idiosyncratic volatility on individual stock level we follow the estab-

lished approach by measuring it relative to the Fama-French 3-factor model. We first

regress contemporaneously daily excess returns over one month on the three factors,

excess return of the market portfolio, high-minus-low book-to-market ratio and size.

Afterwards, we define IVOL as the standard deviation of the model’s pricing errors.

This leads to the following measurement of IVOL for month t

Ri
s − rf,s = αi + βiMKTMKTs + βiHMLHMLs + βiSMBSMBs + εis, (8)

IVOLit ≡ std
[
εit−τ :t

]
, (9)

where τ equals one month, rf,s is the risk-free rate and Ri
s are daily stock returns.

Measuring volatility of idiosyncratic volatility follows a quite similar pattern,

since we define IVOLVOL as the standard deviation of a contemporaneously regres-

sion again. However, equation (6) requires to measure the risk-neutral expectations

of the variation in market and stock returns. A natural and model-free measure of

expected market volatility under the risk-neutral measure is the VIX, provided by

the CBOE. Thus, we rely on it and compute a VIXi on a single stock level. This

allows for computing IVOLVOL from equation (6). More accurately, for month t we

regress daily VIXi levels on the market VIXM

(
VIXi

s

)2
= γi + βiV IX

(
VIXM

s

)2
+ ηis, (10)

IVOLVOLit ≡ std
[
ηit−τ :t

]
. (11)

To ensure reliable results of our estimation, we consider only stocks where we have

at least 15 daily returns Ri
s and at least 15 daily VIXi

s observations within a month.

We therefore isolate the stocks which have the most liquid options. Nevertheless,

our IVOLVOL estimate proxies for the exact IVOLVOL only. The calculation of our

IVOL relies on the Fama-French 3-facter model, while in equation (10) we assume
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the market model. However, only including the VIX leads to a more noisy measure

of IVOLVOL and therefore tends to weaken our findings. In addition, all our results

hold if we estimate idiosyncratic risk relative to the CAPM or the Fama-French

5-factor model (Fama and French (2015)), as we show in the robustness part. In-

cluding measures for systematic volatility and jump risks, like the realized variance

or bipower variation from Corsi et al. (2010) for the S&P500 or VIX, increases the

explanatory power of the model to estimate IVOLVOL only, but has little impact

on the results of the later sorting exercise. Therefore, we stick to the most straight-

forward model to estimate IVOLVOL. We calculate VIXi
t of the individual stock on

day t as (
VIXi

t

)2
=

2erf,tτ

τ

[∫ Si
t

0

P i
t (K)

K2
dK +

∫ ∞
Si
t

Ci
t(K)

K2
dK

]
, (12)

where Sit is the stock price, P i
t (K) are put prices and Ci

t(K) are call prices with

strike K and maturity τ = 1 month. We use the set of options with maturity of

exactly one month as long as they are available. Otherwise, we use two sets, one

with maturity τ1 below one month and a second with maturity τ2 above one month.

In each case we follow Jiang and Tian (2005). We interpolate implied volatilities

across strikes using spline interpolation and extrapolate using the quoted implied

volatility of the highest or lowest strike, respectively. If necessary, we interpolate the

implied volatilities linear across maturity to get prices of options with one month

to maturity and employ the above formula. On average we use a quoted subset of 8

options per day, which is extended to roughly 10 options per day using the put-call

parity, to build the (VIXi)2.

4 Results

In this section we present our results, by analyzing the relation between realized

IVOL and subsequent returns first and then by testing our hypothesis with respect
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to the IVOL anomaly and the IVOLVOL.

4.1 Realized Idiosyncratic Risk and Expected Returns

Ang et al. (2006) and most followup studies analyze the IVOL puzzle by looking at

the full stock universe quoted at NYSE, AMEX and NASDAQ. In contrast, we use

stocks for which options are traded only and in addition filter for options liquidity.

Thus, we analyze a subsample compared to previous work. Table 1 highlights some

key differences of our sample compared to the usual NYSE, AMEX and NASDAQ

sample for the same sample periods. The table reports the mean, median and per-

centiles of firm size and trading volume in stocks. With regard to both aspects our

sample consist of the largest and most liquid stocks, compared to the total universe.

The median size of $ 2,325 MM in our sample is higher for more than 90% of firms in

the total universe. The same holds true for the median trading volume of $ 956 MM.

In presence of this quite different sample we run an analysis of the relation between

realized idiosyncratic risk and subsequent returns first, before turning to the pricing

effect of expected idiosyncratic risk. Finding the negative relation between realized

IVOL and subsequent returns to be prevalent enables us to analyze the drivers of

this interplay in a next step. In addition, finding evidence for a negative relation

should be challenging for explanations based on limits of arbitrage.14 Those explana-

tion rely their reasoning on the argument that investors might be unable to exploit

an arbitrage opportunity, since they might face short selling restrictions or short

selling might be too expensive. However, our sample consists of very large stocks

with high liquidity in option and stock trading only. With these stocks short selling

is considered to be comparatively easy and less expansive. Table 2 reports results of

14Using the whole stock universe Stambaugh et al. (2015) argue that the IVOL puzzle can be

partially explained by limits of arbitrage. Nevertheless, Table 7 in their paper documents the

puzzle’s existence for the 40% biggest stocks.
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single IVOL sorts. Following Ang et al. (2006) we sort stocks into quintile portfolios

each month, such that their realized one month IVOL is increasing in portfolio rank.

Next to mean excess returns of equally weighted and value weighted portfolios, we

report Fama-French 3-factor alpha for both.

Table 2 clearly indicates, that the puzzle is prevalent on an alpha level. The

highest IVOL portfolio yields significantly lower alpha than the low IVOL portfo-

lio, for both, value and equally weighted portfolios. For value weighted portfolios,

there is a significant difference of 1.22% between the low and high IVOL portfolio,

while for equally weighted portfolios the difference is 1.64% and highly significant,

too. The puzzle is mainly driven by the highest IVOL portfolio, which has a highly

significant negative alpha, while the alpha for the low IVOL portfolio is not sig-

nificantly different from zero for equally weighted portfolios. Even though Bali and

Cakici (2008) find that the negative relation between realized idiosyncratic risk and

subsequent returns is quite sensitive to the portfolio weighting scheme and that it is

only prevalent for value weighted portfolios, we find the exact opposite result in our

sample with respect to excess returns. The return difference is highly significant for

equally weighted portfolios on the 1% level, but not for value weighted portfolios.

This suggests that the puzzle might be driven by stocks which are among the small-

est in our sample. Nevertheless, these stocks are still quite large compared to the

total stock universe, as indicated by Table 1, so that this finding is not in contra-

diction to previous work. Interestingly, the mean monthly return difference between

the highest and lowest IVOL portfolio is 1.13% for equally weighted returns, which

is close to Ang et al. (2006) who report a mean monthly return difference of 1.06%.

All in all, we conclude that the negative relation between realized idiosyncratic risk

and subsequent returns is evident in our sample, too.
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4.2 Variation in Expected Idiosyncratic Risk and its Mean-

Reversion Speed

In this section we analyze whether our basic assumptions for our hypothesis hold. As

pointed out, our hypothesis is based on two key aspects. First ,we expect IVOL to be

mean-reverting as has been shown often for total volatility. Next, we argue that the

expected variation in future IVOL levels, expressed by our measure of IVOLVOL, is

a proxy for the mean-reversion speed and together with the current level of IVOL a

measure for the direction of future IVOL movement.

Table 3 reports results of an augmented Dicky-Fuller test. There we test the

stationarity of the IVOL time series of every stock in our sample. The values in

the first three rows report the percentage of rejected null hypothesis in favor for

the alternative hypothesis for different significance levels. The null states that the

time series has a unit root, while the alternative hypothesis assumes stationarity of

the time series without a drift and trend. We report results for different required

minimum lengths of each time series (12 to 120 month).15 Taking a look at the results

indicates that a large majority of the IVOL time series is stationary. On the 5%

significance level, the null is rejected for 78.89% (minimum of 12 observations) up to

98.15% (minimum of 120 observations) of all IVOL time series included. Therefore,

we conclude that IVOL is in general stationary and thus has to show a mean-

reverting behavior.

Next, we turn to the mean-reversion speed and its direction. As mentioned

before, we expect that current low (high) IVOL will tend to increase (decrease)

on average. This increase (decrease) should be stronger the higher the IVOLVOL.

Therefore, Table 4 reports the mean-reversion effect for different IVOL/IVOLVOL

portfolios. With this table, we follow our later analysis and form dependent double

15Note, the time series of IVOL is only monthly and thus no more than 227 observations long.

However, testing for stationarity longer time series are favorable.
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sorts first. For these we sort our stock universe into quintile portfolios basing on their

IVOL in a first step and then split each portfolio into three sub-portfolios basing on

their IVOLVOL. For these portfolios, we look at the average change in IVOL and

run the following regression:

IVOLPFt+1 − IVOLPFt = αPF + κPF IVOLt + εPFt+1, (13)

Here, IVOLPFt+1− IVOLPFt is the change of the average IVOL of a portfolio over

the next month and αPF is a constant. In this regression κPF is the mean-reversion

effect. It states the direction of the mean-reversion and its absolute value is the mean-

reversion speed.16 Looking at Table 4 reveals that the direction of IVOL movent is as

expected. Regardless of the level of IVOLVOL, there is an average increase in IVOL

if the current IVOL level is very low and a decrease if it is very high. However, there

are differences in how fast the direction changes. While the effect for low IVOLVOL

is only positive for the lowest IVOL portfolio, for high IVOLVOL it changes sign

only for the forth and fifth portfolio. More important however, the mean-reversion

speed clearly depends on our measure of IVOLVOL. Conditional on low IVOL, we

find an insignificant speed of 0.03 for the low and medium IVOLVOL portfolios.

In contrast, for high IVOLVOL it gains economically and statistically much more

power and equals 0.16. The same holds true for high IVOL. There the speed for

all IVOLVOL portfolios is statistically highly significant. While it is 0.23 for lowest

IVOLVOL, and is 0.32 for the high IVOLVOL portfolio. Therefore, we conclude that

IVOLVOL indeed indicates the mean-reversion speed and together with IVOL the

direction of the future IVOL movement.

In the analysis so far, we look at the average IVOL of a portfolio only. To en-

hance our analysis, we confirm the results using a cross-sectional dummy regression

to estimate the direct impact of IVOLVOL on changes in IVOL levels. We look at

16Note, αPF contains the long run means of each IVOL portfolio, which we assume to be constant,

times the mean-reversion speed (|κ|PF × IVOL
PF

). Therefore, |κ|PF is the mean-reversion speed.
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IVOL innovations, ∆IVOLit+1 ≡ IVOLit+1 − IVOLit, on single stock level and dis-

tinguish between different regimes with our dummies. Thus, we analyze the time

series of every stock separately now. The base case of our regression is the regime of

low IVOL and low IVOLVOL (low/low). We use two dummies to control for times

of high IVOL (D1it) and times of high IVOLVOL (D2it). The product of our dum-

mies (D1it×D2it) indicates times of simultaneously high IVOL and high IVOLVOL.

Thus, the regression corresponds to a independent double sort and a stock will be-

long to the high IVOL (IVOLVOL) bucket only in relation to the remaining IVOLs

(IVOLVOLs) of the whole cross section. We use the following regression model:

∆IVOLit+1 = αi + βi1 × IVOLVOLit (14)

+ βi2 ×D1it × IVOLVOLit

+ βi3 ×D2it × IVOLVOLit

+ βi4 ×
(
D1it ×D2it

)
× IVOLVOLit + εit+1.

Table 5 reports the mean effect of IVOLVOL on subsequent realized levels of id-

iosyncratic risk and t-statistics. For robustness we only consider βij if at least five

observations of firm i being in a certain regime j are available, e.g., we include a

stocks βij to one of the four regimes if we have at least five month of observations

for it in that specific regime. To show the overall effect on changes in idiosyncratic

risk, we report the absolute change due to IVOLVOL, which we calculate as follows.

First, for each bucket and for each stock we sum the betas according to the regime

and afterwards we multiply by the mean IVOLVOL level of the firm conditional on

being in the particular regime. This gives us the average impact of expected future

variation in idiosyncratic risk on realized changes in idiosyncratic risk (∆IVOLi) for

each firm in each regime. Afterwards we average over each bucket.

Once more, we find a highly significant impact of the expected variation in fu-

ture idiosyncratic risk on subsequent realized IVOL levels. Due to the mean-reversion

in IVOL, IVOLVOL has a positive effect if the currently realized idiosyncratic risk
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is low (thus it will increase), while the effect is negative if currently realized idiosyn-

cratic risk is high. More importantly, the effect for high IVOLVOL stocks is signif-

icantly higher than for stocks with low IVOLVOL. More precisely, in the low/low

case the effect is 0.11%, but in contrast in the low/high case it is much stronger

with 0.26%. For currently high realized IVOL we find in the high/low case an im-

pact of -0.37% and in the high/high case an impact of -0.60%, which is larger in

magnitude. The differences conditional on IVOL levels of -0.05% for low IVOL and

0.28% for high IVOL are statistical highly significant as well.17 As both analyses

point in the very same direction, we conclude that IVOLVOL indeed indicates the

mean-reversion speed and together with IVOL the direction of the future IVOL

movement.

4.3 Expected Idiosyncratic Risk and Expected Returns

In this section we analyze the pricing of expected future idiosyncratic risk. There-

fore, we examine the effect of lagged IVOL levels on realized returns. We do this

conditional on the expected variation in the IVOL levels, that is for different levels

in IVOLVOL. Therefore, Tables 6 – 9 report results for dependent 5 × 3 portfolio

double sorts. For these, we sort our stock universe into quintile portfolios each month

based on their realized IVOL level first. Then each IVOL portfolio is split into three

independent portfolios according to the stocks measures of IVOLVOL. Conditional

on the level of IVOLVOL, Figure 2 shows the cumulative return for the low - high

IVOL strategy. As can be seen, accounting for the mean-reversion direction of IVOL

and its speed has a strong impact on the strategy’s performance. It holds the higher

the IVOLVOL the larger the return of the difference portfolio. The strategy of in-

17Note, the reported differences -0.05% in the case of low IVOL and 0.28% in the case of high

IVOL are not simply the differences of the mean effects of the single buckets. We can only calculate

the difference if a firm was in both buckets at least once with five observations each.
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vesting in the difference portfolio for high IVOLVOL stocks only yields a cumulate

log-return of 3.5 over the whole sample period. Further, for low expected variation

in idiosyncratic risk levels the cumulative return of a low-minus-high IVOL portfolio

is slightly negative and almost zero.

For a deeper analysis, Table 6 reports Fama-French alphas of equally weighted

portfolios for the conditional sort. With these results the extreme IVOL/IVOLVOL

portfolios are of most interest, that is the low/low, low/high, high/low and high/high

portfolios and the differences in alpha between those. As for the single sort, the alpha

is positive for low IVOL portfolios and changes sign for higher IVOL portfolios.

Here, the alpha decreases faster with the IVOL for stocks with higher IVOLVOL.

The last column of the table reports the alpha for the difference between the low

minus high IVOL portfolio for every IVOLVOL bucket. All results speak strongly

in favor of our hypothesis. Precisely, there is only a weak statistical significance of

the alpha for the difference portfolio of 0.70% if the IVOLVOL is low. As pointed

out the mean-reversion effect is much slower for these stocks and high (low) IVOL

will stay rather high (low). Thus, investors seem to demand less compensation. In

contrast, the significance is economically and statistically much stronger if we look

at the alpha of the difference portfolio between low/high and high/high, which is

2.61%. Again, these stocks constitute of an IVOL that is much faster mean-reverting.

Therefore, it is very likely that a current low (high) IVOL will increase (decrease)

by a greater amount and thus investors might demand higher compensation for this

increase. The last row of Table 6 reports the difference in alpha between the lowest

and highest IVOLVOL portfolio for every realized IVOL bucket. Looking at these

results, there is no significant difference in alpha between the low/low and low/high

portfolios. However, there is a highly significant difference of 1.69% between the

alpha of high/low and high/high portfolios. Putting together, this indicates that

the negative relation between lagged idiosyncratic risk and subsequent returns as

found in the single sort is driven by high IVOLVOL stocks, which have a faster mean-
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reverting IVOL. In addition, among the high IVOLVOL stocks, the negative relation

between lagged IVOL and realized returns is driven by the high/high portfolio, since

there is only a significant difference between high/low and high/high.

Table 7 reports mean excess returns for the very same equally weighted port-

folios. The overall results are as in the case of the Fama-French alpha. Returns tend

to be positive for low IVOL portfolios and decrease in the IVOL rank. However, they

get only negative for the highest IVOL portfolios which have either a medium or

high IVOLVOL. Looking at the differences in returns between low and high realized

idiosyncratic risk portfolios in the last column reveals that the difference of 0.28%

between low/low and high/low is not significantly different from zero. In contrast,

the difference between low/high and high/high of 2.04% is highly significant in a

statistical and economical sense. The last row in Table 7 shows that only the 1.34%

difference between low/high and high/high is significant. Once again, this highlights

that returns of the high/high portfolio are the reason for the existence of a neg-

ative relation between realized idiosyncratic risk levels and subsequent returns, as

documented by the single sort. Table 8 and 9 report alpha and excess returns for

conditional sorts of value weighted portfolios. The results on alpha level are exactly

the same as for equally weighted portfolios. If the IVOLVOL is low, the alpha of

the difference portfolio is not significant and 0.41%. If the IVOLVOL is high, it

gets highly significant and equals 1.84%. Again given a certain IVOL level, only

the difference between high/low and high/high has an alpha of 1.38% and is highly

significant, highlighting the importance of the high/high portfolio in explaining the

negative relation between lagged IVOL and realized returns. In contrast, the results

for excess returns are much weaker. Nevertheless, this fact is not surprising, since

there is no relation between realized idiosyncratic risk and subsequent excess returns

found for single sorts. Apart from this, the results point still in the same direction.

There is a weak significance for the difference between low/high and high/high port-

folio returns (1.30%), but no significance between low/low and high/low portfolio
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returns (0.06%).

All in all, the findings speak strongly in favor for our hypothesis. The negative

relation between lagged IVOL and realized returns can be explained if accounting for

the mean-reversion effect of IVOL and the differences in its mean-reversion speed.

4.4 Mean-Reversion Speed vs. Competing Explanations

All evidence thus far speak strongly in favor of that controlling for the mean-

reversion speed in IVOL disentangles the IVOL puzzle. However, there exists a

battery of other attempts to solve the puzzle, as pointed out before. If the mean-

reversion speed in IVOL is the central driver in observing a negative relation be-

tween past realized IVOL levels and subsequent returns, it should be able to beat

these competing explanations in a direct horse race. Therefore, we make use of the

method in Hou and Loh (2016), which allows to decompose the IVOL coefficient of

a cross-sectional regression of IVOL on returns, with respect to various competing

explanations. Table 10 reports results of the decomposition. Panel A displays the

intercepts and coefficients of cross-sectional regression, where we regress the lagged

IVOLi on returns at every point in time and then average over time. Next to raw

returns, we use Fama-French 3-factor and 5-factor alpha and stock characteristic-

adjusted returns, following Daniel et al. (1997) (DGTW), as independent variable.

The coefficients are all negative and range from -0.2801 for raw returns to -0.0144

for 3-factor alpha. This fact highlights once more the existence of the IVOL puz-

zle in our data sample, since all coefficients are highly significant except for the

Fama-French 5-factor alpha.18

In Panel B we report results of an instantaneously cross-sectional regression of

control variables, which are propagated to explain the IVOL puzzle, on the realized

18In the robustness part, we show that the negative relation between IVOL and 5-factor alpha

is prevalent for our highest IVOLVOL bucket.
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IVOL levels. This regression is the same for all independent variable sets in Panel

A and thus yields the same coefficients in all regressions. To test our hypothesis we

include three dummy variables indicating if a stock’s IVOLVOL lies in the lowest,

middle or highest tertile. Motivated by our previous findings, we expect the negative

influence of IVOL on returns to be strongest in our highest tertile. However, by

conditioning on the IVOLVOL level only, this method imposes a larger hurdle in

explaining the IVOL return relation compared to our double sort analysis. As pointed

out before, we expect the negative relation to be prevalent for stocks which show a

large distortion from its long-run mean and a fast mean-reversion at the same time.

However, we are not able to control for the IVOL level in this method by design.

Nevertheless, if we find an effect of IVOLVOL alone, it indicates a lower bound for the

potential of the mean-reversion to explain the IVOL puzzle. We follow Hou and Loh

(2016) and include next to our IVOLVOL measure the most promising alternative

explanations. Precisely, we add realized skewness, risk-neural skewness, co-skewness,

the retail trading proportion (RTP), lagged returns, the proportion of zero returns,

the liquidity measure of Pastor and Stambaugh (2003) and the relative bid-ask

spread. The results in Panel B show that all coefficients of the IVOLVOL dummies

are highly significant. While the coefficient for the lowest IVOLVOL tertile is -0.0028,

it increases to 0.0111 for the highest tertile, capturing the positive correlation of both

measures. Next to these, the risk-neural skew, lagged returns, the proportion of zero

returns and the bid-ask spread are significant only.

Panel C displays the main results of the analysis. Following Hou and Loh (2016)

we use the coefficients from the regression in Panel B to disentangle the IVOL co-

efficient from Panel A. Therefore, we compute sensitivities for these explanatory

measures, which are embedded in the IVOL coefficient. We do so by computing

the covariance between returns and the fraction of the explanatory variable, which

explains the variation in IVOL e.g., the coefficient times the beta of the variable

from the regression in Panel B. These are then in turn normalized by the variance
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of IVOL, to ensure that all computed sensitivities plus the residual part, which is

not explained by any of these variables, add up to the coefficient in Panel A. The

disentangled coefficients are then gained by averaging over time. Panel C of Ta-

ble 10 clearly indicates that the proposed relation of our measures holds. The high

IVOLVOL dummy has the highest impact, compared with the other two dummies.

It is able to explain the IVOL coefficient by 27.56% up to 86.25%, while the low

IVOLVOL dummy has an explanatory power of 9.01% to -26.14%. The results for

the 5-factor alpha show the strongest divergence and, thus, support our reasoning.

While a simple dummy indicating whether mean-reversion is expected to be high

explains nearly the whole negative coefficient of IVOL, low mean-reversion turns the

relation around and signals a positive or only weak negative dependence of IVOL

and returns. The findings are a strong support for the IVOL puzzle to be driven by

the mean-reversion. This fact is even bolstered when looking at the other controls.

In line with Hou and Loh (2016), we find that many potential explanations have

little power in explaining the puzzle. RTP and ZeroRet are among the best perform-

ing competing explanations, showing an explanatory power of 3.08%− 12.66% and

8.27% − 12.25%, respectively. However, these lie far below the explanatory power

of IVOLVOLhigh. Moreover, all competing explanations taken together are in no

case able to beat the explanatory power of the high IVOLVOL dummy. In addition,

the three dummies together explain by far the largest fraction of the IVOL puzzle.

While all explanations together are able to explain 63.14%, 56.54% and 61.54%, the

dummies alone are responsible for 41.17%, 38.41% and 38.15%, respectively. Thus,

due to IVOLVOL we are able to boost the explanatory power way above the re-

ported 29%-54% in Hou and Loh (2016). All in all, these results fully support our

hypothesis and show that simple dummies to control for mean-reversion effects are

superior to many other famous explanations for the IVOL puzzle.
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5 Robustness

In this section we undertake a robustness analysis with respect to the model which

is used in the estimation of idiosyncratic risk. Further we provide evidence that the

underperformance cannot be explained by other stock characteristics and that our

reasoning is supported by option trading data.

5.1 Controlling for Different Measurements of IVOL

Throughout the paper we estimate idiosyncratic risk relative to the Fama-French

3-factor model. However, our IVOLVOL measure is calculated relative to the market

VIX and thus measures mean-reversion effects of idiosyncratic volatility relative to

the market model. To check if our main findings still hold in a more consistent setting

we calculate IVOL relative to the CAPM and report excess returns the same as the

mean-reversion effect in Table 11 and Table 12. Table 11 shows that our main find-

ings remain unchanged overall. When we calculate idiosyncratic volatility relative

to the CAPM the IVOL-return relation still vanishes completely for low IVOLVOL

stocks and is strengthened for high IVOLVOL stocks. As before the IVOL-return

relation seems to be driven by high/high stocks. In addition, Table 12 documents

that our explanation for the existence of the negative IVOL-return relation is still

valid. The mean-reversion effect is still larger for high IVOLVOL stocks with signs

in the right direction. Interestingly, the absolute effect remains on the same level

overall, but the significance for low/high stocks is dampened to a 10% significance

level.

Fama and French (2015) extend their three-factor model and show that invest-

ment as well as profitability are crucial to price the cross-section of stocks. These

factors are different from the classical ones and may proxy risks factors which are

important for the IVOL-return relation. Thus, we calculate idiosyncratic risk rela-
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tive to the five-factor model. Table 13 and Table 14 show excess returns and the

mean-reversion effect for portfolios sorted on IVOL and IVOLVOL. The tables indi-

cate that our findings and our explanation are robust to the 5-factor model of Fama

and French. The IVOL-returns of the difference portfolios vanish for low IVOLVOL

stocks and amplify for high IVOLVOL stocks. Further, high/high stocks are still the

main driver and the mean-reversion effect increases in IVOLVOL levels.

Finally, we test a different sorting scheme. Section 4.3 focuses on analyzing

possible explanations of the negative IVOL-return relation, documented by earlier

studies. Therefore we run dependent double sorts. Table 15 reports equally weighted

results of a simple independent 2×2 double sort.19 Both, for alpha and excess returns

the results point in the very same direction as before. For low IVOL, we find no

significant difference in return or alpha for the high minus low IVOL portfolio. In

contrast, the difference portfolio shows a highly significant excess return (alpha) of

0.66% (0.88%) on average if the IVOLVOL is high. Again, high/high stocks seem

to drive the effect. Therefore we conclude that our results are neither driven by a

biased estimator of idiosyncratic risk, nor by a specific sorting technique.

5.2 Controlling for Stock Characteristics

This part of our robustness analysis concentrates only on portfolios of high IVOLVOL

stocks since we find significant differences in returns for those only. However, these

results might be driven by some special stock characteristics. In doing so, we first

perform the usual conditional 5 × 3 sort on idiosyncratic risk and IVOLVOL. Af-

terwards we only concentrate on the stocks in the highest IVOLVOL tertiel and use

the same method as in Ang et al. (2006). That is, we first sort conditionally for the

robustness variable in a high/low fashion and then for IVOL. Thereupon, we average

19Since the negative IVOL-return relation is generally weaker for value weighted portfolios in

the sample, we find no significant differences for a rather sparse 2× 2 sorting scheme.

28



the portfolios along the robustness variable and report excess returns as well.

Table 16 reports the resulting excess returns after controlling for various char-

acteristics. Our analysis reveals that none of the included variables are capable to

explain the excess return of the low-minus-high portfolio since both stay highly eco-

nomically and statistically significant. Further, for almost all control variables the

magnitudes of returns are in the same range as before. In the following we will ex-

plain the economic reasons for including the control variables.

Size – We control for size since Bali and Cakici (2008) suggest that the IVOL puzzle

might be driven by small stocks mainly. Controlling for size has a small marginal

effect on return level. It only leads to slightly deteriorated returns of 1.72% for the

difference portfolio.20

Book-to-Market Ratio – As Fama and French (1992) and others show, the book-

to-market (B/M) ratio is a strong driver of returns. The higher the ratio the higher

the future realized return. It might be possible that low IVOL stocks are mainly

value stocks and that high IVOL stocks are more likely to be growth stocks. This

relation might explain the large returns of the low-minus-high IVOL portfolio. How-

ever, after controlling for B/M the return for the low-minus-high portfolio is still

highly significant positive.

Liquidity – Several authors argue that liquidity positively influences returns and

that high IVOL stocks might be less liquid.21 We measure liquidity risk using the

liquidity beta introduced by Pastor and Stambaugh (2003) estimated over the for-

mation period of one month. We find, even after controlling for liquidity, the excess

return of the low-minus-high portfolio remains significant.

Bid-Ask Spread of Stocks – Another measure for liquidity is the bid-ask spread,

which we measure as the daily average over the formation month.22 Similar to the

20Table 7 reports a return of 2.04% in the case of no controls.
21See for example Amihud (2002) and Liang and Wei (2012) amongst others.
22Brennan and Subrahmanyam (1996) argue that the spread is a measure for liquidity, although
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findings for the liquidity beta the significance of the excess return of low IVOL stocks

remains untouched.

Bid-Ask Spread of Puts – The underperformance of the high IVOL portfolio

could be driven by too high prices of stocks for which investors face short sale con-

strains. Lin and Lu (2015) show that, since the replicating portfolio for puts includes

a short position in the underlying stock, the bid-ask spread of put options is pos-

itivly related to lending fees. Those fees can be interpreted as a level of short-sale

constraints, because the higher the fee the more costly to short the stock. However,

after controlling for the spread we still find highly significant abnormal returns for

the difference portfolio.

Return Reversal – Huang et al. (2010) show that, if the whole stock universe is

considered, the IVOL puzzle can on average be explained by return reversal. After

controlling for return reversal the return of the difference portfolio is still highly

significant in statistical and economic terms, so we do not find evidence for this

explanation in our subsample.

5.3 Evidence from Option Trading

After confirming the robustness of our IVOL measure and the sorting results, we

check further robustness of our hypothesis. That is if rational investors’ trade put

and call options in consensus with mean-reverting idiosyncratic risk.

Table 17 reports average ratios of traded put volumes to call volumes in the

portfolio formation month. This trading behavior should be related to the expected

drift in the stock price and thus indicate whether investors except a certain return

given a specific level of idiosyncratic risk. In line with the literature our data shows

that on general more calls are traded than puts.23 For stocks in the low/low portfolio,

a noisy one.
23See for example, Dennis and Mayhew (2002) who report a median of 0.2950 or Bali and Murray
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the ratio is overall the largest. Therefore, the ratios document that future returns for

assets with current low and slowly mean-reverting IVOL are expected to be lower

compared to the stocks in other portfolios. In comparison, for stocks with currently

high IVOL, which is slowly mean-reverting, the average put/call-ratio is the lowest

value across all portfolios. These stocks are expected to be risky next period, too.

Market participants demand future high returns for bearing this risk and in turn

incorporate the expected returns into their option trading decisions. Therefore, more

call options are bought.

Further, conditional on the IVOL regime we find highly significant differences

in the put/call-ratios for low and high IVOLVOL buckets. If idiosyncratic risk is low,

the ratio for high IVOLVOL stocks is significantly smaller than for low IVOL. In-

vestors are more willingly to trade calls on low/high stocks than on low/low stocks.

They take into account a likely increase in individual risk and thus higher stock

returns.24 In a similar spirit, conditional on high IVOL the put/call-ratio is signifi-

cantly larger for high IVOLVOL stocks than for low IVOLVOL assets. These findings

indicate a higher demand for puts on assets in the high/high regime. Also the dif-

ferences in put/call-ratios between low and high IVOL for given IVOLVOL buckets

speak in favor of our hypothesis. The difference is the largest for low IVOLVOL

stocks, for which investors expect the risk levels to be good distinguishable from

each other. Here, the difference in option trading stays the most pronounced. This

difference shrinks in the IVOLVOL buckets. For high IVOLVOL we find the lowest

difference. Here, investors expect risk levels to move from the extreme in the op-

posite direction. Therefore, investors trade options according to that behavior and

decrease the demand for puts (calls) of the low/high (high/high) portfolio. This re-

(2013) who report a larger open interest for calls than for puts.
24In unreported results, we find that low/low stocks are significantly less liquid than low/high

stocks measured in terms of the average liquidity factor of Pastor and Stambaugh (2003). So

investors’ interest in low/high stocks seems to be higher than in low/low stocks.

31



sults in a shrinking difference in the put/call-ratio. All in all, we conclude that the

observed patterns support our hypothesis from another perspective and we find the

mean-reversion in IVOL to be an overall very robust phenomenon.

6 Conclusion

Our paper analyzes the widely documented negative relation between historically

realized IVOL and subsequent realized returns. Thereby, we highlight the importance

of measuring expected IVOL to infer the real relation between expected idiosyncratic

risk and expected returns. If IVOL obeys a mean-reversion process, a high (low)

IVOL might indicate a rather large distortion from its long-run mean. In such a

case it is obvious that the higher the mean-reversion speed, the larger the expected

decrease (increase) in IVOL. Further, we demonstrate theoretically and empirically

that the variation in expected future idiosyncratic risk will increase in the mean-

reversion speed. Therefore, we propose the measure of IVOLVOL as a natural proxy

for the expected mean-reversion speed in IVOL. Then the magnitude of the negative

IVOL-return relation should increase in IVOLVOL.

The empirical assessment of our paper speaks strongly in favor for these hy-

potheses. First, we document the existence of the classical IVOL anomaly in a sub-

sample of highly liquid stocks and options if a historic measure of IVOL is used.

Stocks with high idiosyncratic volatility underperform compared to stocks with low

idiosyncratic volatility. Second, we verify that the time series of IVOL is stationary.

Therefore, it is reasonable to assume a mean-reversion behavior of IVOL. In addi-

tion, we show that our measure of IVOLVOL indeed proxies for the mean-reversion

speed in IVOL. In essence, we can expect a higher speed of mean-reversion if the

IVOLVOL is large. Thereby, we construct our measure of IVOLVOL in an almost

model-free fashion by using option implied information which we extract from the
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cross-section of options. Thus, our measure of IVOLVOL is entirely forward looking

and can be used together with the current level of IVOL to infer the expected inno-

vation in IVOL. Third, this interplay resolves the previously documented negative

IVOL-return relation. More precisely, the negative IVOL-return relation vanishes

for low IVOLVOL stocks. Here, idiosyncratic risk levels are expected to be rather

constant. On the other hand, the negative IVOL-return relation is economically and

statistically bolstered, looking at high IVOLVOL stocks. Again, the idiosyncratic

risk of these stocks is expected to move in opposite direction and thus investors

demand a higher (lower) compensation for current low (high) IVOL stocks, which

are expected to suffer a larger increase (decrease) in idiosyncratic risk.

In a comparative analysis in the style of Hou and Loh (2016) we show that

IVOLVOL is distinct from other explanations for the IVOL anomaly. Our proxy for

mean-reversion can explain more than 40% of the total IVOL anomaly on its own.

Whereby other explanatory variables, which proxy market frictions or the lottery

preference of investors, only manage to explain around 20%.

Moreover, our results are not driven by stock characteristics other than expec-

tations about idiosyncratic risk. In a robustness analysis we rule out stock liquidity

and short-sale constraints. Further, we show that our results are insensitive to dif-

ferent measures of idiosyncratic risk and different sorting techniques. In addition,

our findings are backed up by options data. Options trading behavior indicates that

investors buy more call (put) options if IVOL is more likely to increase (decrease),

because they have the incentive to participate on future high (low) returns. Our pa-

per gives a new valuable perspective on the existence of the negative IVOL-return

relation for the biggest, most liquid stocks if a historic measure of IVOL is used. In

addition, it demonstrates that this observation can be explained by a mean-reversion

in IVOL alongside with a rational behavior of investors.
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Stock Fundamentals

Mean Median
Lowest

20%

Next

40%

Next

60%

Next

80%

Highest

90%
Sample Size 7719 2325 764 1582 3304 8541 17682

Dollar Vol. 2095 956 410 738 1259 2435 3907
Whole Size 1364 158 34 97 254 836 2069

Universe Dollar Vol. 289 18 2 9 34 144 411

Table 1: The table shows descriptives of size and Dollar Vol, the average monthly
trading Dollar volume, in million $ each. Whole Universe covers all stocks from
the three exchanges AMEX, NYSE and NASDAQ. Sample is the subsample of the
universe, which we use throughout the paper. The sample only contains stocks for
which we have at least 15 days of return and VIXi observations for some month. We
only use stock characteristics for the months the stock is included. Details can be
found in the data section. The sample period is 1996/01–2014/12.
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Single Sort on Idiosyncratic Volatility

Excess Return – Equally Weighted

1 LOW 2 3 4 5 HIGH 1 - 5
0.71∗∗∗

(0.33)
0.79∗
(0.42)

0.68
(0.54)

0.54
(0.65)

−0.43
(0.73)

1.13∗∗∗
(0.54)

Excess Return – Value Weighted

1 LOW 2 3 4 5 HIGH 1 - 5
0.67∗∗∗

(0.31)
0.69∗
(0.40)

0.37
(0.49)

0.55
(0.65)

−0.12
(0.75)

0.79
(0.57)

FF-Alpha – Equally Weighted

1 LOW 2 3 4 5 HIGH 1 - 5
0.18
(0.11)

0.11
(0.15)

−0.16
(0.18)

−0.35
(0.24)

−1.47∗∗∗
(0.27)

1.64∗∗∗
(0.31)

FF-Alpha – Value Weighted

1 LOW 2 3 4 5 HIGH 1 - 5
0.21∗∗∗

(0.08)
0.09
(0.14)

−0.34
(0.18)

−0.26
(0.24)

−1.01∗∗∗
(0.35)

1.22∗∗∗
(0.39)

Table 2: The table shows monthly excess returns, averaged over the sample period
1996/01–2014/12, and 3-factor Fama-French alphas for different portfolios. We sort
stocks into five equally/value weighted portfolios basing on realized IVOL in for-
mation month. Then, we calculate excess returns for the next month. We calculate
IVOL relative to the Fama-French 3-factor model. ∗, ∗∗ and ∗∗∗ indicate statistical
significance at the 90, 95, and 99% confidence level. Newey-West adjusted standard
errors are stated in parentheses.

Stationarity of IVOL

Required Observations

12 24 60 120
10% Level 85.83 87.81 95.41 99.27
5% Level 78.89 80.99 91.27 98.15
1% Level 62.23 64.21 75.57 89.36

Number of Stocks 3,056 2,962 2,464 1,785

Table 3: The table shows results of an augmented Dicky-Fuller test for an unit
root against a stationary time series. Values report the percentage of rejected null
hypothesis against the alternative of a stationary process without drift and trend
for the 10, 5 and 1% significance level. To include a stock’s time series at least 12,
24, 60 or 120 observations of the monthly IVOL are required. The last row reports
the number of time series included to the test.
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Mean Reversion Effect in IVOL

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH

IVOLVOL 1 LOW 0.03
(0.03)

−0.14∗∗∗
(0.04)

−0.11∗∗∗
(0.03)

−0.13∗∗∗
(0.04)

−0.23∗∗∗
(0.03)

2 0.03
(0.05)

−0.04
(0.05)

−0.01
(0.03)

−0.08∗∗∗
(0.03)

−0.28∗∗∗
(0.03)

3 HIGH 0.16∗∗∗
(0.07)

0.12∗∗∗
(0.05)

0.06∗
(0.03)

−0.01
(0.03)

−0.32∗∗∗
(0.04)

Table 4: The table reports the mean reversion effect κPF in IVOL for different
IVOL/IVOLVOL portfolios. For each portfolio we measure the mean reversion effect
κPF by running the regression IVOLPFt+1 − IVOLPFt = αPF + κPF IVOLPFt + εPFt+1,
where IVOLPFt is the average portfolio IVOL in month t. The portfolio formation
date is month t. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99%
confidence level. Newey-West adjusted standard errors are stated in parentheses.

Mean Effect of IVOLVOL on IVOL Movements

Ranking on Idiosyncratic Volatility

1 LOW 2 HIGH

IVOLVOL 1 LOW 0.11∗∗∗
(0.03)

−0.37∗∗∗
(0.02)

2 HIGH 0.26∗∗∗
(0.03)

−0.60∗∗∗
(0.09)

1 - 2 −0.05∗∗∗
(0.02)

0.28∗∗∗
(0.09)

Table 5: The table shows the average impact of current IVOLVOL on idiosyn-
cratic risk innovations over the next month in percent. We estimate the impact
by a cross-sectional dummy regression ∆IVOLit+1 = αi + βi1 × IVOLVOLit + βi2 ×
D1it× IVOLVOLit + βi3×D2it× IVOLVOLit + βi4× (D1it ×D2it)× IVOLVOLit + εit+1,
where D1 indicates times of high IVOL and D2 times of high IVOLVOL. The table
reports average βij ×mean

[
IVOLVOLit | Stock is in regime j

]
. The sample period is

1996/01–2014/12.
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FF-Alphas of Equally Weighted Portfolios

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH 1 - 5
IVOLVOL 1 LOW 0.04

(0.16)
0.16
(0.16)

0.03
(0.26)

−0.07
(0.31)

−0.65∗
(0.33)

0.69∗
(0.40)

2 0.20
(0.14)

0.03
(0.18)

−0.18
(0.19)

−0.16
(0.30)

−1.45∗∗∗
(0.37)

1.64∗∗∗
(0.41)

3 HIGH 0.27
(0.16)

0.15
(0.27)

−0.34
(0.28)

−0.85∗∗∗
(0.36)

−2.35∗∗∗
(0.37)

2.61∗∗∗
(0.42)

1 - 3 −0.23
(0.22)

0.02
(0.27)

0.37
(0.29)

0.77∗
(0.45)

1.69∗∗∗
(0.44)

Table 6: The table shows 3-factor Fama-French alphas for portfolios from a condi-
tional 5 × 3 double sort on IVOL and IVOLVOL over the sample period 1996/01–
2014/12. First, we sort stocks on IVOL and subsequently on IVOLVOL basing
on realizations in formation month. Then, we weight the constituents equally
and calculate excess returns for the next month. We calculate IVOL relative to
the 3-factor Fama-French model and IVOLVOL relative to the market VIX as(
VIXi

s

)2
= γi+βiV IX

(
VIXM

s

)2
+ηis, IVOLVOLit ≡ std

[
ηit−30D:t

]
. ∗, ∗∗ and ∗∗∗ indicate

statistical significance at the 90, 95, and 99% confidence level. Newey-West adjusted
standard errors are stated in parentheses.

Returns of Equally Weighted Portfolios

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH 1 - 5
IVOLVOL 1 LOW 0.46

(0.30)
0.71∗∗∗

(0.32)
0.74
(0.48)

0.73
(0.62)

0.18
(0.70)

0.28
(0.60)

2 0.77∗∗∗
(0.35)

0.72∗
(0.41)

0.68
(0.55)

0.71
(0.67)

−0.32
(0.77)

1.09∗
(0.60)

3 HIGH 0.88∗∗∗
(0.41)

0.96∗
(0.57)

0.63
(0.67)

0.18
(0.77)

−1.16
(0.84)

2.04∗∗∗
(0.64)

1 - 3 −0.43
(0.27)

−0.25
(0.34)

0.10
(0.37)

0.55
(0.43)

1.34∗∗∗
(0.53)

Table 7: The table shows monthly excess returns, averaged over the sample period
1996/01–2014/12, from a conditional 5 × 3 double sort on IVOL and IVOLVOL.
First, we sort stocks on IVOL and subsequently on IVOLVOL basing on realizations
in formation month. Then, we weight the constituents equally and calculate excess
returns for the next month. We calculate IVOL relative to the 3-factor Fama-French
model and IVOLVOL relative to the market VIX as

(
VIXi

s

)2
= γi+βiV IX

(
VIXM

s

)2
+

ηis, IVOLVOLit ≡ std
[
ηit−30D:t

]
. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the

90, 95, and 99% confidence level. Newey-West adjusted standard errors are stated
in parentheses.
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FF-Alphas of Value Weighted Portfolios

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH 1 - 5
IVOLVOL 1 LOW 0.24∗

(0.14)
0.25∗∗
(0.13)

−0.18
(0.22)

−0.15
(0.30)

−0.17
(0.40)

0.41
(0.45)

2 0.15
(0.14)

−0.04
(0.19)

−0.21
(0.24)

−0.01
(0.27)

−1.56∗∗∗
(0.47)

1.70∗∗∗
(0.49)

3 HIGH 0.30
(0.19)

0.03
(0.29)

−0.39
(0.37)

−0.52
(0.47)

−1.55∗∗∗
(0.50)

1.84∗∗∗
(0.56)

1 - 3 −0.06
(0.27)

0.22
(0.29)

0.21
(0.41)

0.36
(0.55)

1.38∗∗∗
(0.59)

Table 8: The table shows 3-factor Fama-French alphas for portfolios from a condi-
tional 5× 3 double sort on IVOL and IVOLVOL, over the sample period 1996/01–
2014/12. First, we sort stocks on IVOL and subsequently on IVOLVOL bas-
ing on realizations in formation month. Then, we value-weight the constituents
and calculate excess returns for the next month. We calculate IVOL relative to
the 3-factor Fama-French model and IVOLVOL relative to the market VIX as(
VIXi

s

)2
= γi+βiV IX

(
VIXM

s

)2
+ηis, IVOLVOLit ≡ std

[
ηit−30D:t

]
. ∗, ∗∗ and ∗∗∗ indicate

statistical significance at the 90, 95, and 99% confidence level. Newey-West adjusted
standard errors are stated in parentheses.

Returns of Value Weighted Portfolios

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH 1 - 5
IVOLVOL 1 LOW 0.61∗∗∗

(0.28)
0.72∗∗∗

(0.31)
0.44
(0.42)

0.55
(0.59)

0.55
(0.72)

0.06
(0.62)

2 0.66∗
(0.34)

0.59
(0.41)

0.51
(0.53)

0.80
(0.65)

−0.54
(0.79)

1.20∗
(0.63)

3 HIGH 0.84∗∗
(0.43)

0.82
(0.59)

0.51
(0.71)

0.47
(0.90)

−0.45
(1.01)

1.30∗
(0.78)

1 - 3 −0.24
(0.31)

−0.10
(0.38)

−0.07
(0.49)

0.08
(0.56)

1.00
(0.67)

Table 9: The table shows monthly excess returns, averaged over the sample period
1996/01–2014/12, from a conditional 5 × 3 double sort on IVOL and IVOLVOL.
First, we sort stocks on IVOL and subsequently on IVOLVOL basing on realizations
in formation month. Then, we value-weight the constituents and calculate excess
returns for the next month. We calculate IVOL relative to the 3-factor Fama-French
model and IVOLVOL relative to the market VIX as

(
VIXi

s

)2
= γi+βiV IX

(
VIXM

s

)2
+

ηis, IVOLVOLit ≡ std
[
ηit−30D:t

]
. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the

90, 95, and 99% confidence level. Newey-West adjusted standard errors are stated
in parentheses.

42



Decomposition of IVOL Puzzle

Raw Returns Alpha - FF3 Alpha - FF5 Returns - DGTW adj.
Coeff. Expl. Coeff. Expl. Coeff. Expl. Coeff. Expl.

Panel A: IVOL on Return
Intercept 0.0120∗∗∗

(0.0037)
0.0004∗∗∗
(0.0001)

0.0003∗∗∗
(0.0001)

0.0044
(0.0027)

IVOL −0.2801∗∗∗
(0.1329)

−0.0144∗∗∗
(0.0066)

−0.052
(0.0051)

−0.2708∗∗∗
(0.1221)

Panel B: Controls on IVOL
Intercept 0.0122∗∗∗

(0.0026)
0.0122∗∗∗
(0.0026)

0.0122∗∗∗
(0.0026)

0.0122∗∗∗
(0.0026)

IVOLVOLlow −0.0028∗∗∗
(0.0010)

−0.0028∗∗∗
(0.0010)

−0.0028∗∗∗
(0.0010)

−0.0028∗∗∗
(0.0010)

IVOLVOLmid 0.0029∗∗∗
(0.0010)

0.0029∗∗∗
(0.0010)

0.0029∗∗∗
(0.0010)

0.0029∗∗∗
(0.0010)

IVOLVOLhigh 0.0111∗∗∗
(0.0019)

0.0111∗∗∗
(0.0019)

0.0111∗∗∗
(0.0019)

0.0111∗∗∗
(0.0019)

Skewreal. −0.0003
(0.0002)

−0.0003
(0.0002)

−0.0003
(0.0002)

−0.0003
(0.0002)

SkewRN 0.0036∗∗∗
(0.0008)

0.0036∗∗∗
(0.0008)

0.0036∗∗∗
(0.0008)

0.0036∗∗∗
(0.0008)

CoSkew −0.0025
(0.0021)

−0.0025
(0.0021)

−0.0025
(0.0021)

−0.0025
(0.0021)

RTP 0.0000
(0.0001)

−0.0000
(0.0000)

−0.0000
(0.0000)

−0.0000∗∗
(0.0001)

LagRet 0.0034∗∗∗
(0.0013)

0.0034∗∗∗
(0.0013)

0.0034∗∗∗
(0.0013)

0.0034∗∗∗
(0.0013)

ZeroRet 0.0004∗∗∗
(0.0001)

0.0004∗∗∗
(0.0001)

0.0004∗∗∗
(0.0001)

0.0004∗∗∗
(0.0001)

Liquidity 202.50
(348.61)

202.50
(348.61)

202.50
(348.61)

202.50
(348.61)

Spread 129.31∗∗∗
(41.50)

129.31∗∗∗
(41.50)

129.31∗∗∗
(41.50)

129.31∗∗∗
(41.50)

Panel C: Decomposition of IVOL Coefficient
IVOLVOLlow −0.0171

(0.0692)
6.14% −0.0012

(0.0023)
9.01% 0.0011

(0.0019)
-26.14% −0.0241

(0.0565)
8.99%

IVOLVOLmid −0.0085
(0.0203)

3.06% 0.0011
(0.0015)

-8.15% 0.0022
(0.0015)

-5.67% −0.0043
(0.0225)

1.60%

IVOLVOLhigh −0.0889
(0.0939)

31.97% −0.0051
(0.0046)

37.55% −0.0036
(0.0032)

86.25% −0.0739
(0.0834)

27.56%

Skewreal. 0.0049
(0.0066)

-1.77% 0.0001
(0.0004)

-1.03% 0.0002
(0.0004)

-4.34% 0.0080
(0.0065)

-2.98%

SkewRN −0.0126
(0.0096)

4.53% −0.0009
(0.0006)

6.75% −0.0004
(0.0005)

8.37% −0.0144
(0.0089)

5.35%

CoSkew 0.0045
(0.0031)

-1.64% 0.0002
(0.0001)

-1.68% 0.0002
(0.0001)

-4.71% 0.0036
(0.0030)

-1.34%

RTP −0.0336
(0.0183)

12.10% −0.0004
(0.0010)

3.08% −0.0005
(0.0008)

11.54% −0.0339
(0.0184)

12.66%

LagRet −0.0031
(0.0191)

1.10% 0.0001
(0.0010)

-0.51% 0.0005
(0.0008)

-10.77% −0.0035
(0.0180)

1.31%

ZeroRet −0.00230
(0.0261)

8.27% −0.0017
(0.0013)

12.25% −0.011
(0.0012)

26.83% −0.0256
(0.0262)

9.53%

Liquidity −0.0060
(0.0068)

2.15% −0.0001
(0.0003)

0.53% 0.0001
(0.0003)

-1.44% −0.0041
(0.0067)

1.53%

Spread 0.0077
(0.0058)

-2.79% 0.0002
(0.0002)

-1.26% 0.0000
(0.0003)

0.00% 0.0072
(0.0055)

-2.68%

Controlstotal −0.1755∗∗
(0.1002)

63.14% −0.0077∗∗
(0.0039)

56.54% −0.0014
(0.0031)

33.84% −0.1650∗∗
(0.0877)

61.54%

Residual −0.1025∗∗
(0.0594)

36.86% −0.0059∗∗
(0.0032)

43.46% −0.0028
(0.0030)

66.16% −0.1031∗∗
(0.0536)

38.46%

Table 10: The table shows a multivariate analysis for the decomposition of the idiosyncratic volatility puzzle
following Hou and Loh (2016). Panel A shows the average coefficients of cross-sectional regressions of monthly (risk-
adjusted) returns on IVOL. DGTW refers to risk adjusted returns from Daniel et al. (1997). Panel B shows results
from a multivariate regression of IVOL on a set of explanatory variables. Panel C shows the normalized covariation of
the explanatory variables as well as their overall explanatory power for the IVOL anomaly. We calculate IVOL relative

to the 3-factor Fama-French model and IVOLVOL relative to the market VIX as
(
VIXi

s

)2
= γi+βi

V IX

(
VIXM

s

)2
+ηis,

IVOLVOLi
t ≡ std

[
ηit−30D:t

]
. Liquidity is the liquidity beta of Pastor and Stambaugh (2003) and Skewreal. is the

realized skewness of raw daily in formation month. SkewRN is the risk neutral skew from Bakshi et al. (2003) at the
end of formation month. CoSkew is the coskewness measure in Chabi-Yo and Yang (2010). RTP is the retail trading
proportion. LagRet is the one month lagged return, ZeroRet is the proportion of zero returns and Spread is the
average relative bid-ask-spread in formation month. Controlstotal is the sum of the variables explanatory power and
residual captures the unexplained part of the IVOL-return relation. ∗, ∗∗ and ∗∗∗ indicate statistical significance at
the 90, 95, and 99% confidence level. Newey-West adjusted standard errors are stated in parentheses.
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Returns of Equally Weighted Portfolios - IVOL relative to CAPM

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH 1 - 5
IVOLVOL 1 LOW 0.43

(0.29)
0.75∗∗∗

(0.34)
0.78
(0.48)

0.81
(0.62)

0.04
(0.71)

0.39
(0.6)

2 0.80∗∗∗
(0.36)

0.71∗
(0.43)

0.73
(0.57)

0.80
(0.71)

−0.21
(0.79)

1.00∗
(0.6)

3 HIGH 0.92∗∗∗
(0.40)

0.74
(0.54)

0.56
(0.64)

0.07
(0.75)

−1.05
(0.83)

1.97∗∗∗
(0.64)

1 - 3 −0.48∗
(0.25)

0.01
(0.31)

0.22
(0.37)

0.74
(0.47)

1.10∗∗∗
(0.48)

Table 11: The table shows a robustness analysis for the existence of the IVOL-
return relation. We report monthly excess returns, averaged over the sample period
1996/01–2014/12, from a conditional 5 × 3 double sort on IVOL and IVOLVOL.
We calculate IVOL relative to the CAPM and estimate IVOLVOL as before.First,
we sort stocks on IVOL and subsequently on IVOLVOL basing on realizations in
formation month. Then, we weight the constituents equally and calculate excess
returns for the next month. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 90,
95, and 99% confidence level. Newey-West adjusted standard errors are stated in
parentheses.

Mean Reversion Effect in IVOL - IVOL relative to CAPM

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH

IVOLVOL 1 LOW 0.03
(0.04)

−0.15∗∗∗
(0.04)

−0.11∗∗∗
(0.03)

−0.13∗∗∗
(0.03)

−0.23∗∗∗
(0.03)

2 0.01
(0.05)

−0.05
(0.05)

−0.03
(0.03)

−0.08∗∗∗
(0.04)

−0.27∗∗∗
(0.03)

3 HIGH 0.11∗
(0.06)

0.10∗∗
(0.05)

0.05∗
(0.03)

−0.04
(0.04)

−0.30∗∗∗
(0.04)

Table 12: The table shows robustness analysis for the mean reversion effect. We
report the mean reversion effect κPF in IVOL for different IVOL/IVOLVOL port-
folios, where we calculate IVOL relative to the CAPM and estimate IVOLVOL as
before. For each portfolio we measure the mean reversion effect κPF by running
the regression IVOLPFt+1 − IVOLPFt = αPF + κPF IVOLPFt + εPFt+1, where IVOLPFt is
the average portfolio IVOL in month t. The portfolio formation date is month t. ∗,
∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level.
Newey-West adjusted standard errors are stated in parentheses.
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Returns of Equally Weighted Portfolios - IVOL relative to FF5

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH 1 - 5
IVOLVOL 1 LOW 0.47∗

(0.28)
0.60∗
(0.32)

0.87∗
(0.48)

0.76
(0.58)

0.14
(0.67)

0.34
(0.57)

2 0.80∗∗∗
(0.37)

0.72∗
(0.42)

0.79
(0.57)

0.60
(0.7)

−0.32
(0.77)

1.12∗
(0.60)

3 HIGH 0.79∗
(0.41)

0.91
(0.60)

0.72
(0.69)

0.00
(0.76)

−1.00
(0.82)

1.79∗∗∗
(0.61)

1 - 3 −0.32
(0.26)

−0.31
(0.37)

0.15
(0.40)

0.75∗
(0.45)

1.13∗∗∗
(0.50)

Table 13: The table shows a robustness analysis for the existence of the IVOL-
return relation. We report monthly excess returns, averaged over the sample period
1996/01–2014/12, from a conditional 5 × 3 double sort on IVOL and IVOLVOL.
We calculate IVOL relative to the five-factor Fama-French model (Fama and French
(2015)) and estimate IVOLVOL as before. First, we sort stocks on IVOL and subse-
quently on IVOLVOL basing on realizations in formation month. Then, we weight
the constituents equally and calculate excess returns for the next month. ∗, ∗∗ and ∗∗∗

indicate statistical significance at the 90, 95, and 99% confidence level. Newey-West
adjusted standard errors are stated in parentheses.

Mean Reversion Effect in IVOL - IVOL relative to FF5

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH

IVOLVOL 1 LOW 0.02
(0.03)

−0.15∗∗∗
(0.04)

−0.11∗∗∗
(0.03)

−0.15∗∗∗
(0.03)

−0.23∗∗∗
(0.03)

2 0.02
(0.05)

0.00
(0.06)

−0.01
(0.03)

−0.05
(0.03)

−0.29∗∗∗
(0.03)

3 HIGH 0.15∗∗∗
(0.07)

0.10∗∗∗
(0.05)

0.04
(0.03)

−0.06∗
(0.03)

−0.31∗∗∗
(0.04)

Table 14: The table shows robustness analysis for the mean reversion effect. We
report the mean reversion effect κPF in IVOL for different IVOL/IVOLVOL portfo-
lios, where we calculate IVOL relative to the five-factor Fama-French model (Fama
and French (2015)) and estimate IVOLVOL as before. For each portfolio we mea-
sure the mean reversion effect κPF by running the regression IVOLPFt+1− IVOLPFt =
αPF +κPF IVOLPFt + εPFt+1, where IVOLPFt is the average portfolio IVOL in month t.
The portfolio formation date is month t. ∗, ∗∗ and ∗∗∗ indicate statistical significance
at the 90, 95, and 99% confidence level. Newey-West adjusted standard errors are
stated in parentheses.
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Independent Double-Sort

Return – Equally Weighted

Ranking on Idiosyncratic Volatility

1 LOW 2 HIGH 1 - 2
IVOLVOL 1 LOW 0.71∗∗

(0.35)
0.78
(0.53)

−0.07
(0.27)

2 HIGH 0.71
(0.58)

0.05
(0.70)

0.66∗∗∗
(0.31)

1 - 2 0.00
(0.30)

0.74∗∗∗
(0.30)

FF-Alpha – Equally Weighted

1 LOW 2 HIGH 1 - 2
IVOLVOL 1 LOW 0.12

(0.11)
0.04
(0.22)

0.09
(0.19)

2 HIGH −0.10
(0.25)

−0.98∗∗∗
(0.22)

0.88∗∗∗
(0.24)

1 - 2 0.22
(0.26)

1.01∗∗∗
(0.21)

Table 15: The table shows monthly excess returns, averaged over the sample period
1996/01–2014/12, and 3-factor Fama-French alphas for portfolios from unconditional
2 × 2 double sorts. We sort stocks into four equally weighted portfolios basing on
realized IVOL/IVOLVOL in formation month. Then, we calculate excess returns
for the next month. We calculate IVOL relative to the 3-factor Fama-French model
and IVOLVOL relative to the market VIX as

(
VIXi

s

)2
= γi + βiV IX

(
VIXM

s

)2
+ ηis,

IVOLVOLit ≡ std
[
ηit−30D:t

]
. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 90,

95, and 99% confidence level. Newey-West adjusted standard errors are stated in
parentheses.
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Returns of Equally Weighted Portfolios

Ranking on Idiosyncratic Volatility

Controlling for 1 LOW 2 3 4 5 HIGH 1 - 5
Size 0.97∗∗∗

(0.46)
0.60
(0.56)

0.63
(0.64)

0.07
(0.68)

−0.75
(0.80)

1.72∗∗∗
(0.57)

B/M 0.88∗∗
(0.43)

1.06∗
(0.6)

0.48
(0.66)

0.26
(0.75)

−1.14
(0.81)

2.03∗∗∗
(0.59)

Liquidity 0.97∗∗∗
(0.41)

0.80
(0.54)

0.69
(0.66)

0.18
(0.75)

−1.10
(0.82)

2.07∗∗∗
(0.64)

Volume 0.85∗∗∗
(0.40)

0.84
(0.55)

0.63
(0.67)

0.36
(0.74)

−1.25
(0.82)

2.10∗∗∗
(0.63)

Bid-Ask Spread: Stock 0.79∗
(0.42)

0.96∗
(0.56)

0.65
(0.65)

0.37
(0.74)

−1.26
(0.81)

2.05∗∗∗
(0.61)

Bid-Ask Spread: Put 0.89∗∗∗
(0.40)

0.81
(0.54)

0.62
(0.65)

0.39
(0.75)

−1.16
(0.83)

2.05∗∗∗
(0.65)

Return Reversal 0.73∗
(0.40)

0.99∗
(0.57)

0.75
(0.63)

0.11
(0.76)

−1.13
(0.83)

1.86∗∗∗
(0.62)

Table 16: The table shows a robustness analysis for the IVOL phenomenon condi-
tional on the high IVOLVOL regime, for the sample period 1996/01–2014/12. First,
we sort stocks on stock characteristics in a high/low fashion and subsequently on
IVOL basing on realizations in formation month. Then, we calculate next month
returns and afterwards we average again along characteristics. Size is the market
capitalization. We measure Liquidity by the liquidity beta of Pastor and Stambaugh
(2003) and Volume by the average stock trading volume of one month. The bid-ask
spreads for stocks and puts are calculated as the difference of bid- and ask-prices
divided by the mid-prices. We measure return reversal as in Huang et al. (2010) by
returns in formation month. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 90,
95, and 99% confidence level. Newey-West adjusted standard errors are stated in
parentheses.
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Put/Call-Ratio

Ranking on Idiosyncratic Volatility

1 LOW 2 3 4 5 HIGH 1 - 5
IVOLVOL 1 LOW 0.89

(0.14)
0.68∗∗∗

(0.10)
0.65∗∗∗

(0.10)
0.63∗∗∗

(0.10)
0.62∗∗∗

(0.09)
0.27∗∗∗

(0.05)

2 0.81
(0.13)

0.70∗∗∗
(0.11)

0.67∗∗∗
(0.10)

0.65∗∗∗
(0.10)

0.64∗∗∗
(0.10)

0.18∗∗∗
(0.04)

3 HIGH 0.78∗
(0.12)

0.69∗∗∗
(0.11)

0.67∗∗∗
(0.10)

0.67∗∗∗
(0.10)

0.68∗∗∗
(0.10)

0.10∗∗∗
(0.02)

1 - 3 0.11∗∗∗
(0.04)

−0.01
(0.01)

−0.01
(0.01)

−0.04∗∗∗
(0.01)

−0.06∗∗∗
(0.02)

Table 17: The table shows monthly put/call-ratio, averaged over the sample period
1996/01–2014/12, for a conditional 5×3 double sort on IVOL and IVOLVOL. First,
we sort stocks on IVOL and subsequently on IVOLVOL basing on realizations in
formation month. Then, calculate the put/call-ratio as the one-month average of
put trading volume devided by call trading volume. We calculate IVOL relative
to the 3-factor Fama-French model and IVOLVOL relative to the market VIX as(
VIXi

s

)2
= γi+βiV IX

(
VIXM

s

)2
+ηis, IVOLVOLit ≡ std

[
ηit−30D:t

]
. ∗, ∗∗ and ∗∗∗ indicate

statistical significance at the 90, 95, and 99% confidence level. The test hypothesis for
the ratios is that they equall one, whereas the hypothesis for the differences is that
they equall zero. Newey-West adjusted standard errors are stated in parentheses.
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Figure 1: The figure displays the dependence of IVOLVOL on the mean-reversion
coefficient κi in our model from section 2 for different IVOL levels. The model’s
coeffiecents are IVOL

i
= 0.15, σiIVOL = 0.01. We simulate 200,000 paths of IVOL,

using equation (1) over one month to generate the data.
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Figure 2: The figure displays cumulative log-returns of low-minus-high IVOL differ-
ence portfolios across different IVOLVOL regimes. Each month we conditional sort
stocks first into five idiosyncratic risk quintiles and subsequent into three IVOLVOL
terziles. Afterwards, for each IVOLVOL regime we calculate returns of equally
weighted low-minus-high IVOL portfolios over the next month and accumulate.
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