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*

January 25, 2017

Abstract

Price impact measures the difference between the best quoted price and the realized price as
a function of order size. This paper analyzes how price impact depends on the latency that a
market maker is subject to. I propose a tractable model which allows incorporating both order
size and latency effects as determinants of price impact. The model is solved analytically and is
novel in the theoretical microstructure literature. Larger latency increases adverse selection costs
to the market maker and reduces his probability of trading with a slow investor. A larger order
size decreases the slow trader’s outside option, making him susceptible to accept a worse price for
his trade. It is shown that the first-order effect of increased latency and increased order size is to
increase price impact. Their joint impact is also positive. When the probability of trading is taken
into consideration, the utility of the slow institutional investor decreases with increasing latency.

JEL classification: G14, G28, C73.

Keywords: Price Impact, High-Frequency Trading, Trade Size, Latency, Market Quality, Welfare

*Department of Banking and Finance, University of Zurich and Swiss Finance Institute. E-mail:
jakub.rojcek@bf.uzh.ch. Address: Plattenstrasse 22, 8032 Zurich, Switzerland. I am grateful to Ramazan Gençay,
Michel Habib, Thorsten Hens, Boyan Jovanovic, Felix Kübler, Albert Menkveld, Per Östberg, Nikola Vasiljević ,and
Alexandre Ziegler for providing me with comments, discussion and suggestions on this paper, as well as participants
of the Belgrade Young Economist Conference 2016 and University of Zurich Brown Bag Seminar.



I. Introduction

The joint influence of trading speed and order size has been largely neglected in recent high-

frequency trading research. Most analyses have focused on understanding the impact of high-

frequency trading on market quality and its influence on execution quality for traditional insti-

tutional investors in terms of the bid-ask spreads valid for unit size orders.1 While theoretical

models have shown in this setting that algorithmic traders in continuous limit order markets derive

a competitive advantage from faster analysis of order book evolution, processing of news and higher

monitoring speed,2 the empirical literature has focused on the impact of algorithmic trading on

traditional measures of market quality.3 The majority of the empirical literature confirms the posi-

tive first-order effects of HFT, especially lower bid-ask spreads and faster price discovery. However,

Hendershott et al. (2011) report that the presence of HFTs also decreases the depth of the order

book and increases the costs of executing large orders. Taking execution costs into consideration,

Tong (2015) measures the execution shortfall of institutional investors and finds that HFTs increase

transaction costs for them. It is this overall effect of increased price impact which large institutional

traders suffer that this paper focuses on. I present a model which incorporates the joint effect of

latency and order size in a setting with a high-frequency market maker, high-frequency snipers,

and slow investors. The model predicts that higher market maker latency and larger order size

lead to higher price impact. Taking the probability of trading into consideration, slow institutional

investors’ utility is strictly deteriorating in larger order size and latency. The following sections

present a review of the related literature, the model, comparative statics of the quoted price, and

a welfare analysis.

II. Related Literature

The existing theoretical literature on HFT does not provide a model of price impact as a func-

tion of latency. There are two related streams of theoretical models. Repeated double auction

models, which represent synchronous trading; and asynchronous trading models, which represent

1For an overview of the literature on high-frequency trading, see the surveys by Jones (2013), O’Hara (2015) and
Menkveld (2016).

2Foucault et al. (2015), Aı̈t-Sahalia and Saglam (2014), Biais et al. (2015) and Hoffmann (2014).
3See Jovanovic and Menkveld (2011), Brogaard (2010), Hasbrouck and Saar (2013), Riordan and Storkenmaier (2012),
Brogaard et al. (2014), Tong (2015), and Hendershott et al. (2011).
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trading in continuous time. This section reviews the theoretical predictions of models in these two

categories.

The double auction models of Roşu (2016), Rostek and Weretka (2015), Du and Zhu (2016),

and Foucault et al. (2015) build on the models of Kyle (1985), Vayanos (1999), and Vives (2011).

Rostek and Weretka (2015) show that for traders, maximizing welfare and stabilizing liquidity

through disclosure of information about fundamentals at the same time represents a trade-off. The

traders in their model balance the present execution value against future price impact. In a ra-

tional expectations equilibrium, traders split their orders optimally. The point from which I try

to depart in my model is the synchronicity of traders arrivals. Du and Zhu (2016) depart from

the synchronicity of arrivals in the double auction framework. They introduce one fast trader who

is in the market every time step, while the rest of the traders arrives only every certain number

of time steps. This leads to interesting results where the fast trader prefers higher frequency of

trading, whereas the slow traders prefer slower trading. However, because this model falls into the

category of double auction markets, traders do not suffer the latency effect per se. Their supplies

change based on their frequency of trading, but not based on the risk they bear due to latency,

during which they cannot change their orders. In the later version of the same paper, Du and Zhu

(2016) introduce a model, where fast traders intermediate trades among asynchronously arriving

slow traders, this extension is solved numerically. The present paper models this latency effect

directly as a parameter of the price impact function. The closest to the modelling goal of the cur-

rent paper is the paper by Foucault et al. (2015), where the speculator can receive the news about

the fundamental value with a time advantage. This can be considered latency in the extension,

where the time advantage is not instantaneous, but represents a time interval of certain length.

In the repeated double auction setting they consider, the authors cannot solve for the equilibrium

analytically and resolve to numerical solutions. Roşu (2016) models fast traders as those receiving

information about the fundamental value instantly and slow traders as those receiving the infor-

mation with a lag. Both categories are speculators. The comparative statics of price impact are

derived as a function of the number of fast and slow traders. The variable lag size in the generalized

model can serve as a good model for latency in double auction market. The current paper solves

for price impact as a function of latency and size analytically in asynchronous arrivals modelling
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framework.

Departing from the double auctions modelling framework are the asynchronous trading models

of Menkveld and Zoican (2016), Budish et al. (2015), and Chacko et al. (2008).

Using Poisson arrivals, Menkveld and Zoican (2016) model liquidity traders (submitting market

orders), HF Bandits (also submitting market orders), HF market makers (submitting limit orders),

and good or bad news about the fundamental value. The net effect of latency on the spread depends

on the news to liquidity traders ratio. What this model is lacking is the effect of trade size on prices.

Budish et al. (2015) predict that in a limit order market with competing fast traders, the quoted

size will always be one unit. An increasing presence of these fast snipers means that the liquidity

provider can update his order only with diminishing probability in case it becomes mispriced. This

results in a partial equilibrium, where the book contains a single unit limit order on each side of

the market. However, apart from this prediction, their model does not provide the price impact

function as a function of size, because their equlibrium size is always one, nor as a function of

latency. Chacko et al. (2008) model sell limit orders as writing a perpetual American call option,

requiring delivery of the underlying block of shares upon execution. Similarly, a limit order to buy

is like a short position in an American put option. What is specific about this model is that the

limit orders have to be executed immediately in order to be able to use option pricing techniques.

To ensure immediate execution, the initiator of a transaction offer (the option writer) must offer a

price at which it is currently optimal for the receiver of the transaction offer (the option owner) to

exercise the option early. In effect the market order is modelled as a limit order, which is submitted

at the best opposite quote in order to ensure immediate execution. This structure does not permit

an analysis of the effect of latency on price impact. What it allows, however, is to consider the

impact of size, which is derived from the market maker having to resell the inventory back to the

market. As a result, because the traders arrive at frequency which decreases with order size, this

directly translates into positive price impact, with its shape coming from the optimal execution

rules for perpetual American options.

This paper in its core also borrows from the seminal model of Grossman and Miller (1988),

where liquidity trader shares risk with market makers, but the impact of latency is not considered.
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The goal of this paper is to obtain a tractable model of price impact as a function of order size and

the market maker’s latency. To achieve this goal, I propose a continuous time, asynchronous arrival

model that consists of a risk-neutral monopolist market maker, a risk-averse buyer and seller, and

high-frequency bandits. The buyer and the seller arrive in a stylized fashion according to a Poisson

process and look for immediate trading opportunities. They submit a market order if the utility

of doing so is at least their reservation utility. The reservation utility is the utility of submitting

a limit order and waiting for a counterparty with opposite trading needs. In the general case, the

fundamental value is modelled as a Brownian motion and it is possible to solve for the ask price

numerically. I also provide a closed-form solution for price impact as a function of latency for the

special case in which changes in the fundamental value over very short discrete intervals follow

a uniform distribution. The paper provides novel insights on the role of high-frequency market

makers and their contribution to liquidity and welfare in modern financial markets. It introduces

a novel modelling framework in the theoretical microstructure literature providing scope for many

surmisable extensions.

III. General Modelling Framework of Price Impact with Latency

This section presents a general framework that allows solving for the equilibrium ask price

numerically. Further assumptions are used in the next section to derive an analytical expression

for the ask price in order to facilitate the comparative statics and welfare analysis.

There is one financial asset, whose fundamental value at time t is denoted vt. The fundamental

value’s dynamics is represented by a continuous-time stochastic process with zero drift and variance

proportional to the time passed, σ2t, where the parameter σ is the volatility of the fundamental

value. Let’s denote the distribution of the increment x := vT − vt as F (x;µ = 0, σ2(T − t)).

There is one buyer, one seller, and N risk-neutral high-frequency traders (HFT) in the market.

One of the HFTs is currently the market maker (HFM), while the remaining N − 1 HFTs are

high-frequency bandits (HFB), who wait for mispriced limit orders and in that case, they snipe

them and realize a profit.4 The buyer and the seller are risk-averse.

4This setting generalizes to a dynamic arrivals setting where buyers and sellers arrive according to the stylized fashion
described in detail below.
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The flow of events in the model is the following.5 At time t the market maker submits a quote to

sell, a, which is called the ask price. The ask price is expressed as a deviation from the current

fundamental value vt, so that the overall price the market maker sets for the asset is vt + a. The

market maker suffers a latency ∆ and can return and update his ask price only after time ∆ passes.6

Two events can happen. Either the buyer enters according to a point process with intensity λB at

a random time TB before time ∆ passes, evaluates whether he will demand immediacy and trade

on the current ask, or one of the HFTs arrives after time ∆ passes, in which case the market maker

adjusts the ask if he arrives before one of the HFBs. If an HFB arrives before the market maker,

the HFB snipes the ask if it is mispriced.7

The buyer has a private valuation of πB in addition to the asset’s current fundamental value. He

will demand immediacy if his utility of holding the asset minus the ask price he pays is at least his

reservation utility from submitting a limit order and waiting for the seller. If the buyer submits

a market order, he will disappear from the market and the market maker will post a bid price at

which he is willing to buy back the asset from the arriving seller and eliminate his inventory.

Then the seller arrives8 according to a point process with intensity λS . The same reasoning as

for the buyer applies. The seller decides whether to directly trade with the market maker or to

submit a limit order and wait for the arrival of a new buyer, who will arrive at a random time TB2.

The seller submitting a limit order faces the risk that the fundamental value moves in an adverse

direction. In that case, he might suffer a loss. On the other hand, if the fundamental value moves

too much in a favourable direction, the buyer will not trade with the seller’s limit order. The seller

takes these possibilities into consideration when setting his ask price.

I assume that the traders trade Q shares at once and there is no uncertainty about this quantity.9

As in Chacko et al. (2008), the arrival rate of traders on the opposite side of the market, in this

case the seller, is assumed to be a decreasing function of the trade’s size.

5The corresponding flow of events for the closed-form example is summarized in Figure 1.
6Latency in a strict sense would mean that an ask set at time t∆ would be valid in the time interval [(t+1)∆, (t+2)∆)
based on information at time (t−1)∆. This is because processing information and quote submission are also subject
to latency. For this model, I assume that the impact of latency can be simplified to the starting specification with
the market maker’s ask set at time t∆ being valid in interval [(t)∆, (t+ 1)∆) based on the information at time t∆.

7The slow traders arrive in continuous time and the HFTs arrive at discrete points in time, ∆ time units apart from
each other.

8I assume that buyer and seller arrivals alternate in a deterministic fashion.
9This is a classical assumption in the microstructure literature (Ho and Stoll (1981)), which is relaxed in Budish
et al. (2015) and particularly in the optimal execution literature.
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By submitting a limit order to sell at price a, the market maker issues an option to the fundamental

buyer. The fundamental buyer executes on this limit order if vTB − vt − a + a′ ≥ 0, where a′ is

the reservation ask. The reservation ask is the maximum price the buyer is willing to pay to trade

the asset immediately and depends on the reservation value derived from submitting a buy limit

order and waiting for a seller. The reservation ask price depends on future trading opportunities;

it is computed in closed-form for the case of a uniform distribution in the next section. If the slow

buyer does not arrive before time ∆ passes and the market maker’s limit order becomes mispriced,

meaning that vt+∆ > vt + a, the remaining N − 1 HFBs will try to snipe it. Each one will be

successful with equal probability 1
N . With probability 1

N , the market maker will be successful at

cancelling this mispriced order.10

Were the market maker only facing the slow buyer and no HFBs, his payoff could be decomposed

into a short position in an American call option plus owning a cash-or-nothing digital call option,

both with strike price of a − a′ and the payoff of the cash-or-nothing call option equal to a′. The

buyer on the other hand owns an American call option with the same strike price, a−a′. Formally,

the market maker’s payoff is

E[LP (a)] = E[(a− (vTB − vt))1vTB−vt≥a−a′1TB≤∆]. (1)

Assuming that the buyer arrives according to a Poisson process with intensity λB, this expectation

can be written as

E[LP (a)] =

∫ ∆

0
λBe

−λBy
∫ ∞
a−a′

(a− x)F (dx; 0, σ2y)dy. (2)

In the case with HFBs present in the market, the payoff of the market maker has three parts, one

arising from trading with the slow buyer, the other two from trading with the HFBs. The market

maker trades with the HFBs if the ask price at time t+ ∆ is mispriced (vt+∆ > vt + a), provided

that the slow trader does not arrive before t + ∆ or if he does, he decides not to trade with the

market maker. The market maker’s payoff from trading with HFBs is thus equivalent to selling

10The corresponding payoff of the market maker in the closed-form example is depicted in Figure 2.
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N−1
N call options with strike price a. Equation (1) generalizes to

E[LP (a)] = E[(a− (vTB − vt))1vTB−vt≥a−a′1TB≤∆]

− N − 1

N
E[(vt+∆ − vt − a)1vt+∆−vt≥a1TB>∆]

− N − 1

N
E[(vt+∆ − vt − a)1vt+∆−vt≥a1TB≤∆1vTB−vt<a−a

′ ], (3)

and the expectations can be computed as

E[LP (a)] =

∫ ∆

0
λBe

−λBy
∫ ∞
a−a′

(a− x)F (dx; 0, σ2y)dy

− N − 1

N

(∫ ∞
∆

λBe
−λBydy

)∫ ∞
a

(x− a)F (dx; 0, σ2∆)

− N − 1

N

∫ ∆

0
λBe

−λBy
∫ a−a′

−∞

∫ ∞
a−x

(z + x− a)F (dz; 0, σ2(∆− y))F (dx; 0, σ2y)dy, (4)

where the first line represents the possible profit by trading with the slow trader, the second line

the loss due to the mispriced limit order being sniped by one of the HFBs at the end of the latency

period if the slow buyer only arrives after ∆ time passes, and the third line the case where the slow

trader arrives before ∆ time passes, decides not to trade because vTB−vt < a−a′ and subsequently

the fundamental value rises to vt+∆ − vt > a.11

The reservation ask a′ is the highest price the buyer is willing to pay to obtain the asset from

the market maker. It is the price that equates the immediately available utility with the expected

utility the buyer could obtain by submitting a buy limit order at price b and waiting for a seller.12

The seller’s private valuation for the asset is −πS , where πS > 0. The payoff structure is depicted

in Figure 3, where the buyer’s payoff is increasing in the fundamental value increment, but shrinks

to zero once the fundamental value increment exceeds the seller’s reservation value.13 The expected

11The last term might be neglected if the probability
∫ ∆

0
λBe

−λBy
∫ a−a′
−∞

∫∞
a−x F (dz; 0, σ2(∆ − y))F (dx; 0, σ2y)dy is

small enough.
12The bid price, b, is again expressed as a deviation from the fundamental value at time TB and the overall bid price

is vTB + b. The buyer sets b in order to maximize VB,LO(b).
13We assume that the seller accepts the limit order if his payoff is non-negative. However, he could also optimize

and submit a sell limit order, in which case we assume that the previous buyer exits the game. The number of
optimizing agents is driven by computational considerations and trades off the precision with computation time.
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payoff from submitting the limit order is the following

VB,LO(b) = E[u(πB − vTB − b+ vTS )|vTB + b ≥ vTS − πS ]. (5)

The reservation ask price is then the price which solves the following equation at time TB

u(πB + vTB − a
′) = VB,LO(b). (6)

Given the reservation ask price, the market maker then uses Equation (1) to set a such that he

fulfills an equilibrium condition. He might either set a in order to maximize his payoff or such that

his expected payoff equals the expected HFB’s payoff in case the competition from HFBs prevents

profit maximizing behavior. One can solve for the equilibrium ask price a numerically in the general

case. In the next section, I will solve an example which allows for a closed-form solution.

IV. Closed-form Example

Generally, it is not possible to solve for the ask price in the above problem in closed-form. This

section provides an example of a closed-form solution that allows investigating the role of latency

in the price impact function.

The fundamental value’s dynamics is now represented by a discrete-time stochastic process. As

before, we let ∆ denote the market maker’s latency. We assume that the change in the fundamental

value over the short interval ∆ is distributed according to a uniform distribution U(−
√

3σ
√

∆,
√

3σ
√

∆).14

The expected change in the fundamental value is thus zero and the variance of the fundamental

value change is proportional to the latency, σ2∆.

The flow of events is summarized in Figure 1. A fundamental buyer arrives according to a Poisson

point process with intensity λ. The probability of n buyers arriving by time ∆ is P[B(0,∆] =

n] = (λ∆)n

n! e−λ∆. We assume that the latency is sufficiently small that two and more arrivals of

fundamental traders are very unlikely during the ∆ interval. The probability that exactly one

14Empirically, high-frequency returns are not normally distributed and have heavy tails with large spikes around zero.
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fundamental buyer arrives by time ∆ is λ∆ +O(∆2), which comes from applying a Taylor approx-

imation to the probability of Poisson arrivals. The probability of no buyer arriving by time ∆ is

then 1− λ∆ +O(∆2).

In order to be able to obtain a closed-form solution to the market maker’s problem, we also suppose

that the fundamental buyer faces the fundamental value at the end of the interval ∆. This means

that if the buyer arrives during (t, t + ∆], the fundamental value he takes into account is vt+∆.15

When the buyer arrives, he can execute on the current ask price set by the market maker, a,

or submit his own limit order and wait for the potential fundamental seller. In addition to the

fundamental value vt+∆, the buyer derives a private value πB from holding the asset. Let a′ denote

the buyer’s reservation ask. The reservation ask is the maximum price the buyer is willing to pay

to trade the asset immediately and depends on the reservation value derived from submitting a buy

limit order and waiting for a seller. The buyer’s decision whether to execute or not based on the

current ask price, a, is depicted in Figure 2 and can be summarized as follows

vt+∆ − vt


≥ a− a′ buyer executes,

< a− a′ buyer does not execute.

(7)

Market Maker’s Problem

Because the stylized limit order book can only hold one ask, only one HFT can become a market

maker (HFM). By contrast with Section III, I assume that the slow buyer is never successful at

picking off a mispriced ask, so his payoff lies between 0 and a′. If the ask becomes mispriced, it

is cancelled by the HFM with probability 1
N and picked off by one of the HFBs with probability

N−1
N . The expected payoff to the market maker is given by

E[LP (a)] = λ∆

∫ a

a−a′
(a− x)

1

2σ
√

∆
√

3
dx− N − 1

N

∫ σ
√

∆
√

3

a
(x− a)

1

2σ
√

∆
√

3
dx (8)

= λ∆
a′2

4
√

3
√

∆σ
− N − 1

N

(
a2

4
√

3
√

∆σ
− a

2
+

1

4

√
3
√

∆σ

)
. (9)

15Weighting the market maker’s payoff by the arrival time leads to fixed point problems from which it is not possible
to back out the ask price as a function of parameters and basic functions in closed form.
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A HFB has a chance of 1
N that he would successfully snipe a mispriced ask. His expected payoff is

given by

E[SP (a)] =
1

N

∫ σ
√

∆
√

3

a
(x− a)

1

2σ
√

∆
√

3
dx (10)

=
1

N

(
a2

4
√

3
√

∆σ
− a

2
+

1

4

√
3
√

∆σ

)
. (11)

As in Menkveld and Zoican (2016), our equilibrium condition states that the expected payoff of the

HFM and HFBs must be equal

E[LP (a)] = E[SP (a)]. (12)

By applying this condition and rearranging terms, we obtain the following quadratic equation in

a, which must hold

− a2

4
√

3
√

∆σ
+
a

2
− 1

4

√
3
√

∆σ + λ∆
a′2

4
√

3
√

∆σ
= 0. (13)

This equation has two solutions

a∗1,2 =
√

3
√

∆σ ±
√
λ∆a′. (14)

Economically meaningful is the solution which increases in the reservation ask price, a∗ =
√

3
√

∆σ+

a′
√
λ∆. The first term in the equilibrium ask price comes from the snipe off part. It represents

the ask price which equates the expected loss of the market maker with the HFB’s expected profit

in the case that the probability of the slow buyer’s arrival is zero. The second term represents an

adjustment for the expected profit from trading with the slow buyer.

Proposition 1. Market maker’s ask price. Let there be N high-frequency traders in the market.

Given the latency ∆, the buyer’s arrival rate λ, and assuming v∆ − v0 ∼ U(−
√

3
√

∆σ,
√

3
√

∆σ),

the equilibrium ask price is

a∗ =
√

3
√

∆σ +
√
λ∆a′. (15)

Proof. Follows from the steps above.
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We next solve for the highest reservation price a′ that a buyer is willing to pay.

Buyer’s Reservation Value

I assume that both the buyer and the seller are risk averse and have exponential constant absolute

risk-aversion utility functions u(x) = 1− e−αx, where α is the risk-aversion coefficient.

The buyer arrives at time t+∆ and observes the fundamental value at that time, vt+∆. He executes

if the value of submitting a market order 1− e−α(πB+vt+∆−vt−a) is higher than the value of submit-

ting a limit order, which we compute below. Otherwise, the buyer submits a limit order and waits

for a seller, who arrives according to a Poisson process with intensity λS(Q). The arrival intensity

is a decreasing function of the order size Q, meaning that the buyer would in expectation have to

wait longer for an opposite side trader if his order is larger. Although this paper does not depend

in its findings on the precise functional form, for illustrating figures, we use the functional form

proposed by Chacko et al. (2008), where the intensity is inversely related to the quantity traded,

λS(Q) = ΛS
Q . The parameter ΛS represents the arrival intensity of unit size order seller. This is

equivalent to assuming that the demand for trading is stationary per unit of time as in Garman

(1976). I will use λS and λS(Q) interchangeably.

It is assumed that the mean arrival time of the seller, 1
λS

, is much larger than the market maker’s

latency, ∆. Because the innovations to the fundamental value are uniformly distributed with mean

zero and variance σ2∆, it follows from the central limit theorem, that the sum of such innovations,∑J
j=1(vt+j∆−vt+(j−1)∆) is normally distributed with mean zero and variance σ2J∆, for large values

of J . The change in the fundamental value between the buyer’s arrival (reset to 0 for convenience)

and the seller’s arrival time TS is approximately normally distributed with mean 0 and variance

σ2TS , vTS ∼ N(0, σ2TS). This simplifies the calculations for the buyer’s reservation value and

enables closed-form solution for the buyer’s reservation ask price.
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Suppose that the buyer submits a limit order priced at the fundamental value vt.
16 It is assumed

that the seller will execute on the buyer’s order in case his payoff is not negative. His utility from

the trade is 1 − e−α(πS−vTs ), where −πS is his private valuation for the asset in addition to its

current fundamental value. It thus follows that the seller executes on the buyer’s order in case the

fundamental value is below πS , as this still leaves the seller with a positive trading surplus. The

buyer’s payoff increases up until this point and is zero once the fundamental value is larger than

πS . The seller’s and buyer’s payoffs from trading are depicted in Figure 3. The seller’s decision

can be summarized as follows

vTS


≤ πS seller executes,

> πS seller does not execute.

(16)

Taking the seller’s decision into consideration, the following lemma states the reservation value of

the buyer.

Lemma IV.1. Buyer’s reservation value. Given the seller’s arrival rate λS and private valu-

ation πS, the buyer’s risk-aversion coefficient α and private valuation πB, the fundamental value’s

volatility σ and λS >
α2σ2

2 , the buyer’s reservation value, VB,LO, is the following:

VB,LO = 1− λSe
−απB

λS − α2σ2

2

(
1 + e−απSe

−
√

2λSπS
σ2

[
ασ

2

√
π

λS
−
√
π

2

√
πS

])
. (17)

Proof. The proof is given in Section A.

In case the seller’s private valuation πS is much larger than the variance σ2TS , the above expression

is approximately equal to

VB,LO ≈ 1− λSe
−απB

λS − α2σ2

2

. (18)

In the following, the buyer’s reservation utility is transformed to the maximum ask price a′ at which

he is willing to buy the asset from the market maker.

16vt serves here as a reference point, the analysis and conclusions do not change due to this choice. It is equivalent
to setting the bid, b, in Equation (5) to 0. This paper also does not aim at explicitly modelling the limit order
submission decision of the buyer, who is being considered here as a liquidity trader with a binary choice.
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The Buyer’s Reservation Ask Price

The buyer will be indifferent between trading at the market maker’s ask price and submitting a limit

order if his utility of submitting the market order, VB,MO(a′), equals his utility from submitting a

limit order, VB,LO, which we derived above as the buyer’s reservation utility. The reservation ask

price a′ is the ask price that equates these two utilities. Using Equation (18) and VB,MO(a′) =

1− e−α(πB−a′) yields

1− λSe
−απB

λS − α2σ2

2

= 1− e−α(πB−a′). (19)

Simplifying yields

e−απB

(
eαa

′ − λS

λS − α2σ2

2

)
= 0. (20)

Solving this equation for a′ results in the following lemma:

Lemma IV.2. Reservation ask price. Given the seller’s arrival rate λS, the buyer’s risk-

aversion coefficient α and the fundamental value’s volatility σ, the highest price at which the buyer

is willing to buy the asset, a′, is:

a′ =
1

α
log

(
λS

λS − α2σ2

2

)
(21)

Proof. The proof follows from the steps above.17

The Market Maker’s Ask Price

The last step to compute the market maker’s ask price is to insert the expression for the reservation

ask price from lemma IV.2 into the general solution for the ask price given in proposition 1. This

yields

17The log(·) represents the natural logarithm function.
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Proposition 2. Market maker’s ask price with reservation ask. Let there be N high-

frequency traders in the market. Given the latency ∆, the buyer’s arrival rate λ, the seller’s arrival

rate λS and assuming v∆ − v0 ∼ U(−
√

3
√

∆σ,
√

3
√

∆σ) and that 1
λS

>> ∆, the equilibrium ask

price is

a∗ =
√

3
√

∆σ +
√
λ∆

1

α
log

(
λS

λS − α2σ2

2

)
. (22)

Proof. Follows from the steps above.

In the following section we use this result to investigate the relationship market maker latency and

price impact.

V. Comparative Statics

This paper’s main result is stated in proposition 3. It provides the comparative statics analysis

of the ask price with respect to the model primitives.

Proposition 3. Price impact and latency. Given the market maker’s ask price a∗ as stated

in Equation (22), the ask price

1. increases in the market maker’s latency ∆,

2. decreases in the seller’s arrival rate λS,

3. increases in the trade size Q,

4. increases in the asset’s volatility σ.

Proof. The proof is outlined below.

Let us first analyze the impact of latency ∆, starting from Equation (22) by taking derivatives

with respect to ∆:

∂a∗

∂∆
=

∂

∂∆

(
√

3
√

∆σ +
√
λ∆

1

α
log

(
λS

λS − α2σ2

2

))
(23)

=
σ

2

√
3

∆
+

1

2

√
λ

∆

1

α
log

(
λS

λS − α2σ2

2

)
> 0. (24)
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The first term comes from the increased adverse selection the market maker is facing and is positive.

Thus, larger latency leads to higher adverse selection costs, which are compensated by a higher

spread. The second term represents the mark up the market maker is able to charge the buyer on

average due to the buyer’s preference for immediacy. That term is also positive as the reservation

ask price is positive.

The impact of the intensity of seller arrivals is determined in a similar fashion:

∂a∗

∂λS
=

∂

∂λS

(
√

3
√

∆σ +
√
λ∆

1

α
log

(
λS

λS − α2σ2

2

))
(25)

=
√
λ∆

1

α

λS − α2σ2

2

λS

λS − α2σ2

2 − λS
(λS − α2σ2

2 )2
(26)

= −
√
λ∆

1

α

α2σ2

2

λS(λS − α2σ2

2 )
< 0. (27)

The negative sign confirms the intuition that if the buyer’s outside option is more valuable, because

his chance of meeting a seller sooner is higher, he will be less willing to pay a high ask price.

The impact of trade size on the ask price can be obtained by recalling that λS(Q) = ΛS
Q and

applying the chain rule,

∂a∗(λS(Q))

∂Q
=
∂a∗

∂λS

∂λS
∂Q

(28)

= −
√
λ∆

1

α

α2σ2

2

λS(λS − α2σ2

2 )

(
−ΛS
Q2

)
(29)

=
√
λ∆

1

α

α2σ2

2

λS(λS − α2σ2

2 )

(
ΛS
Q2

)
> 0. (30)

The larger the quantity the buyer wants to trade, the longer he would need to wait for a potential

seller, the lower is the value of his outside option and thus the higher is the price the market maker

is able to charge.

The cross-derivative of the ask price with respect to latency ∆ and the order size Q is given by

∂a∗

∂Q∂∆
=

1

2

√
λ

∆

1

α

α2σ2

2

λS(λS − α2σ2

2 )

(
ΛS
Q2

)
> 0. (31)
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The higher is the probability that a buyer with a lower valued outside option will come, the higher

the ask price that the market maker can charge.

The effect of an increase in the volatility of the fundamental value on the ask price is:

∂a∗

∂σ
=

∂

∂σ

(
√

3
√

∆σ +
√
λ∆

1

α
log

(
λS

λS − α2σ2

2

))
(32)

=
√

3
√

∆ +
√
λ∆

1

α

λS − α2σ2

2

λS

λSα
2σ

(λS − α2σ2

2 )2
(33)

=
√

3
√

∆ +
√
λ∆

ασ

λS − α2σ2

2

> 0. (34)

Volatility increases the ask price through two channels. First, a higher volatility leads to higher

adverse selection costs for the market maker. Second, it reduces the value of the risk-averse buyer’s

outside option, allowing the market maker to charge a higher ask price.

Illustrative examples are provided in Figure 4. This figure represents the sensitivity of the ask

price a∗ to the latency ∆, order size Q, and volatility σ. The base parameters chosen are σ = 0.2,

λ = 1, ΛS = 10, and Q = 1. The left panel shows the impact of latency and order size. The middle

panel shows the impact of latency and volatility and the right panel the impact of order size and

volatility. The ask price is increasing in latency and this increase is more prominent, the larger the

order size. The ask price also increases in the volatility of the fundamental value.

VI. Welfare Analysis

This section analyzes comparative statics of slow traders’ and high-frequency traders’ expected

profits as well as the probability of trading.

High-frequency Traders’ Profit

The profit of the HFM has to be equal in expectation to the profit of the HFBs. HFTs’ profit

is obtained by plugging the solution for the ask price from Equation (22) into the HFBs’ profit

16



Equation (10). The sensitivity of HFBs’ profit to the model parameters is given in the following

lemma.

Lemma VI.1. Equilibrium HFT profits. Let there be N HFTs in the market. Given the

seller’s arrival rate λS, the buyer’s risk-aversion coefficient α, the market maket’s latency ∆ and

the fundamental value’s volatility σ, the HFT’s expected profit is

E[SP (a∗)] =
1

N

(√
∆λa′2

4
√

3σ

)
(35)

=
1

N


√

∆λ
[

log

(
λS

λS−α
2σ2

2

)]2

4
√

3σα2

 . (36)

HFTs’ profit

1. decreases in the number of HFTs N ,

2. increases in the buyer’s arrival rate λ,

3. decreases in latency ∆,

4. decreases in the seller’s arrival rate λS,

5. increases in the asset’s volatility σ.

Proof. The proof is outlined below.

The effect of an increase in latency can be directly observed in Equation (35), where the increase

in latency leads to an increase in HFT profits in proportion to
√

∆. This is due to the increased

probability of the arrival of the slow buyer by time ∆; thus, it is more natural to normalize the

profit by time. Doing so yields 1
N

(
λa′2

4
√

∆
√

3σ

)
, which is decreasing in ∆. This is because as ∆ rises,

the dispersion of the fundamental value increases, lowering the chance that the fundamental value

will lie in the execution interval [a∗ − a′, a∗].

HFTs’ profit increases in the arrival rate of the slow buyer by increasing the chance of a trade in

the next ∆ time interval. Profits decrease in the number of HFTs N , as they are divided by a

17



larger number of possible liquidity providers. HFTs’ profit also decreases in the seller’s arrival rate.

The reason is that a higher λS increases the buyer’s reservation value:

∂E[SP (a∗)]

∂λS
= − 1

N


√

∆λσ log

(
λS

λS−α
2σ2

2

)
√

3λS(λS − α2σ2

2 )

 < 0. (37)

The impact of volatility on HFTs’ profit is positive. The profit increases if

∂E[SP (a∗)]

∂σ
=

1

N


√

∆λ log

(
λS

λS−α2σ2

2

)
2
√

3(λS − α2σ2

2 )
−

√
∆λ
[

log

(
λS

λS−α2σ2

2

)]2

4
√

3α2σ2

 , (38)

which is positive provided that

λS

λS − α2σ2

2

− 1 >
1

4
log

(
λS

λS − α2σ2

2

)
. (39)

Remembering that λS > α2σ2

2 and setting y = λS

λS−α
2σ2

2

> 1, the last inequality is always true,

because the function y − 1− 1
4 log y is always positive for y > 1.

The effects of latency, order size, and volatility on HFTs’ profit are illustrated in Figure 5. The

left panel shows that HFTs’ profit decreases in latency. The middle panel shows the positive effect

of the volatility and the right panel of the order size.

Slow Buyer’s Utility and the Probability of Trading

In the following, I compute the expected utility of the slow buyer, VB. This is in general given by

the buyer’s utility from submitting a market order in case he executes on the market maker’s ask

quote and by the utility he derives from submitting a limit order in case (i) the ask price was higher

than his reservation ask, or (ii) the high fundamental value created an arbitrage opportunity for

the HFBs from which the slow buyer cannot profit:
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VB = E
[(

1− e−α(πB+v∆−a∗)
)
1a∗−a′≤v∆≤a∗

]
+ VB,LOP[a∗ − a′ > v∆ ∨ v∆ > a∗]. (40)

Before computing the buyer’s expected utility, it is useful to investigate the drivers of the probability

that the trade will happen, P[a∗ − a′ ≤ v∆ ≤ a∗].

Lemma VI.2. Equilibrium Probability of Trading. Given the seller’s arrival rate λS, the

buyer’s risk-aversion coefficient α and arrival rate λ, latency ∆ and the fundamental value’s volatil-

ity σ, the probability that a trade between the buyer and the market maker will happen is

P[a∗ − a′ ≤ v∆ ≤ a∗] = λ∆

∫ a∗

a∗−a′

1

2
√

3
√

∆σ
dx (41)

= λ
√

∆
a′

2
√

3σ
(42)

=

λ
√

∆ log

(
λS

λS−α
2σ2

2

)
2
√

3σα
. (43)

The probability of trading

1. decreases in the seller’s arrival rate λS,

2. decreases in latency ∆,

3. increases in the buyer’s arrival rate λ,

4. increases in the asset’s volatility σ.

Proof. The remainder of the proof is outlined below.

From the calculation above it can be seen that the probability of trading between the market maker

and the buyer does not directly depend on the market maker’s ask price a∗. However, it depends

on the reservation ask a′. The higher the seller’s arrival rate, the lower the reservation ask price

and the lower therefore the probability of trading with the market maker:

∂P[·]
∂λS

= − ασλ
√

∆

4
√

3λS(λS − α2σ2

2 )
< 0. (44)
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Increasing the latency or the buyer’s arrival rate increases the chance that the buyer will arrive

by time ∆. On the other hand, increasing latency leads to a higher dispersion of the fundamental

value, reducing the chance that it will fall in the acceptable trading range [a∗−a′, a∗], lowering the

trading probability. We are interested in the effect per unit of time. Overall, this will be negative.

Indeed,

∂(P[·]/∆)

∂∆
= − a′

4
√

3∆
3
2σ

< 0. (45)

The impact of asset price volatility on the probability of trading is given by

∂P[·]
∂σ

= λ
√

∆

α2σ2

2

λS−α
2σ2

2

− 1
2 log

(
λS

λS−α
2σ2

2

)
√

3α
. (46)

This expression is positive provided that

λS

λS − α2σ2

2

− 1 >
1

2
log

(
λS

λS − α2σ2

2

)
(47)

Setting y = λS

λS−α
2σ2

2

> 1, this condition is always met, because the function y−1− 1
2 log y is always

positive for y > 1.

The effects of latency, order size, and volatility on the probability of trading are illustrated in

Figure 6. The left panel shows that higher latency reduces the probability of trading per unit of

time. The middle panel shows the positive impact of the volatility of the fundamental value and

the right the positive impact of the order size.

We are now in a position to compute the expected utility of the slow buyer. The expected utility

can be divided into two components. The first is the payoff obtained from executing on the market

maker’s ask price. The second arises from submitting a limit order in case trading with the market

maker is no longer the best option for the buyer.

Proposition 4. Equilibrium Slow Trader’s Utility. Given the seller’s arrival rate λS, the
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buyer’s arrival rate λ, his risk-aversion coefficient α and private valuation πB, latency ∆ and the

fundamental value’s volatility σ, the slow buyer’s expected utility derived from a limit order is

VB,LOP[a∗ − a′ > v∆ ∨ v∆ > a∗] =

(
1− λSe

−απB

λS − α2σ2

2

)
λ∆

1−
log

(
λS

λS−α
2σ2

2

)
2
√

3
√

∆σα

 . (48)

The limit order payoff

1. increases in the seller’s arrival rate λS if VB,LO is sufficiently large,

2. increases in the latency ∆,

3. increases in the buyer’s arrival rate λ.

The slow buyer’s expected utility derived from submitting a market order VB,MO is

E
[(

1− e−α(πB+v∆−a∗)
)
1a∗−a′≤v∆≤a∗

]
= λ
√

∆

log

(
λS

λS−α
2σ2

2

)
+ e−απB

(
1− λS

λS−α
2σ2

2

)
2
√

3ασ
. (49)

The market order payoff

1. increases in the buyer’s arrival rate λ,

2. decreases in the seller’s arrival rate λS if VB,LO > 0,

3. decreases in the latency ∆ if eαπB >
∂a′
∂σ2

a′
σ2

.

The slow buyer’s overall payoff VB,LOP[a∗ − a′ > v∆ ∨ v∆ > a∗] + VB,MO

1. increases in the seller’s arrival rate λS if 2
√

3σ
√

∆ > a′,

2. increases in the buyer’s arrival rate λ,

3. decreases in latency ∆.

Proof. The proof of Equation (48) and Equation (49) is given in Section B and the comparative

statics are derived below.
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The expected limit order surplus of the slow buyer increases in the arrival rate of the seller as

it increases the value of the limit order and decreases the probability of trading with the market

maker at the same time, provided that the value of the limit order is sufficiently high. Indeed, one

has

∂

∂λS

(
VB,LOP[a∗ − a′ > v∆ ∨ v∆ > a∗]

)
=
∂VB,LO
∂λS︸ ︷︷ ︸
>0

P[·]︸︷︷︸
>0

+
∂P[·]
∂λS︸ ︷︷ ︸
>0

VB,LO. (50)

∂VB,LO
∂λS

equals e−απB λS

λS−α
2σ2

2

(
λS

λS−α
2σ2

2

− 1

)
, which is positive since λS− α2σ2

2 > 0. The trade prob-

ability is decreasing in λS by Equation (44), so the no-trade probability P[a∗ − a′ > v∆ ∨ v∆ > a∗]

increases in λS . The term VB,LO may in general take negative values. It will remain positive if

eαπB > λS

λS−α
2σ2

2

, which holds for a broad range of parameters. Thus the buyer’s expected limit

order surplus is typically increasing in λS .

The expected limit order surplus of the slow buyer, VB,LOP[a∗ − a′ > v∆ ∨ v∆ > a∗], increases in

latency ∆ as a whole, because the probability of slow buyer’s arrival increases. As in the case of the

probability of trading, we are interested in the effects per unit of time. As shown above, because

the dispersion of the fundamental value rises with ∆, the probability per unit of time ∆ that the

fundamental value will fall within the execution range, falls. Thus, the time-normalized effect of an

increase in ∆ on the expected limit order profit of the slow buyer is positive if the outside utility

of the slow buyer is positive, VB,LO > 0. Formally,

∂

∂∆

(
VB,LO

P[a∗ − a′ > v∆ ∨ v∆ > a∗]

∆

)
= log

(
λS

λS − α2σ2

2

)(
1− λSe

−απB

λS − α2σ2

2

)
λ

4
√

3∆
3
2σα

> 0.

(51)

Furthermore, the slow buyer’s expected profit increases in λ as trading between the buyer and the

market maker becomes more likely. Formally,

∂

∂λ

(
VB,LO

P[a∗ − a′ > v∆ ∨ v∆ > a∗]

∆

)
=

(
1− λSe

−απB

λS − α2σ2

2

)1−
log

(
λS

λS−α
2σ2

2

)
2
√

3
√

∆σα

 > 0. (52)

22



Let us now consider the sensitivity of the market order surplus before analyzing the overall welfare

of the slow buyer. The expected market order surplus of the slow buyer is decreasing in λS if the

outside utility of the slow buyer is positive, VB,LO > 0.

∂

∂λS
E
[(

1− e−α(πB+v∆−a∗)
)
1a∗−a′≤v∆≤a∗

]
=
ασ
√

∆e−απB
(
α2σ2eαπB − 2λS (eαπB − 1)

)
2
√

3λS (α2σ2 − 2λS)2 (53)

This expression is negative provided that

1− e−απBλS

λS − α2σ2

2

> 0 (54)

i.e. if

VB,LO > 0. (55)

To analyze the sensitivity of the market order surplus with respect to ∆, we use again the profit

per unit of time by dividing the expression by ∆. One has

∂

∂∆

(
E
[(

1− e−α(πB+v∆−a∗)
)
1a∗−a′≤v∆≤a∗

]
∆

)
= −e

−απB

(
eαπB log

(
λS

λS−
α2σ2

2

)
− λS

λS−
α2σ2

2

+1

)

4
√

3α
√

∆3σ
. (56)

This expression is negative provided that

eαπB >

λS

λS−α
2σ2

2

− 1

log

(
λS

λS−α
2σ2

2

) =
∂a′

∂σ2

a′

σ2

. (57)

The expected market order surplus of the slow buyer is decreasing in ∆ if eαπB >

λS

λS−
α2σ2

2

−1

log

(
λS

λS−
α2σ2

2

) .

In words, the expected payoff to a market order will decrease in latency if the private valuation is

high enough compared to the elasticity of the reservation ask price with respect to the variance of

the fundamental value σ2.

Turning now to the impact of the model parameters on the slow buyer’s overall welfare VB,LOP[a∗−
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a′ > v∆ ∨ v∆ > a∗] + VB,MO, the effect of the seller’s arrival rate can be computed as

∂

∂λS

(
VB,LOP[a∗ − a′ > v∆ ∨ v∆ > a∗] + VB,MO

)
=

ασ
√

∆λe−απB
(

2
√

3α
√

∆σ − log

(
λS

λS−α
2σ2

2

))
√

3
(
λS − α2σ2

2

)2 .

(58)

This expression is positive if

2
√

3σ
√

∆ > a′. (59)

Thus, the buyer’s overall utility increases in λS if the reservation ask price is lower than the disper-

sion of the fundamental value 2
√

3σ
√

∆ > a′, which can be interpreted as a feasibility condition.

The overall expected payoff of the slow buyer also increases in his arrival rate λ as both his expected

payoff due to market and limit order increase in λ.

Turning now to the effect of latency ∆, we are again interested in welfare per unit of time. One

has:

∂

∂∆

(
VB,LOP[a∗ − a′ > v∆ ∨ v∆ > a∗] + VB,MO

∆

)
=

λe−απB
(
α2σ2

2 − λS log

(
λS

λS−α
2σ2

2

))
2
√

3
√

∆3ασ
(
λS − α2σ2

2

) . (60)

This expression is negative if

α2σ2

2
< λSαa

′. (61)

The overall expected payoff of the slow buyer decreases in latency if the risk-aversion adjustment

is lower than a term proportional to his reservation ask price α2σ2

2 < λSαa
′. Inserting the value of

a′ yields the condition

λS

λS−α
2σ2

2

− 1

log

(
λS

λS−α
2σ2

2

) <
λS

λS − α2σ2

2

. (62)
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Setting y = λS

λS−α
2σ2

2

, Equation (62) can be written as y − 1− y log y < 0. Because λS − α2σ2

2 > 0,

y varies between 1 and ∞. At y = 1, the above expression equals zero. Futhermore, the derivative

of the expression is equal to − log y, which is negative for y > 1. Taken together this means that

the slow buyer’s overall welfare is decreasing in latency.

The effects of latency, order size, and volatility are illustrated in Figure 7. The left panel shows

the negative impact of latency on welfare for different order sizes Q. The middle panel shows the

impact of latency and volatility, and the right panel the impact of order size and volatility, where

we illustrate the effect of Equation (59) by choosing ΛS = 10 for the top panels and ΛS = 100 for

the bottom panels.

VII. Conclusion

Are faster markets better for institutional investors? The current paper presents a model

considering the impact of both order size and latency on the price impact of trades. A model

is proposed, which is solved analytically and is novel in the theoretical microstructure literature.

Larger latency increases adverse selection costs to the market maker and reduces his probability

of trading with a slow investor. A larger order size decreases the slow trader’s outside option,

making him susceptible to accept a worse price for his trade. It is shown that the first order effect

of increased latency and increased order size is to increase price impact. Their joint impact is

also positive. When the probability of trading is taken into consideration, the utility of the slow

institutional investor decreases with latency. Furthermore, this model is surmisable to possible

extensions. Natural extensions of this work include taking the order size as an endogenous variable

in a dynamic model, creating scope for trading influencing prices every round and the market maker

learning from such price changes. It would also be interesting to observe how such a model could

be extended to include the market maker’s inventory management or competition among different

high-frequency traders that are possibly subject to different latencies.
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Appendices

A. Price Impact as a Function of Latency

The following proves lemma IV.1 by computing the buyer’s reservation utility.

Proof. The buyer’s payoff is depicted in Figure 3. The fundamental value, vTS , is normally dis-

tributed with mean zero and variance σ2TS . The seller, who comes at time TS will only execute if

vTS ≤ πS . Put altogether, the buyer’s utility from submitting a limit order is given by the expec-

tation of the exponential of a truncated normal variable weighted by the random arrival time TS ,

which is exponentially distributed with intensity λS per unit of time. Formally, it is given by the

following double integral

VB,LO = 1−
∫ ∞

0
λSe

−λSy
∫ πS

−∞

e−α(πB+x)√
2πσ2y

e
− 1

2
x2

σ2y dxdy (63)

= 1− λSe−απB
∫ ∞

0
e−λSy+α2σ2

2
y

∫ πS

−∞

1√
2πσ2y

e
− 1

2
(x+ασ2y)2

σ2y dxdy (64)

= 1− λSe−απB
∫ ∞

0
e−λSy+α2σ2

2
yΦ(

πS + ασ2y

σ
√
y

)dy, (65)

where Φ(·) represents the normal CDF. The second equation was obtained by expanding the x2 by

ασ2y. The third equality was obtained by the change of variables z = x+ασ2y. Let’s focus on the

integral term, which we denote I and solve by parts.

I :=

∫ ∞
0

e−λSy+α2σ2

2
yΦ(

πS + ασ2y

σ
√
y

)dy (66)

= − 1
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2
)Φ(

πS + ασ2y
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y3σ
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. (69)

Here, the second equality comes from solving the I integral by parts. Computing the limits of the

left term and the partial derivative for the right term yields the third equality. The fourth results
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from collecting terms. Let us again compute the integral part separately.

J :=

∫ ∞
0

e
−yλS−

πS
2σ2y

(
ασ

2
√
y
− πS

2
√
y3σ

)
dy (70)
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dy (72)

= J1 − J2. (73)

The above separation is useful, because the two integrals are special Bessel functions found in

Lebedev et al. (1972) Sects. 8.432 6 p. 959, and 8.469 3 p. 967:

∫ ∞
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1√
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δ
2

(t+ 1
t
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(76)

where β = 2λS , γ = πS
σ2 and δ =

√
βγ. Hence,

J1 =
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2
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σ2 , (77)
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2
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πSe
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2λS
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σ2 . (78)

Inserting J = J1 − J2 back into the integral I := 1

λS−α
2σ2

2

(1 + e−απSJ) and I back into the utility

of submitting a limit order, VB,LO = 1− λSe−απBI yields the following

VB,LO = 1− λSe
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which concludes the proof of the buyer’s reservation utility from submitting a limit order and

waiting for a seller.
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B. Welfare Analysis of Market Maker’s Latency

Proof. The following proves the expected utility of the slow buyer from a market order, Equa-

tion (49):

E
[
1− e−α(πB+v∆−a∗)|a∗ − a′ ≤ v∆ ≤ a∗
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The first and second equalities follow directly from computing the expectation. The third equality

is obtained by plugging in the value for the reservation ask price a′ from lemma IV.2.

Proof. The following proves the expected utility of the slow buyer from a limit order Equation (48).

Let us first compute the probability of not executing upon slow buyer’s arrival:

P[a∗ − a′ > v∆ ∨ v∆ > a∗] = λ∆
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The first and second equalities follow directly from computing the probability. The third equality

is obtained by plugging in the value for the reservation ask price a′ from lemma IV.2.

Multiplying this probability by the expected payoff from limit order VB,LO given in lemma IV.1

yields

VB,LOP[a∗ − a′ > v∆ ∨ v∆ > a∗] = λ∆
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. (86)
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Market maker submits
ask a∗ valid for the next

interval of length ∆.

Fundamental value
vt+∆ is realized.

vt+∆ > a∗

Buyer arrives with
probability λ∆
and computes

reservation ask a′.

Market
maker

cancels?
1
N chance.

vt+∆ >
a∗ − a′

Buyer submits
a limit order

with expected
payoff VB,LO.

Market maker’s
payoff is zero.

Buyer submits
a market order

and his payoff is
vt+∆ + πB − a∗.
Market maker’s

payoff is a∗ − vt+∆.

Market maker’s
payoff is zero.

Market maker’s
payoff is a∗ − vt+∆.

no

yes

no

yes
yesno

Figure 1: Flow of events. For simplicity, the time t fundamental value is normalized to zero, vt = 0.
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Payoff

vt+∆

(a− a′)

Market Maker’s Limit Order Payoff

Slope is -N−1
N

a′

Slope is -1

a

Buyer’s Market Order Payoff

vt+∆

Figure 2: Market maker’s and buyer’s payoff structure as a function of the fundamental value vt+∆. There
are N high-frequency traders in the market. Market maker submits ask at price a and the maximum price
at which the buyer is willing to buy is the reservation ask, a′.
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Payoff

(0, 0)

vTS − vt

πB

πS

πS

Seller’s Market Order Payoff

Buyer’s Limit Order Payoff

vTS − vt

Figure 3: Buyer’s and seller’s payoff structure as a function of the change in the fundamental value vTS
− vt.

The buyer submits a bid at price vt and the minimum price at which the seller is willing to sell is his private
valuation πS .
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Figure 4: Market maker’s ask price as a function of latency ∆ and order size Q. This figure illustrates the sensitivity of the ask price a∗ to
the latency ∆, order size Q, and volatility σ. The base parameters chosen are σ = 0.2, λ = 1, ΛS = 10, and Q = 1. The left panel shows the impact
of latency and order size. The middle panel shows the impact of latency and volatility, and the right panel the impact of order size and volatility.
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Figure 5: Expected market maker’s profit as a function of latency ∆ and order size Q. This figure illustrates the sensitivity of the market
maker’s profit to the latency ∆, order size Q, and volatility σ. The base parameters chosen are σ = 0.2, ΛS = 10, and Q = 1. The left panel shows
the impact of latency and order size. The middle panel shows the impact of latency and volatility, and the right panel the impact of order size and
volatility.
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Figure 6: Probability of trade between the market maker and the buyer as a function of latency ∆ and order size Q. This figure
illustrates the sensitivity of the probability of trading to the latency ∆, order size Q, and volatility σ. The base parameters chosen are σ = 0.2,
ΛS = 10, Q = 1, and λ = 1. The left panel shows the impact of latency and order size. The middle panel shows the impact of latency and volatility,
and the right panel the impact of order size and volatility.
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Figure 7: Slow buyer’s expected profit as a function of latency ∆ and order size Q. This figure illustrates the sensitivity of the slow buyer’s
profit to latency ∆, order size Q, and volatility σ. The base parameters chosen are σ = 0.2, ΛS = 10, and Q = 1. The left panel shows the impact of
latency and order size. The middle panel shows the impact of latency and volatility, and the right panel the impact of order size and volatility. The
top three panels are computed with ΛS = 10 and the bottom three panels with ΛS = 100.
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